How to delete columns of dynamic array in C++ - c++

I need help tring to delete columns of 2D array in C++. I've tried the operation by making a copy of the array. It succeeded only from the start to middle or the middle to the end of array. witch algorithm to jump unwanted columns in the array when making copy.

Because of dynamic arrays so the varable of the array is pointer for the first value so you can't get the size or even use sizeof to get the size , but there's no case where you use dynamic arrays witout knowing the size , either fixed or in runtime throw varable

This probably isn't the best way to do this but its' a potential solution
int removeColumn(int a){
vector<vector<int>> ret(M);
int i = 0;
for(vector<int> temp : Arr){
vector<int> tempp(N-1);
copy(temp.begin(), temp.begin()+a, tempp.begin());
copy(temp.begin()+a+1,temp.end(),tempp.begin()+a);
ret[i] = tempp;
i++;
}
Arr = ret;
return 0;
}
Essentially you iterate over each row and use two copy statements to copy from the beginning to an index and from said index + 1 to the end. I'm sure there's a way to do this more elegantly, you could try looking at for_each loops however I doubt you could do it exclusively with copy. Tested it with this code.
https://repl.it/repls/PrettyTerrificOmnipage
Hope this helps

Related

trim array to elements between i and j

A classic, I'm looking for optimisation here : I have an array of things, and after some processing I know I'm only interested in elements i to j. How to trim my array in the fatset, lightest way, with complete deletions/freeing of memory of elements before i and after j ?
I'm doing mebedded C++, so I may not be able to compile all sorts of library let's say. But std or vector things welcome in a first phase !
I've tried, for array A to be trimmed between i and j, with variable numElms telling me the number of elements in A :
A = &A[i];
numElms = i-j+1;
As it is this yields an incompatibility error. Can that be fixed, and even when fixed, does that free the memory at all for now-unused elements?
A little context : This array is the central data set of my module, and it can be heavy. It will live as long as the module lives. And there's no need to carry dead weight all this time. This is the very first thing that is done - figuring which segment of the data set has to be at all analyzed, and trimming and dumping the rest forever, never to use it again (until the next cycle where we get a fresh array with possibily a compeltely different size).
When asking questions about speed your millage may very based on the size of the array you're working with, but:
Your fastest way will be to not trim the array, just use A[index + i] to find the elements you want.
The lightest way to do this would be to:
Allocate a dynamic array with malloc
Once i and j are found copy that range to the head of the dynamic array
Use realloc to resize the dynamic array to the size j - i + 1
However you have this tagged as C++ not C, so I believe that you're also interested in readability and the required programming investment, not raw speed or weight. If this is true then I would suggest use of a vector or deque.
Given vector<thing> A or a deque<thing> A you could do:
A.erase(cbegin(A), next(cbegin(A), i));
A.resize(j - i + 1);
There is no way to change aloocated memory block size in standard C++ (unless you have POD data — in this case C facilities like realloc could be used). The only way to trim an array is to allocate new array. copy/move needed elements and destroy old array.
You can do it manually, or using vectors:
int* array = new int[10]{0,1,2,3,4,5,6,7,8,9};
std::vector<int> vec {0,1,2,3,4,5,6,7,8,9};
//We want only elements 3-5
{
int* new_array = new int[3];
std::copy(array + 3, array + 6, new_array);
delete[] array;
array = new_array;
}
vec = std::vector<int>(vec.begin()+3, vec.begin()+6);
If you are using C++11, both approaches should have same perfomance.
If you only want to remove extra elements and do not really want to release memory (for example you might want to add more elements later) you can follow NathanOliver link
However, you should consider: do you really need that memory freed immideately? Do you need to move elements right now? Will you array live for such long time that this memory would be lost for your program completely? Maybe you need a range or perharps a view to the array content? In many cases you can store two pointers (or pointer and size) to denote your "new" array, while keeping old one to be released all at once.

Initializing a multidimensional array

I am trying to initialize a multidimensional array in batches and can't seem to make it work or find an example!
The dimensions I am working with are big enough that I don't want to specify them by hand!
More precisely :
int test[5][192];
for(int i = 0; i < 5; i++){
int temp[192] = {...};
test[i] = temp;
}
// use variable test here..
I want to use this method because the temp array is dynamicaly defined depending on variable i.
Is this type of initialization possible?
Should the temp array be in dynamic memory?
Since after the initialization I pass a reference to the first element of test to another function and I am not in control of how the other function passes over the elements I need to keep the data type of an array!
If you want to copy the values of temp array , instead of "=", you should use memory copy
memcpy( test[i], temp, sizeof(temp[192]));
Arrays do not have the copy assignment operator. So this is impossible with arrays.
If you will dynamically allocate each row then in any case you have to store somewhere the number of their elements. So even dynamically allocated arrays are not suitable in this case when the numbers of elements in each row can differ.
You should use standard container std::vector<std::vector<int>> instead.
You dont use the second dimension in the array for the test array. you just write test[], but you must write test[][].
I thing you don't must use the temp array. You can initialize you array direct, without using a temp array.
I'm not absolutly sure, but memcpy are just using for one diemnsionalarrays ant not for multidimensional arrays
if you know, Temp and test[i] are two pointer which point to memory
so if you print temp or test[i] you will see the address of where they start on memory.
in your code you lose the address of test[i] because you changed pointer test[i] to temp
and now both of them are pointing to the same place where temp begin on there!

C++ How to create a dynamic array of vectors?

I'm having problem initialising an array of std::vectors.
I'm declaring and initialising it like this:
vector<component_change*>* _changes;
_changes = new vector<component_change*> [numThreads];
in the hope that it's in the same form as this:
int * foo;
foo = new int [5];
but when I hit a breakpoint after the initialisation, _changes' size is 0.
What am I doing wrong and how can I fix it?
I don't want to use a vector of vectors as the number I need remains constant throughout the program but depends on the current hardware. And I'm not just looking for a single vector (Each vector will be used by a different thread then merged when the threads have finished their tasks).
Thanks guys! :)
Your program is correct. But you misinterpreted the debugger. _changes's size is not 0, but the first vector in your array (the one _changes points at) is empty. Thats because the debugger does not know if _changes points at a single element or an array (in that case the compiler would not know how many elements are in that array). Simply use a vector and call std::vector::shrink_to_fit.
If the size can be determined at compile time use a std::array. If the size is a run-time argument then use a vector and don't change the size of the container.
Are you interested in have a vector for each thread, or a vector containing items used by each thread? I assumed the later, but my answer could be adapted.
This is using a statically sized array; (this syntax is close).
const int NUMBER_OF_THREADS = 5;
component_change* _changes[NUMBER_OF_THREADS] =
{
new component_change(1),
new component_change(2),
new component_change(3),
new component_change(4),
new component_change(5)
}
If the number of threads is dynamic, you will have to use a new...
int NUMBER_OF_THREADS = system.getThreadCount();
component_change* _changes = new component_change[NUMBER_OF_THREADS];
for (int i = 0; i < NUMBER_OF_THREADS; i++)
{
_changes[i] = new component_change(i+1);
}
If you want to a std::vector:
int NUMBER_OF_THREADS = system.getThreadCount();
std::vector<component_change*> _changes;
_changes.reserve(NUMBER_OF_THREADS);
for (int i = 0; i < NUMBER_OF_THREADS; i++)
{
_changes.push_back(new component_change(i+1));
}
I think you're kind of mislead, this size that you are reading belongs to the vector in the first element of the array. Its size is equal to 0 since no elements have been inserted in the vector yet.
new vector is usually wrong.
You should use, with most preferred if possible first,
std::vector<component_change> _changes(numThreads);
or
std::vector<std::unique_ptr<component_change>> _changes(numThreads);
or
std::vector<component_change*> _changes(numThreads);
or if each element of the vector should itself contain an array of components (it's not clear in your question)
std::vector<std::vector<**component_change**>> _changes(numThreads);
Declaring the component as one of the above ways, depending on your needs.
Note that the pointers begin not pointing to anything. You'd have to allocate the individual components as a separate step.
The following creates an array of numThreads vectors, not a vector of numThread elements.
new vector<component_change*> [numThreads]

Incrementally dynamic allocation of memory in C/C++

I have a for-loop that needs to incrementally add columns to a matrix. The size of the rows is known before entering the for-loop, but the size of the columns varies depending on some condition. Following code illustrates the situation:
N = getFeatureVectorSize();
float **fmat; // N rows, dynamic number of cols
for(size_t i = 0; i < getNoObjects(); i++)
{
if(Object[i] == TARGET_OBJECT)
{
float *fv = new float[N];
getObjectFeatureVector(fv);
// How to add fv to fmat?
}
}
Edit 1 This is how I temporary solved my problem:
N = getFeatureVectorSize();
float *fv = new float[N];
float *fmat = NULL;
int col_counter = 0;
for(size_t i = 0; i < getNoObjects(); i++)
{
if(Object[i] == TARGET_OBJECT)
{
getObjectFeatureVector(fv);
fmat = (float *) realloc(fmat, (col_counter+1)*N*sizeof(float));
for(int r=0; r<N; r++) fmat[col_counter*N+r] = fv[r];
col_counter++;
}
}
delete [] fv;
free(fmat);
However, I'm still looking for a way to incrementally allocate memory of a two-dimensional array in C/C++.
To answer your original question
// How to add fv to fmat?
When you use float **fmat you are declaring a pointer to [an array of] pointers. Therefore you have to allocate (and free!) that array before you can use it. Think of it as the row pointer holder:
float **fmat = new float*[N];
Then in your loop you simply do
fmat[i] = fv;
However I suggest you look at the std::vector approach since it won't be significantly slower and will spare you from all those new and delete.
better - use boost::MultiArray as in the top answer here :
How do I best handle dynamic multi-dimensional arrays in C/C++?
trying to dynamically allocate your own matrix type is pain you do not need.
Alternatively - as a low-tech, quick and dirty solution, use a vector of vectors, like this :
C++ vector of vectors
If you want to do this without fancy data structures, you should declare fmat as an array of size N of pointers. For each column, you'll probably have to just guess at a reasonable size to start with. Dynamically allocate an array of that size of floats, and set the appropriate element of fmat to point at that array. If you run out of space (as in, there are more floats to be added to that column), try allocating a new array of twice the previous size. Change the appropriate element of fmat to point to the new array and deallocate the old one.
This technique is a bit ugly and can cause many allocations/deallocations if your predictions aren't good, but I've used it before. If you need dynamic array expansion without using someone else's data structures, this is about as good as you can get.
To elaborate the std::vector approach, this is how it would look like:
// initialize
N = getFeatureVectorSize();
vector<vector<float>> fmat(N);
Now the loop looks the same, you access the rows by saying fmat[i], however there is no pointer to a float. You simply call fmat[i].resize(row_len) to set the size and then assign to it using fmat[i][z] = 1.23.
In your solution I suggest you make getObjectFeatureVector return a vector<float>, so you can just say fmat[i] = getObjectFeatureVector();. Thanks to the C++11 move constructors this will be just as fast as assigning the pointers. Also this solution will solve the problem of getObjectFeatureVector not knowing the size of the array.
Edit: As I understand you don't know the number of columns. No problem:
deque<vector<float>> fmat();
Given this function:
std::vector<float> getObjectFeatureVector();
This is how you add another column:
fmat.push_back(getObjectFeatureVector());
The number of columns is fmat.size() and the number of rows in a column is fmat[i].size().

C++ getting the size of an array

I'm new to programming and I was wondering, how to get the size of an array, that is, get the size of how many elements are inside the array. For example if I declare an array of size 10, but only input 3 elements into the array, how would I determine the size of this array? If I don't know how many elements I placed in initially.
If you declare an array, e.g. int array[10], then its size is always 10 * sizeof(int). There is no way to know how many times you've accessed it; you'd need to keep track of that manually.
You should consider using container classes, e.g. std::vector:
std::vector<int> vec;
vec.push_back(5);
vec.push_back(10);
vec.push_back(42);
std::cout << vec.size() << "\n"; // Prints "3"
If you declare an old-style array of 10 elements, e.g. std::string words[10], the size of the array is always 10 strings. Even with the new style (std::array), it would be a fixed size.
You might be looking for a std::vector<>. This doesn't have a fixed size, but does have a .size() method. Therefore, if you add three elements to it, it will have .size()==3
to get the array size (in number of elements) assuming you do not know it in advance
use sizeof(a)/sizeof(a[0])
see the below example program. I used C but it should carry over to C++ just fine
#include <stdio.h>
int main(){
int a[10];
printf("%d elements\n",sizeof(a)/sizeof(a[0]));
return 0;
}
//output: 10 elements
There's several possible ways, but they depend on your definition.
If you know there is a value the user won't input (also known as a sentinel value), you can use a function like memset, to set the entire array to that unused value. You would then iterate through the list counting all the variables in the list that don't match that value.
The other way is to build your own array class, which counts whenever the array is modified (you'd have to overload the = and [] functions as appropriate).
You could also build a dynamically linked list, so as the user adds variables, the count can either be determined by walking the list or keeping count.
But, if you're taking the array as the basic array, with no idea as to it's actual starting state, and no idea what to expect from the user (given this is your program, this shouldn't occur), then generally speaking, no, there is known way to know this.
You maintain a counter variable count initialized to 0.
Whenever you are adding to array increment the count by 1.
Whenever you are removing from array decrement the count by 1.
anytime count will give you the size of the array.
Suggestion:
int[10] arr;
//init all to null
for (int i =0; i < 10; i++)
arr[i] = 0;
arr[0]=1;
arr[2]=5;
int sz = 0;
for (int j = 0; j < 10; j++)
if (arr[j] != 0) sz++;