Distribute work stored in table to multiple processes - akka

I have a database table where each row represents a work to be done. This table is filled up/receive work through a rest API. Apart from a rest-service taking up the work, I have another service which uses actors to process this work.
I need suggestions in distributing this work evenly across these workers. This work is not one time, it is kind of done at an interval until user deletes that.
Therefore I need a mechanism where
The work as it comes is distributed evenly.
If the second service(work consumer) fails it can again boot up with all the records in table and distribute the work again.

Each actor represents one row of the work table.
class WorkActor(workId: String)(implicit system: ActorSystem, materializer: ActorMaterializer) extends Actor {
// read the record from table or whereever you want to read
override def preStart(): Unit = {
logger.info("WorkActor start ===> " + self)
}
override def receive: Receive = {
case _ => {}
}
}
Create an Akka cluster sharding region to dispatch the request from rest api to corresponding actor. Calling startShardingRegion function to return an actorRef. Then you could send the message to this sharding actorRef by rest API, and then corresponding will help you handle the message.
final case class CommandEnvelope(id: String, payload: Any)
def startShardingRegion(role: String)(implicit system: ActorSystem) = {
ClusterSharding(system).start(
typeName = role,
entityProps = Props(classOf[WorkActor]),
settings = ClusterShardingSettings(system),
extractEntityId = ClusterConfig.extractEntityId,
extractShardId = ClusterConfig.extractShardId
)
}
// sharding key
object ClusterConfig {
private val numberOfShards = 100
val extractEntityId: ShardRegion.ExtractEntityId = {
case CommandEnvelope(id, payload) => (id, payload)
}
val extractShardId: ShardRegion.ExtractShardId = {
case CommandEnvelope(id, _) => (id.hashCode % numberOfShards).toString
case ShardRegion.StartEntity(id) => (id.hashCode % numberOfShards).toString
}
}
Read or recover the data from preStart function in the actor. There are many choice. You may read the uncompleted work from MQ (Kafka), Akka persistence (RDS, Cassandra) etc.
SBR has open source solution. That is an advanced topic if your business logic works.
https://github.com/TanUkkii007/akka-cluster-custom-downing

The general outline of a solution is to use Akka Cluster, Cluster Sharding, and Akk Cluster Singleton. When the cluster is considered formed (generally when some minimum number of members have joined the cluster), you start the Cluster Sharding system (sharding work items by the DB's primary key) and then a Cluster Singleton will read the DB table and send work items to Cluster Sharding for distribution among the nodes of the cluster. Akka Streams and particularly Alpakka's Slick JDBC integration may prove useful within the singleton. Another cluster singleton to periodically check on jobs may also be useful to recover from cluster node failures (but see below for something to consider there).
Two notes:
If using Cluster Sharding and Cluster Singleton, you probably want to consider what happens in a split-brain situation: this is a distributed system and the probability of a split-brain eventually happening can be presumed to be 100%. In the split-brain scenario, you will very likely have the same jobs being performed simultaneously by different sides of the split, so you need to ask if that's acceptable in your use-case.
If not, then you will need a component which monitors the communications between nodes in your cluster to detect a split-brain and takes steps to resolve the condition: Lightbend's Split Brain Resolver is a good choice if you aren't interested in implementing this yourself.
In a related vein, if the jobs consist of many steps which must be performed, a question to ask is, if a cluster or node fails after completing, say, eight of ten steps, is it acceptable to redo steps 1-8 vs. starting with step 9? If the answer to this is "no", then you'll need to persist the intermediate state of the job. Akka Persistence is a great choice here, though you may want to read up on event sourcing. If using Persistence with Cluster Sharding and Cluster Singleton, it should be noted, you will almost certainly need to handle split-brains (see previous item).

Related

Akka Consistent-hashing routing

I have developed an application using Typed Akka 2.6.19.
I want to route events from a certain source to the SAME routee/worker based on IP address. So, I have planned to use Consistent-hashing routing.
I do not see much literature on this route type for Typed akka. Please give some pointers & example code.
You need only to initialize the router with the hash function to use.
For example (in Scala, though the Java API will be similar):
trait Command {
// all commands are required to have an associated IP Address (here represented in string form)
def ipAddr: String
}
// inside, e.g. the guardian actor, and using the actor context to spawn the router as a child
val serviceKey = ServiceKey[Command]("router")
val router = context.spawn(
Routers.group(serviceKey)
.withConsistentHashingRouting(
virtualNodesFactor = 10,
mapping = { msg: Command => msg.ipAddr }
)
// spawn the workers, who will register themselves with the router
val workerBehavior =
Behaviors.setup[Command] { ctx =>
ctx.system.receptionist ! Receptionist.Register(serviceKey, context.self)
Behaviors.receiveMessage { msg =>
??? // TODO
}
}
(1 to 10).foreach { i =>
context.spawn(workerBehavior, s"worker-$i")
}
Under the hood, for every worker that registers, the router will then generate 10 (the virtualNodesFactor) random numbers and associate them with that worker. The router will then execute the mapping function for every incoming message to get a string key for the message, which it will hash. If there is a worker with an associated random number less than or equal to that hash, the worker the greatest associated random number which is also less than or equal to that hash is selected; if the hash happens to be less than every random number associated with any worker, the worker with the greatest associated random number is selected.
Note that this implies that a given worker may process messages for more than 1 ipAddr.
Note that this algorithm does not make a strong guarantee that commands with the same ipAddr will always go to the same worker, even if the worker they were routed to is still active: if another worker registers and has a token generated which is greater than the previous worker's relevant token and that generated token is less than the hash of ipAddr, that new worker will effectively steal the messages for that ipAddr from the old worker.
The absence of this guarantee in turn means that if you depend for correctness on all messages for a given ipAddr to go to the same worker, you'll want something like cluster sharding, which is higher overhead but allows something a guarantee that no worker will ever see messages for multiple ipAddrs and (especially with persistence) will guarantee that the same "logical actor"/entity handles messages for the same ipAddr.

DDD - Concurrency with quantity

Hi everyone,
I'm a little bit lost with a problem thinking in ddd way.
Imagine you have an application to sell concert ticket. So you have an entity which is called Concert with the quantity number and a method to buy a ticket.
class Concert {
constructor(
public id: string,
public name: string,
public ticketQuantity: number,
) {}
buyTicket() {
this.ticketQuantity = this.ticketQuantity - 1;
}
}
The command looks like this:
async execute(command: BookConcertCommand): Promise<void> {
const concert = await this.concertRepository.findById(command.concertId);
concert.buyTicket();
await this.concertRepository.save(concert);
}
Imagine, your application has to carry a lot of users and 1000 users try to buy a ticket at the same when the ticketQuantity is 500.
How can you ensure the invariant of the quantity can't be lower than 0 ?
How can you deal with concurrency here because even if two users try to buy a ticket at the same time the data can be false ?
What are the patterns we can use to ensure consistency and concurrency ?
Optimistic or pessismistic concurrency can't be a solution because it will frustrate a lot of users and we try to put all our logic domain into our domain so we can't put any logic inside sql/db or use a transactional script approach.
How can you ensure the invariant of the quantity can't be lower than 0
You include logic in your domain model that only assigns a ticket if at least one unassigned ticket is available.
You include locking (either optimistic or pessimistic) to ensure "first writer wins" -- the loser(s) in a data race should abort or retry.
If your book of record was just data in memory, then you would ensure that all attempts to buy tickets for concert 12345 must first acquire the same lock. In effect, you serialize the requests so that the business logic is running one at a time only.
If your book of record was a relational database, then within the context of each transaction you might perform a "select for update" to get a copy of the current data, and perform the update in the same transaction. The database will raise it's flavor of concurrent modification exception to the connections that lose the race.
Alternatively, you use something like the semantics of a conditional-write / compare and swap: you get an unlocked copy of the concert from the book of record, make your changes, then send a "update this record if it still looks like the unlocked copy" message, if you get the response announcing you've won the race, congratulations - you're done. If not, you retry or fail.
Optimistic or pessismistic concurrency can't be a solution because it will frustrate a lot of users
Of course it can
If the concert is overbooked, they are going to be frustrated anyway
The business logic doesn't have to run synchronously with the request - it might be acceptable to write down that they want a ticket, and then contact them asynchronously to let them know that a ticket has been assigned to them
It may be helpful to review some of Udi Dahan's writing on collaborative and competitive domains; for instance, this piece from 2011.
In a collaborative domain, an inherent property of the domain is that multiple actors operate in parallel on the same set of data. A reservation system for concerts would be a good example of a collaborative domain – everyone wants the “good seats” (although it might be better call that competitive rather than collaborative, it is effectively the same principle).
You might be following these steps:
1- ReserveRequested -> ReserveRequestAccepted -> TicketReserved
2- ReserveRequested -> ReserveRequestRejected
When somebody clicks on the buy ticket button, you should create a reserve request entity, and then you can process the reservation in the background and by a queue system.
On the user side, you can return a unique reserve request-id to check the result of the process. So the frontend developer should fetch the result of process periodically until it succeeds or fails.

How to query big data in DynamoDB in best practice

I have a scenario: query the list of student in school, by year, and then use that information to do some other tasks, let say printing a certificate for each student
I'm using the serverless framework to deal with that scenario with this Lambda:
const queryStudent = async (_school_id, _year) => {
var params = {
TableName: `schoolTable`,
KeyConditionExpression: 'partition_key = _school_id AND begins_with(sort_key, _year)',
};
try {
let _students = [];
let items;
do {
items = await dynamoClient.query(params).promise();
_students = items.Items;
params.ExclusiveStartKey = items.LastEvaluatedKey;
} while (typeof items.LastEvaluatedKey != 'undefined');
return _students;
} catch (e) {
console.log('Error: ', e);
}
};
const mainHandler = async (event, context) => {
…
let students = await queryStudent(body.school_id, body.year);
await printCerificate(students)
…
}
So far, it’s working well with about 5k students (just sample data)
My concern: is it a scalable solution to query large data in DynamoDB?
As I know, Lambda has limited time execution, if the number of student goes up to a million, does the above solution still work?
Any best practice approach for this scenario is very appreciated and welcome.
If you think about scaling, there are multiple potential bottlenecks here, which you could address:
Hot Partition: right now you store all students of a single school in a single item collection. That means that they will be stored on a single storage node under the hood. If you run many queries against this, you might run into throughput limitations. You can use things like read/write sharding here, e.g. add a suffix to the partition key and do scatter-gatter with the data.
Lambda: Query: If you want to query a million records, this is going to take time. Lambda might not be able to do that (and the processing) in 15 minutes and if it fails before it's completely through, you lose the information how far you've come. You could do checkpointing for this, i.e. save the LastEvaluatedKey somewhere else and check if it exists on new Lambda invocations and start from there.
Lambda: Processing: You seem to be creating a certificate for each student in a year in the same Lambda function you do the querying. This is a solution that won't scale if it's a synchronous process and you have a million students. If stuff fails, you also have to consider retries and build that logic in your code.
If you want this to scale to a million students per school, I'd probably change the architecture to something like this:
You have a Step Function that you invoke when you want to print the certificates. This step function has a single Lambda function. The Lambda function queries the table across sharded partition keys and writes each student into an SQS queue for certificate-printing tasks. If Lambda notices, it's close to the runtime limit, it returns the LastEvaluatedKey and the step function recognizes thas and starts the function again with this offset. The SQS queue can invoke Lambda functions to actually create the certificates, possibly in batches.
This way you decouple query from processing and also have built-in retry logic for failed tasks in the form of the SQS/Lambda integration. You also include the checkpointing for the query across many items.
Implementing this requires more effort, so I'd first figure out, if a million students per school per year is a realistic number :-)

Experiencing deadlocks when using the Hikari transactor for Doobie with ZIO

I'm using Doobie in a ZIO application, and sometimes I get deadlocks (total freeze of the application). That can happen if I run my app on only one core, or if I reach the number of maximum parallel connections to the database.
My code looks like:
def mkTransactor(cfg: DatabaseConfig): RManaged[Blocking, Transactor[Task]] =
ZIO.runtime[Blocking].toManaged_.flatMap { implicit rt =>
val connectEC = rt.platform.executor.asEC
val transactEC = rt.environment.get.blockingExecutor.asEC
HikariTransactor
.fromHikariConfig[Task](
hikari(cfg),
connectEC,
Blocker.liftExecutionContext(transactEC)
)
.toManaged
}
private def hikari(cfg: DatabaseConfig): HikariConfig = {
val config = new com.zaxxer.hikari.HikariConfig
config.setJdbcUrl(cfg.url)
config.setSchema(cfg.schema)
config.setUsername(cfg.user)
config.setPassword(cfg.pass)
config
}
Alternatively, I set the leak detection parameter on Hikari (config.setLeakDetectionThreshold(10000L)), and I get leak errors which are not due to the time taken to process DB queries.
There is a good explanation in the Doobie documentation about the execution contexts and the expectations for each: https://tpolecat.github.io/doobie/docs/14-Managing-Connections.html#about-transactors
According to the docs, the "execution context for awaiting connection to the database" (connectEC in the question) should be bounded.
ZIO, by default, has only two thread pools:
zio-default-async – Bounded,
zio-default-blocking – Unbounded
So it is quite natural to believe that we should use zio-default-async since it is bounded.
Unfortunately, zio-default-async makes an assumption that its operations never, ever block. This is extremely important because it's the execution context used by the ZIO interpreter (its runtime) to run. If you block on it, you can actually block the evaluation progression of the ZIO program. This happens more often when there's only one core available.
The problem is that the execution context for awaiting DB connection is meant to block, waiting for free space in the Hikari connection pool. So we should not be using zio-default-async for this execution context.
The next question is: does it makes sense to create a new thread pool and corresponding execution context just for connectEC? There is nothing forbidding you to do so, but it is likely not necessary, for three reasons:
You want to avoid creating thread pools, especially since you likely have several already created from your web framework, DB connection pool, scheduler, etc. Each thread pool has its cost. Some examples are:
More to manage for the jvm JVM
Consumes more OS resources
Switching between threads, which that part is expensive in terms of performance
Makes your application runtime more complex to understand(complex thread dumps, etc)
ZIO thread pool ergonomics start to be well optimized for their usage
At the end of the day, you will have to manage your timeout somewhere, and the connection is not the part of the system which is the most likely to have enough information to know how long it should wait: different interactions (ie, in the outer parts of your app, nearer to use points) may require different timeout/retry logic.
All that being said, we found a configuration that works very well in an application running in production:
// zio.interop.catz._ provides a `zioContextShift`
val xa = (for {
// our transaction EC: wait for aquire/release connections, must accept blocking operations
te <- ZIO.access[Blocking](_.get.blockingExecutor.asEC)
} yield {
Transactor.fromDataSource[Task](datasource, te, Blocker.liftExecutionContext(te))
}).provide(ZioRuntime.environment).runNow
def transactTask[T](query: Transactor[Task] => Task[T]): Task[T] = {
query(xa)
}
I made a drawing of how Doobie and ZIO execution context map one other to each other: https://docs.google.com/drawings/d/1aJAkH6VFjX3ENu7gYUDK-qqOf9-AQI971EQ4sqhi2IY
UPDATE: I created a repos with 3 examples of that pattern usage (mixed app, pure app, ZLayer app) here: https://github.com/fanf/test-zio-doobie
Any feedback is welcome.

Lambda SQL Server RDS Connection Leak

Problem
I'm using mssql v6.2.0 in a Lambda that is invoked frequently (consistently ~25 concurrent invocations under standard load).
I seem to be having trouble with connection pooling or something because I keep having tons of open DB connections which overwhelm my database (SQL Server on RDS) causing the Lambdas to just time out waiting for query results.
I have read the docs, various similar questions, Github issues, etc. but nothing has worked for this particular issue.
Things I've Learned Already
I did learn that pooling is possible across invocations due to the fact that variables outside the handler function are shared across invocations in the same container. This makes me think I should see just a few connections for each container running my Lambda, but I don't know how many that is so it's hard to verify. Bottom line is that pooling should keep me from having tons and tons of open connections, so something isn't working right.
There are several different ways to use mssql and I have tried several of them. Notably I've tried specifying max pool size with both large and small values but got the same results.
AWS recommends that you check to see if there's already a pool before trying to create a new one. I tried that to no avail. It was something like pool = pool || await createPool()
I know that RDS Proxy exists to help with situations like this, but it appears it isn't offered (at this time) for SQL Server instances.
I do have the ability to slow down my data a bit, but this has a slight impact on the performance of the product as a whole, so I don't want to do that just to avoid solving a DB connections issue.
Left unchecked, I saw as many as 700 connections to the DB at once, leading me to think there's a leak of some kind and it's maybe not just a reasonable result of high usage.
I didn't find a way to shorten the TTL for connections on the SQL Server side as recommended by this re:Invent slide. Perhaps that is part of the answer?
Code
'use strict';
/* Dependencies */
const sql = require('mssql');
const fs = require('fs').promises;
const path = require('path');
const AWS = require('aws-sdk');
const GeoJSON = require('geojson');
AWS.config.update({ region: 'us-east-1' });
var iotdata = new AWS.IotData({ endpoint: process.env['IotEndpoint'] });
/* Export */
exports.handler = async function (event) {
let myVal= event.Records[0].Sns.Message;
// Gather prerequisites in parallel
let [
query1,
query2,
pool
] = await Promise.all([
fs.readFile(path.join(__dirname, 'query1.sql'), 'utf8'),
fs.readFile(path.join(__dirname, 'query2.sql'), 'utf8'),
sql.connect(process.env['connectionString'])
]);
// Query DB for updated data
let results = await pool.request()
.input('MyCol', sql.TYPES.VarChar, myVal)
.query(query1);
// Prepare IoT Core message
let params = {
topic: `${process.env['MyTopic']}/${results.recordset[0].TopicName}`,
payload: convertToGeoJsonString(results.recordset),
qos: 0
};
// Publish results to MQTT topic
try {
await iotdata.publish(params).promise();
console.log(`Successfully published update for ${myVal}`);
//Query 2
await pool.request()
.input('MyCol1', sql.TYPES.Float, results.recordset[0]['Foo'])
.input('MyCol2', sql.TYPES.Float, results.recordset[0]['Bar'])
.input('MyCol3', sql.TYPES.VarChar, results.recordset[0]['Baz'])
.query(query2);
} catch (err) {
console.log(err);
}
};
/**
* Convert query results to GeoJSON for API response
* #param {Array|Object} data - The query results
*/
function convertToGeoJsonString(data) {
let result = GeoJSON.parse(data, { Point: ['Latitude', 'Longitude']});
return JSON.stringify(result);
}
Question
Please help me understand why I'm getting runaway connections and how to fix it. For bonus points: what's the ideal strategy for handling high DB concurrency on Lambda?
Ultimately this service needs to handle several times the current load -- I realize this becomes a quite intense load. I'm open to options like read replicas or other read-performance-boosting measures as long as they're compatible with SQL Server, and they're not just a cop out for writing proper DB access code.
Please let me know if I can improve the question. I know there are similar ones out there but I have read/tried a lot of them and didn't find them to help. Thanks in advance!
Related Material
https://forums.aws.amazon.com/thread.jspa?messageID=678029 (old, but similar)
https://www.slideshare.net/AmazonWebServices/best-practices-for-using-aws-lambda-with-rdsrdbms-solutions-srv320 re:Invent slide deck
https://www.jeremydaly.com/reuse-database-connections-aws-lambda/ Relevant info but for MySQL instead of SQL Server
Answer
I finally found the answer after 4 days of effort. All I needed to do was scale up the DB. The code is actually fine as-is.
I went from db.t2.micro to db.t3.small (or 1 vCPU, 1GB RAM to 2 vCPU and 2GB RAM) at a net cost of roughly $15/mo.
Theory
In my case, the DB probably couldn't handle the processing (which involves several geographic calculations) for all my invocations at once. I did see CPU go up, but I assumed that was a result of the high open connections. When the queries slowed down, the concurrent invocations pile up as Lambdas start to wait for results, finally causing them to time out and not close their connections properly.
Comparisions:
db.t2.micro:
200+ DB connections (goes up continuously if you leave it running)
50+ concurrent invocations
5000+ ms Lambda duration when things slow down, ~300ms under no load
db.t3.small:
25-35 DB connections (constantly)
~5 concurrent invocations
~33 ms Lambda duration <-- ten times faster!
CloudWatch Dashboard
Summary
I think this issue was confusing to me because it didn't smell like a capacity issue. Almost every time I've dealt with high DB connections in the past, it has been a code error. Having tried options there, I thought it was "some magical gotcha of serverless" that I needed to understand. In the end it was as simple as changing DB tiers. My takeaway is that DB capacity issues can manifest themselves in ways other than high CPU and memory usage, and that high connections may be a result of something besides a code bug.
Update (4 months in)
This continues to work very well. I'm impressed that doubling the DB resources seems to have given > 2x performance. Now, when due to load (or a temporary bug during development), the db connections get really high (even over 1k) the DB handles it. I'm not seeing any issues at all with db connections timing out or the database getting bogged down due to load. Since the original time of writing I've added several CPU-intensive queries to support reporting workloads, and it continues to handle all these loads simultaneously.
We've also deployed this setup to production for one customer since the time of writing and it handles that workload without issue.
So a connection pool is no good on Lambda at all what you can do is reuse connections.
Trouble is every Lambda execution opens a pool it'll just flood the DB like you're getting, you want 1 connection per lambda container, you can use a db class like so (this is rough but lemmy know if you've got questions)
export default class MySQL {
constructor() {
this.connection = null
}
async getConnection() {
if (this.connection === null || this.connection.state === 'disconnected') {
return this.createConnection()
}
return this.connection
}
async createConnection() {
this.connection = await mysql.createConnection({
host: process.env.dbHost,
user: process.env.dbUser,
password: process.env.dbPassword,
database: process.env.database,
})
return this.connection
}
async query(sql, params) {
await this.getConnection()
let err
let rows
[err, rows] = await to(this.connection.query(sql, params))
if (err) {
console.log(err)
return false
}
return rows
}
}
function to(promise) {
return promise.then((data) => {
return [null, data]
}).catch(err => [err])
}
What you need to understand is A lambda execution is a little virtual machine that does a task and then stops, it does sit there for a while and if anyone else needs it then it gets reused along with the container and connection for a single task there's never multiple connections to a single lambda.
Hope this helps let me know if ya need any more detail! Oh and welcome to stackoverflow, that's a well-constructed question.