I was wondering if it possible to create custom functions like for, for_each, while etc.
There's nothing that I want to do that the existing loops won't do it. I am just curious to learn how they work and if I ever need to create my own.
For example if one wants to create another version of the for function that would take only parameter.
In this example, I want to to create a for that only takes one parameter, an integer.
Instead of writing
for (int i = 0; i < 50; ++i)
I would create a for version like this
for_(50)
and they would act the same. How would I do something like that?
I have posted this question in another forum.
In addition to the proposals in other answers, you could create a function like the one below, but it is, at the very end, very similar to using the standard std::for_each.
#include <iostream>
#include <functional>
template<typename C, typename F>
void for_(C begin_, C end_, F&& f) { // [begin_, end_)
for (C i = begin_; i < end_; ++i) {
f(i);
}
}
template<typename C, typename F>
void for_(C count, F&& f) { // special case for [0, count)
for_(0, count, f);
}
void mul2(int x) {
std::cout << x*2 << " ";
}
int main() {
for_(10, [](int i) { std::cout << i << "\n"; });
for_(2, 10, mul2);
}
An ugly and unsafe solution is to use macro:
#define REPEAT(i,N) for(int (i) = 0; (i) < (N); ++(i))
int main()
{
REPEAT(i,10) std::cout << i << std::endl;
return 0;
}
You can't extend the C++ syntax for new loops.
You could use a macro, but this is pretty ugly, and generally best avoided. Another way to get something similar is by passing a functor as a parameter, greatly helped by the introduction of lambda expressions to C++. You can find some examples of such in the <algorithm> header.
For example:
#include <algorithm>
#include <vector>
int main()
{
std::vector<int> numbers = { 1, 4, 5, 7, 10 };
int even_count = 0;
for (auto x : numbers)
{
if (x % 2 == 0)
{
++even_count;
}
}
auto even_count2 = std::count_if(numbers.begin(), numbers.end(), [](int x) { return x % 2 == 0; });
}
You could use a lambda function and pass in a function object as a parameter to be performed for every iteration of the loop.
#include <iostream>
#include <functional>
int main()
{
auto for_ = [](int start, int size, std::function<void (int i)> fn)
{
int end = start + size;
for (int i = start; i < end; ++i)
{
fn(i);
}
};
for_(0, 10, [](int i) { std::cout << i << std::endl; });
for_(0, 10, [](int i) { std::cout << i*2 << std::endl; });
}
It seems like you are reinventing the wheel here a bit. You could just use std::for_each.
However, you could have custom lambda functions that do different things and just implement the operation within the lambda itself without taking in a function object for the operation.
Related
I have a vector of integers:
std::vector<int> values = {1,2,3,4,5,6,7,8,9,10};
Given that values.size() will always be even.
I simply want to convert the adjacent elements into a pair, like this:
std::vector<std::pair<int,int>> values = { {1,2}, {3,4} , {5,6}, {7,8} ,{9,10} };
I.e., the two adjacent elements are joined into a pair.
What STL algorithm can I use to easily achieve this? Is it possible to achieve this through some standard algorithms?
Of course, I can easily write an old school indexed for loop to achieve that. But I want to know what the simplest solution could look like using rangebased for loops or any other STL algorithm, like std::transform, etc.
Once we have C++23's extension to <ranges>, you can get most of the way there with std::ranges::views::chunk, although that produces subranges, not pairs.
#include <iostream>
#include <ranges>
#include <vector>
int main()
{
std::vector<int> values = {1,2,3,4,5,6,7,8,9,10};
auto chunk_to_pair = [](auto chunk)
{
return std::pair(*chunk.begin(), *std::next(chunk.begin()));
};
for (auto [first, second] : values | std::ranges::views::chunk(2) | std::ranges::views::transform(chunk_to_pair))
{
std::cout << first << second << std::endl;
}
}
Alternatively, you could achieve a similar result by ziping a pair of strided views
#include <iostream>
#include <ranges>
#include <vector>
int main()
{
std::vector<int> values = {1,2,3,4,5,6,7,8,9,10};
auto odds = values | std::ranges::views::drop(0) | std::ranges::views::stride(2);
auto evens = values | std::ranges::views::drop(1) | std::ranges::views::stride(2);
for (auto [first, second] : std::ranges::views::zip(odds, evens))
{
std::cout << first << second << std::endl;
}
}
That last one can be generalised to n-tuples
template <size_t N>
struct tuple_chunk_t
{
template <typename R, size_t... Is>
auto impl(R && r, std::index_sequence<Is...>)
{
using namespace ranges::view;
return zip(r | drop(Is) | stride(N)...);
}
template <typename R>
auto operator()(R && r) const
{
return impl(std::forward<R>(r), std::make_index_sequence<N>{});
}
template <typename R>
friend auto operator|(R && r, chunk_t)
{
return impl(std::forward<R>(r), std::make_index_sequence<N>{});
}
};
template <size_t N>
constexpr tuple_chunk_t<N> tuple_chunk;
I'm not sure why you would require a standard algorithm when writing it yourself is roughly 5 lines of code (plus boilerplate):
template<class T>
std::vector<std::pair<T, T>> group_pairs(const std::vector<T>& values)
{
assert(values.size() % 2 == 0);
auto output = std::vector<std::pair<T, T>>();
output.reserve(values.size()/2);
for(size_t i = 0; i < values.size(); i+=2)
output.emplace_back(values[i], values[i+1]);
return output;
}
And call it like so:
std::vector<int> values = {1,2,3,4,5,6,7,8,9,10};
auto result = group_pairs(values)
Live Demo
I am not aware of a standard algorithm that does what you want directly (though I am not very familiar with C++20 and beyond). You can always write a loop and most loops can be expressed via std::for_each which is a standard algorithm.
As you are accumulating elements in pairs, I would give std::accumulate a try:
#include <vector>
#include <numeric>
#include <iostream>
struct pair_accumulator {
std::vector<std::pair<int,int>> result;
int temp = 0;
bool set = false;
pair_accumulator& operator+(int x){
if (set) {
result.push_back({temp,x});
set = false;
} else {
temp = x;
set = true;
}
return *this;
}
};
int main() {
std::vector<int> values = {1,2,3,4,5,6,7,8,9,10};
auto x = std::accumulate(values.begin(),values.end(),pair_accumulator{}).result;
for (const auto& e : x) {
std::cout << e.first << " " << e.second << "\n";
}
}
Whether this is simpler than writing a plain loop is questionable admittedly.
If possible I would try to not transform the vector. Instead of accessing result[i].first you can as well use values[i*2] and similar for second. If this is not feasible the next option is to populate a std::vector<std::pair<int,int>> from the start so you don't have to do the transformation. For the first, depending on what you need in details, the following might be a start:
#include <vector>
#include <iostream>
struct view_as_pairs {
std::vector<int>& values;
struct proxy {
std::vector<int>::iterator it;
int& first() { return *it;}
int& second() { return *(it +1); }
};
proxy operator[](size_t index){
return proxy{values.begin() + index*2};
}
size_t size() { return values.size() / 2;}
};
int main() {
std::vector<int> values = {1,2,3,4,5,6,7,8,9,10};
view_as_pairs v{values};
for (size_t i=0; i < v.size(); ++i){
std::cout << v[i].first() << " " << v[i].second() << "\n";
}
}
TL;DR: Consider if you can avoid the transformation. If you cannot avoid it, it is probably cleanest to write a loop. Standard algorithms help often but not always.
OK, I hinted in the comments about using std::adjacent_find, so here is how you would do this.
And yes, many (even myself) considers this a hack, where we are using a tool meant for something else to make short work of solving a seemingly unrelated problem:
#include <algorithm>
#include <iostream>
#include <utility>
#include <vector>
int main()
{
//Test data
std::vector<int> v = {1,2,3,4,5,6,7,8,9,10};
// results
std::vector<std::pair<int,int>> result;
// save flag
bool save_it = true;
// Use std::adjacent_find
std::adjacent_find(v.begin(), v.end(), [&](int n1, int n2)
{ if (save_it) result.push_back({n1,n2}); save_it = !save_it; return false; });
for (auto& pr : result)
std::cout << pr.first << " " << pr.second << "\n";
}
Output:
1 2
3 4
5 6
7 8
9 10
The way it works is we ignore the second, fourth, sixth, etc. pairs, and only save the first, third, fifth, etc. pairs. That's controlled by a boolean flag variable, save_it.
Note that since we want to process all pairs, the std::adjacent_find predicate always returns false. That's the hackish part of this solution.
The solutions so far try to use the std::vector iterators as input to the algorithms directly. How about defining a custom iterator that returns a std::pair and has strides of 2? Creating the vector of pairs is then a one-liner that uses std::copy. The iterator effectively provides a "view" onto the original vector in terms of pairs. This also allows the use of many of the standard algorithms. The following example could also be generalized quite a bit to work with most container iterators, i.e. you do the difficult work of defining such an iterator once and then you can apply it to all sorts of containers and algorithms. Live example: https://godbolt.org/z/ceEsvKhzd
#include <vector>
#include <algorithm>
#include <iostream>
#include <cassert>
struct pair_iterator {
using difference_type = std::vector<int>::const_iterator::difference_type;
using value_type = std::pair<int, int>;
using pointer = value_type*;
using reference = value_type; // Not a pair&, but that is ok for LegacyIterator
// Can't be forward_iterator_tag because "reference" is not a pair&
using iterator_category = std::input_iterator_tag;
reference operator*()const { return {*base_iter, *(base_iter + 1)}; }
pair_iterator & operator++() { base_iter += 2; return *this; }
pair_iterator operator++(int) { auto ret = *this; ++(*this); return ret; }
friend bool operator==(pair_iterator lhs, pair_iterator rhs){
return lhs.base_iter == rhs.base_iter;
}
friend bool operator!=(pair_iterator lhs, pair_iterator rhs){
return lhs.base_iter != rhs.base_iter;
}
std::vector<int>::const_iterator base_iter{};
};
auto pair_begin(std::vector<int> const & v){ assert(v.size()%2==0); return pair_iterator{v.begin()}; }
auto pair_end(std::vector<int> const & v){ assert(v.size()%2==0); return pair_iterator{v.end()}; }
int main()
{
std::vector<int> values = {1,2,3,4,5,6,7,8,9,10};
std::vector<std::pair<int, int>> pair_values;
std::copy(pair_begin(values), pair_end(values), std::back_inserter(pair_values));
for (auto const & pair : pair_values) {
std::cout << "{" << pair.first << "," << pair.second << "} ";
}
std::cout << std::endl;
}
A few answers here (How to loop through a boost::mpl::list? being the one I started with) imply that I should be able to construct a generic lambda to feed to a boost::mpl::for_each() but I'm unable to find a working example, or build one myself.
Idealy what I would like to be able to do in a lambda is take a function like
template<typename T>
void TestFunction(const int &p)
{
T t(p);
std::cout << "p = " << p << ", t = " << t << std::endl;
};
that I'm currently calling in a loop with something like
for(int k = 0; k < 2; ++k)
{
TestFunction<int>(k);
TestFunction<long>(k);
TestFunction<float>(k);
TestFunction<double>(k);
};
and replace it with something like
typedef boost::mpl::list<int, long, float, double> ValidTypes;
for(int k = 0; k < 2; ++k)
{
// lambda definition that captures k
// boost::mpl::for_each(ValidTypes, ...) that calls the lambda.
};
Is this possible? If not with for_each() with one of the other mpl constructs? I've got a version of the code running where I overload operator() but I'd like to see a lambda solution if it's possible.
Thanks,
Andy.
If you can use C++14's generalized lambdas, you can capture the value of p and also infer the type of the current valid type being passed to the lambda:
#include <boost/mpl/for_each.hpp>
#include <boost/mpl/list.hpp>
#include <iostream>
int main()
{
using ValidTypes = boost::mpl::list<int, long, float, double>;
for (auto k = 0; k < 2; ++k) {
boost::mpl::for_each<ValidTypes>([p = k](auto arg) {
using T = decltype(arg);
T t(p);
std::cout << "p = " << p << ", t = " << t << '\n';
});
}
}
Live Example.
Edit: for extra credit, here's a slightly more advanced version that also works for non-default constructible types:
#include <boost/mpl/for_each.hpp>
#include <boost/mpl/list.hpp>
#include <iostream>
class NonDefaultConstructible
{
int value;
public:
NonDefaultConstructible(int const& p) : value(p) {}
friend auto& operator<<(std::ostream& ostr, NonDefaultConstructible const& ndc)
{
return ostr << ndc.value;
}
};
int main()
{
using ValidTypes = boost::mpl::list<int, long, float, double, NonDefaultConstructible>;
for (auto k = 0; k < 2; ++k) {
boost::mpl::for_each<ValidTypes, boost::mpl::make_identity<boost::mpl::_1>>([p = k](auto arg) {
using T = typename decltype(arg)::type;
T t(p);
std::cout << "p = " << p << ", t = " << t << '\n';
});
}
}
Live Example.
For an explanation of the somewhat convoluted use of make_identity, see my very first Q&A here!
I want to initialise an std::optional from another std::optional and some additional arguments provided that the latter std::optional is not empty. Unfortunately std::optional::optional 4) and 5) are not suitable as the amount of arguments is different.
I was able to come up with the following, but it still feels excessive. I particularly don't like specifying return type for the lambda explicitly.
Is there an better (as in more succinct and more expressive) way to achieve this?
#include <iostream>
#include <optional>
#include <tuple>
struct A {
A(std::optional<int> oi, float f, char c)
:
val{
[&] () -> decltype(val) /* I don't like specifying type here */ {
if (oi)
return {{*oi, f, c}};
else
return std::nullopt;
}()
}
{
}
std::optional<std::tuple<int, float, char>> val;
};
int main()
{
auto print = [](auto& r) {
if (r)
std::cout
<< std::get<0>(*r) << "; "
<< std::get<1>(*r) << "; "
<< std::get<2>(*r) << std::endl;
else
std::cout << "nullopt" << std::endl;
};
auto one = A({}, 1.0, 'c');
print(one.val);
auto two = A(10, 2.0, 'c');
print(two.val);
}
Live example.
Just trust the compiler to do the right thing:
A(std::optional<int> oi, float f, char c) {
if (oi) {
val.emplace(*oi, f, c);
}
}
This is also of course a great use-case for a map() member function†, which you can write as a non-member function:
A(std::optional<int> oi, float f, char c)
: val(map(oi, [&](int i){ return std::tuple(i, f, c); }))
{ }
†Recently proposed in P0798 by TartanLlama.
The error reads:
request for member 'begin', 'end' in 'arr' which is non class type int[5],
unable to deduce from expression error.
My code:
#include <iostream>
using namespace std;
int main()
{
int * mypointer;
int arr[5] = {1,3,5,7,9};
mypointer = arr;
for(auto it = arr.begin(); it != arr.end(); ++it) {
cout<<*mypointer<<endl;
mypointer++;
}
return 0;
}
Arrays have no member functions as they aren't a class type. This is what the error is saying.
You can use std::begin(arr) and std::end(arr) from the <iterator> header instead. This also works with types that do have .begin() and .end() members, via overloading:
#include <array>
#include <vector>
#include <iterator>
int main()
{
int c_array[5] = {};
std::array<int, 5> cpp_array = {};
std::vector<int> cpp_dynarray(5);
auto c_array_begin = std::begin(c_array); // = c_array + 0
auto c_array_end = std::end(c_array); // = c_array + 5
auto cpp_array_begin = std::begin(cpp_array); // = cpp_array.begin()
auto cpp_array_end = std::end(cpp_array); // = cpp_array.end()
auto cpp_dynarray_begin = std::begin(cpp_dynarray); // = cpp_dynarray.begin()
auto cpp_dynarray_end = std::end(cpp_dynarray); // = cpp_dynarray.end()
}
For a standard fixed-length C array, you can just write
int c_array[] = {1,3,5,7,9}, acc = 0;
for (auto it : c_array) {
acc += it;
}
The compiler does the behind-the-scenes work, eliminating the need to create all those begin and end iterators.
In C++, arrays are not classes and therefore do not have any member methods. They do behave like pointers in some contexts. You can take advantage of this by modifying your code:
#include <iostream>
using namespace std;
int main()
{
int * mypointer;
const int SIZE = 5;
int arr[SIZE] = {1,3,5,7,9};
mypointer = arr;
for(auto it = arr; it != arr + SIZE; ++it) {
cout<<*mypointer<<endl;
mypointer++;
}
return 0;
}
Of course, this means that mypointer and it both contain the same address, so you don't need both of them.
One thing I'd like to point out for you is that you really don't have to maintain a separate int* to use in dereferencing the array elements, apart from the whole member thing others have well pointed out.
Using a more modern approach, the code is both more readable, as well as safer:
#include <iostream>
#include <algorithm>
#include <array>
#include <iterator>
using namespace std;
int main()
{
std::array<int, 5> cpp_array{1,3,5,7,9};
// Simple walk the container elements.
for( auto elem : cpp_array )
cout << elem << endl;
// Arbitrary element processing on the container.
std::for_each( begin(cpp_array), end(cpp_array), [](int& elem) {
elem *= 2; // double the element.
cout << elem << endl;
});
}
Using the lambda in the second example allows you to conveniently perform arbitrary processing on the elements, if needed. In this example, I'm just showing doubling each element, but you can do something more meaningful within the lambda body instead.
Hope this makes sense and helps.
Perhaps here is a cleaner way to do it using templates and lambdas in c++14:
Define:
template<typename Iterator, typename Funct>
void my_assign_to_each(Iterator start, Iterator stop, Funct f) {
while (start != stop) {
*start = f();
++start;
}
}
template<typename Iterator, typename Funct>
void my_read_from_each(Iterator start, Iterator stop, Funct f) {
while (start != stop) {
f(*start);
++start;
}
}
And then in main:
int x[10];
srand(time(0));
my_assign_to_each(x, x+10, [] () -> int { int rn{}; rn = rand(); return rn; });
my_read_from_each(x, x+10, [] (int value) { std::cout << value << std::endl; });
int common_value{18};
my_assign_to_each(x, x+10, [&common_value] () -> int { return common_value; });
my_read_from_each(x, x+10, [] (int value) { std::cout << value << std::endl; });
Quite late but I think it's worth to mention that:
void findavgTime(int n)
{
int wt1[n];
fill_wt(wt1,n); //Any method that puts the elements into wt1
int wt2[3];
int sum = accumulate(begin(wt1), end(wt1), 0); // Fails but wt2[3] will pass. Reason: variable-sized array type ‘int [n]’ is not a valid template argument)
}
I'm trying to re-write some MatLab code in C++ and I've come across this:
currentsign = sign(vector(i));
I have looked on the internet and found this link: http://www.mathworks.co.uk/help/techdoc/ref/sign.html
I'm just wondering if there's a sign function in C++? If not, can anyone suggest any tutorials on creating it.
Thank you :)
template <typename T>
int sign (const T &val) { return (val > 0) - (val < 0); }
Credit due to Ambroz Bizjak.
template <typename T>
std::vector<int> sign (const std::vector<T> &v) {
std::vector<int> r(v.size());
std::transform(v.begin(), v.end(), r.begin(), (int(*)(const T&))sign);
return r;
}
Full example on ideone.
I would suggest
First, write a function of functor that takes a single element and returns 1, -1 or 0 depending on the element's value
Second, use std::transform together with this function/functor to take an input container and fill a second container with the desired values
template <typename T>
int signum(const T& val) {
// implement signum logic
}
#include <vector>
#include <algorithm>
int main() {
std::vector<int> data = ....;
std::vector<int> signs(data.size());
std::transform(data.begin(), data.end(), signs.begin(), signum<int>);
}
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <vector>
inline int get_signum(int val) {
return val < 0 ? -1
: val == 0 ? 0
: 1;
}
int main() {
std::vector<int> values;
for (int i = -5; i < 6; ++i)
values.push_back(i);
std::vector<int> signum(values.size());
std::transform(values.begin(), values.end(), signum.begin(), get_signum);
for (int i = 0; i < values.size(); ++i) {
std::cout << std::setw(2) << values[i] << ' ' << signum[i] << std::endl;
}
return 0;
}
Well You can do It at compile time using template Specialization.
You can use sign<n>::Positive, sign<n>::Negetive and sign<n>::Zero also you can use sign<n>::Sign which is 1|0|-1 which is same as sign of Matlab.
#include <iostream>
template<int n>
struct sign{
enum{
Positive = (n > 0),
Negetive = (n < 0),
Zero = 0,
Sign = ((n > 0) ? 1 : -1)
};
};
template<>
struct sign<0>{
enum{
Positive = 0,
Negetive = 0,
Zero = 1,
Sign = 0
};
};
int main(){
std::cout << sign<0>::Positive << sign<0>::Negetive << sign<0>::Zero << sign<0>::Sign << std::endl;
std::cout << sign<1>::Positive << sign<1>::Negetive << sign<1>::Zero << sign<1>::Sign << std::endl;
std::cout << sign<-1>::Positive << sign<-1>::Negetive << sign<-1>::Zero << sign<-1>::Sign << std::endl;
return 0;
}
You used to do sign(n) there and here you will do sign<n>::Sign.
C99 has signbit() and copysign(), which seem to be implemented in glibc on Linux. You didn't specify what platform you're on though, so I'm not sure that helps...