C++ null value and this pointer - c++

I'm a newbie in C++, trying to study C++. I have a block of code in Java like this:
public List<String> getDiagnosticTroubleCode() {
if (diagnosticTroubleCode == null) {
diagnosticTroubleCode = new ArrayList<String>();
}
return this.diagnosticTroubleCode;
}
How can I compare the disgnosticTroubleCode with null value? and set it as a new List. I already override the std::list to make it use like List in Java. And then I want to return the diagnosticTroubleCode field within the object this. I hope that you guys can help me with this. Trying to study about this pointer and null.
Here is my header in C++ :
class RUNTIME_EXPORTS DiagnosticTroubleCode {
protected:
List diagnosticTroubleCode;
public:
List getDiagnosticTroubleCode();
};

Your code appears to desire only instantiating diagnosticTroubleCode on first use. Frankly, I find that somewhat odd, since an instance of an otherwise-empty std::list<std::string> would be rather benign. Regardless, this is one way to do that.
class DiagnosticTroubleCode
{
protected:
std::unique_ptr<std::list<std::string>> diagnosticTroubleCode;
public:
std::list<std::string>& getDiagnosticTroubleCode()
{
if (!diagnosticTroubleCode)
diagnosticTroubleCode = std::make_unique<std::list<std::string>>();
return *diagnosticTroubleCode;
}
};
Note that the member getDiagnosticTroubleCode will return a reference to the new (or existing) instantiated list. If you decide to forego latent instantiation (I recommend doing so), the code becomes considerably simpler:
class DiagnosticTroubleCode
{
protected:
std::list<std::string> diagnosticTroubleCode;
public:
std::list<std::string>& getDiagnosticTroubleCode()
{
return diagnosticTroubleCode;
}
};
If the latter is possible (and frankly, I cannot see how it isn't), pursue that first. IN both cases above the member is returned by reference, not value or address. This would most-closely resemble what you're probably familiar with.
Best of luck.

I remember in Java everything are pointers. So in Java diagnosticTroubleCode == null is essentially comparing diagnosticTroubleCode with a null pointer. In C++ we do not have null, we have NULL or nullptr. In C++ an object cannot really be null because it is not. An object takes up a block of memory when it gets constructed, so it can never be null. So try to familiarize yourself with pointers and use that in your advantage.
On the matter of this. If you want to return a member variable, you don't really need to write return this.variable, you can simply return the variable by writing return variable.

The difference here is that in Java all complex structure declarations are really declarations of references to such structures. In C++, that's the equivalent of saying List& foo or List* foo. C/C++ declarations are true instances, which is one of the reasons why there can be a bit of complexity with memory management, but it comes with the benefit of information integrity: For example, when you pass a Java List<String> as an argument of a method and change the contents of that argument, it's changed in the calling scope. C/C++, on the other hand, will copy the argument regardless of object complexity, and when the function/method returns, the one passed as an argument is otherwise preserved.
Your C++ class example should look something like this:
#include <list>
#include <string>
using namespace std;
class RUNTIME_EXPORTS DiagnosticTroubleCode {
protected:
list<string>* diagnosticTroubleCode{nullptr};
public:
list<string>* getDiagnosticTroubleCode();
};
list<string>* DiagnosticTroubleCode::getDiagnosticTroubleCode(){
if (diagnosticTroubleCode == nullptr) {
diagnosticTroubleCode = new List<string>();
}
return diagnosticTroubleCode;
}
There are better implementations that don't require returning a pointer or reference, but they impose additional design requirements (such as what the adding a trouble-code mechanism should be).

You could use something like this
#include <iostream>
using namespace std;
Function
class DiagnosticTroubleCode
{
protected:
std::unique_ptr<std::list<std::string>> diagnosticTroubleCode;
public:
std::list<std::string>& getDiagnosticTroubleCode()
{
if (!diagnosticTroubleCode)
diagnosticTroubleCode = std::make_unique<std::list<std::string>>();
return *diagnosticTroubleCode;
}
};

My .cpp file :
shared_ptr<List> DiagnosticTroubleCodes::getDiagnosticTroubleCodes()
{
if (this->diagnosticTroubleCodes == nullptr) {
this->diagnosticTroubleCodes = make_shared<List>();
}
return diagnosticTroubleCodes;
}
And My header file:
class RUNTIME_EXPORTS DiagnosticTroubleCodes {
protected:
shared_ptr<List> diagnosticTroubleCodes;
public:
shared_ptr<List> getDiagnosticTroubleCodes();
};
I come up with this solution.

Related

Polymorphism vs DownCasting

Let's say I have a Base class Employee and an derived class Manager, like below:
class Employee
{
public:
string Name;
};
class Manager : public Employee
{
public:
string Designation;
};
While implementing some function like below:
Employee* SomeFunction(bool SomeCondition)
{
Employee *Emp = NULL;
if (SomeCondition)
{
//Code goes here : Both Implementation 1 and 2 work fine!
}
return Emp;
}
When SomeCondition is true, I want to return a non-null object of type Manager. In such a scenario, both below pieces of code seem to fit the bill:
Implementation 1:
Manager *Mng = new Manager;
Mng->Name = "Adam";
Mng->Designation = "BOSS";
Emp = Mng;
Implementation 2:
Emp = new Manager;
Manager *Mng = (Manager*)Emp;
Mng->Name = "Adam";
Mng->Designation = "BOSS";
Since both work just fine, I would like to know which one among the two is the more efficient one?
Which one is using the concept of Polymorphism?
Is the type casting in Implementation 2 a down-cast? Is it good practice?
While I see some reasons behind your questions, I think you
need to improve the your example
you are saying that you need to return a non-null object
of type "Manager", while your define "SomeFunction(bool SomeCondition)"
to return "Employee".
if you are indeed going to return "Employee" object why bothering
initializing "Designation" while you will not be able to access it
later. For example:
cout << SomeFunction(true)->Designation(); // error !
So, I'm not sure what do mean by saying your examples work fine,
since the context is not clear.
** Comparing Implementation 1 and 2 / About dynamic casting
While both examples can improve, I think Implementation 1 is slightly
better. In both cases you do dynamic casting. However, in Implementation
1, you do an implicit upcasting in "Emp = Mng;", while in Implementation 2
you do downcasting in "Manager Mng = (Manager)Emp;".
In general you should avoid casting (especially the downcasting since it's
not that safe all the time compared with upcasting), and if you have to
you should use C++ style casting (e.g. dynamic_cast). See the
example in
https://www.tutorialcup.com/cplusplus/upcasting-downcasting.htm
A better solution is to use virtual functions in order to avoid
casting and make room to add more objects types beside "Manager".
For example, your header may look like:
class Employee
{
public:
virtual void setDesignation(const string & d) = 0;
virtual string getDesignation() = 0;
};
class Manager : public Employee
{
public:
virtual void setDesignation (const string & d) {Designation=d;}
virtual string getDesignation() {return Designation;}
private:
string Designation;
};
and your function may look like:
Employee* SomeFunction(bool SomeCondition)
{
Employee *Emp = NULL;
if (SomeCondition)
{
Emp = new Manager;;
Emp->setDesignation("BOSS");
}
return Emp;
}
then if you want to access the Designation later, you can do
cout << SomeFunction(true)->getDesignation();
** About Polymorphism
you don't use any Polymorphism in both examples. This is becuase you don't
use any function that is type-specific, and so your runtime behaviour doesn't
vary depending on the "Employee" object (you are merely using one object type
"Manager" anyways !). See the example in
http://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm
Both of your implementations do what you want them to, however the second one is very bad practice.
First, let's clear up a misconception you seem to have: In your second implementation, you're not doing what is usually considered a downcast. You're using a C-style cast (see http://en.cppreference.com/w/cpp/language/explicit_cast), which will, among casting away things such as const, happily cast any pointer to a Manager*. For example, you might just as well do
Manager *Mng = (Manager*) new Employee; // not a good idea
or even
Manager *Mng = (Manager*) new int; // now, this is really bad...
As a general rule, you should never use C-style casts in C++.
You can do a safe downcast in C++ by using dynamic_cast:
Manager *Mng = dynamic_cast<Manager*>(ptr_to_manager); // will return a pointer to the Manager object
Manager *Mng = dynamic_cast<Manager*>(ptr_to_employee); // will return nullptr
Still, there is runtime overhead needed to check whether your cast is actually safe (ie, distinguish the first case in the example from the second). The need for a downcast is, by the way, usually an indication of bad design.
In short, the first implementation is the easier and obvious way to go: no need for an downcast, safe or unsafe.

avoiding if statements on a static boolean for logic decision making

I have a class whose member itemType is only set once and never modified but it is used in many if-statements to decide which function to call.
Since itemType is only set once is there way to avoid the if statements else where in the class. This will simplify and clean the code and as a bonus will also save the overhead of if checks.
I was thinking about function a pointer taht I can initiatlize in the constructor based on the itemType value.
Is there any alternate and a better way of doing that?
Please note the original class and code base is large and I cant go around creating child classes based on itemtype.
enum ItemTypes
{
ItemTypeA,
ItemTypeB,
};
class ItemProcessing
{
public:
//This function is called hundreds of times
void ProcessOrder(Order* order)
{
//This member itemType is set only once in the constructor and never modified again
//Is there a way to not check it all the time??
if (itemtype == ItemTypes::ItemTypeA )
{
ProcessTypeA(order)
}
else if (itemtype == ItemTypes::ItemTypeB )
{
ProcessTypeB(order)
}
}
ItemProcessing(ItemTypes itype)
{
itemtype = itype; //can I do something here like setting a function pointer so I dont have to check this property in ProcessOrder() and call the relevant function directly.
}
private:
ItemTypes itemtype;
void ProcessTypeA(Order*);
void ProcessTypeB(Order*);
};
Use an array of function pointers, indexed by itemtype, like this:
typedef void(*ProcessType_func_t)(Order *);
ProcessType_func_t processType_f[] = {
ProcessTypeA,
ProcessTypeB
};
Then you can do:
void ProcessOrder(Order *order) {
ProcessType_f[itemtype](order);
}
If you have lots of different functions that need to be dispatched like this, you can use a structure.
struct {
ProcessType_func_t processType_f,
OtherType_func_t otherType_f,
...
} dispatchTable[] = {
{ ProcessTypeA, OtherTypeA, ... },
{ ProcessTypeB, OtherTypeB, ... }
};
Then you would use it as:
dispatchTable[itemtype].processType_f(order);
Finally, you could do the fully object-oriented method, by defining new classes:
class Processor { // abstract base class
public:
virtual void Process(Order *order) = 0;
};
class ProcessorA {
public:
void Process(Order *order) {
ProcessTypeA(order);
}
}
class ProcessorB {
public:
void Process(Order *order) {
ProcessTypeB(order);
}
}
Then you can have a member variable
Processor *processor;
and you initialize it when you set itemtype
ItemProcessing(ItemTypes itype)
{
itemtype = itype;
if (itemtype == ItemTypeA) {
processor = new ProcessorA;
} else {
processor = new ProcessorB;
}
}
Then you would use it as:
processor->Process(order);
This is easily expanded to support more functions that need to dispatch on itemtype -- they all become methods in the classes.
I hope I got the syntax right, I don't actually do much C++ OO programming myself.
You can consider to use either a couple of pointers to member methods or the state pattern.
The former solution has probably higher performance, while the latter is more elegant and flexible (at least from my point of view).
For further details on the state pattern, see here. This pattern fits well with your problem, even though you have to refactor a bit your classes.
I guess the first suggestion is indeed quite clear and does not require further details.
In c++ pointer to function should be mimic with virtual function and inheritance. (Polymorphism)
Define a virtual class including a pure virtual methods
processOrder ( Order* ordre);
And define subclass for each value of your enum.
You can use abstract factory pattern to creat those object or either if needed.
I can write the code if wish.

Porting an existing class structure to smart pointers

I know this question is rather long, but I was not sure how to explain my problem in a shorter way. The question itself is about class hierarchy design and, especially, how to port an existing hierarchy based on pointers to one using smart pointers. If anyone can come up with some way to simplify my explanation and, thus, make this question more generic, please let me know. In that way, it might be useful for more SO readers.
I am designing a C++ application for handling a system that allows me to read some sensors. The system is composed of remotes machines from where I collect the measurements. This application must actually work with two different subsystems:
Aggregated system: this type of system contains several components from where I collect measurements. All the communication goes through the aggregated system which will redirect the data to the specific component if needed (global commands sent to the aggregated system itself do not need to be transferred to individual components).
Standalone system: in this case there is just a single system and all the communication (including global commands) is sent to that system.
Next you can see the class diagram I came up with:
The standalone system inherits both from ConnMgr and MeasurementDevice. On the other hand, an aggregated system splits its functionality between AggrSystem and Component.
Basically, as a user what I want to have is a MeasurementDevice object and transparently send data to corresponding endpoint, be it an aggregated system or a standalone one.
CURRENT IMPLEMENTATION
This is my current implementation. First, the two base abstract classes:
class MeasurementDevice {
public:
virtual ~MeasurementDevice() {}
virtual void send_data(const std::vector<char>& data) = 0;
};
class ConnMgr {
public:
ConnMgr(const std::string& addr) : addr_(addr) {}
virtual ~ConnMgr() {}
virtual void connect() = 0;
virtual void disconnect() = 0;
protected:
std::string addr_;
};
These are the classes for an aggregated system:
class Component : public MeasurementDevice {
public:
Component(AggrSystem& as, int slot) : aggr_sys_(as), slot_(slot) {}
void send_data(const std::vector<char>& data) {
aggr_sys_.send_data(slot_, data);
}
private:
AggrSystem& aggr_sys_;
int slot_;
};
class AggrSystem : public ConnMgr {
public:
AggrSystem(const std::string& addr) : ConnMgr(addr) {}
~AggrSystem() { for (auto& entry : components_) delete entry.second; }
// overridden virtual functions omitted (not using smart pointers)
MeasurementDevice* get_measurement_device(int slot) {
if (!is_slot_used(slot)) throw std::runtime_error("Empty slot");
return components_.find(slot)->second;
}
private:
std::map<int, Component*> components_;
bool is_slot_used(int slot) const {
return components_.find(slot) != components_.end();
}
void add_component(int slot) {
if (is_slot_used(slot)) throw std::runtime_error("Slot already used");
components_.insert(std::make_pair(slot, new Component(*this, slot)));
}
};
This is the code for a standalone system:
class StandAloneSystem : public ConnMgr, public MeasurementDevice {
public:
StandAloneSystem(const std::string& addr) : ConnMgr(addr) {}
// overridden virtual functions omitted (not using smart pointers)
MeasurementDevice* get_measurement_device() {
return this;
}
};
These are factory-like functions responsible for creating ConnMgr and MeasurementDevice objects:
typedef std::map<std::string, boost::any> Config;
ConnMgr* create_conn_mgr(const Config& cfg) {
const std::string& type =
boost::any_cast<std::string>(cfg.find("type")->second);
const std::string& addr =
boost::any_cast<std::string>(cfg.find("addr")->second);
ConnMgr* ep;
if (type == "aggregated") ep = new AggrSystem(addr);
else if (type == "standalone") ep = new StandAloneSystem(addr);
else throw std::runtime_error("Unknown type");
return ep;
}
MeasurementDevice* get_measurement_device(ConnMgr* ep, const Config& cfg) {
const std::string& type =
boost::any_cast<std::string>(cfg.find("type")->second);
if (type == "aggregated") {
int slot = boost::any_cast<int>(cfg.find("slot")->second);
AggrSystem* aggr_sys = dynamic_cast<AggrSystem*>(ep);
return aggr_sys->get_measurement_device(slot);
}
else if (type == "standalone") return dynamic_cast<StandAloneSystem*>(ep);
else throw std::runtime_error("Unknown type");
}
And finally here it is main(), showing a very simple usage case:
#define USE_AGGR
int main() {
Config config = {
{ "addr", boost::any(std::string("192.168.1.10")) },
#ifdef USE_AGGR
{ "type", boost::any(std::string("aggregated")) },
{ "slot", boost::any(1) },
#else
{ "type", boost::any(std::string("standalone")) },
#endif
};
ConnMgr* ep = create_conn_mgr(config);
ep->connect();
MeasurementDevice* dev = get_measurement_device(ep, config);
std::vector<char> data; // in real life data should contain something
dev->send_data(data);
ep->disconnect();
delete ep;
return 0;
}
PROPOSED CHANGES
First of all, I wonder whether there is a way to avoid the dynamic_cast in get_measurement_device. Since AggrSystem::get_measurement_device(int slot) and StandAloneSystem::get_measurement_device() have different signatures, it is not possible to create a common virtual method in the base class. I was thinking to add a common method accepting a map containing the options (e.g., the slot). In that case, I would not need to do the dynamic casting. Is this second approach preferable in terms of a cleaner design?
In order to port the class hierarchy to smart pointers I used unique_ptr. First I changed the map of components in AggrSystem to:
std::map<int, std::unique_ptr<Component> > components_;
The addition of a new Component now looks like:
void AggrSystem::add_component(int slot) {
if (is_slot_used(slot)) throw std::runtime_error("Slot already used");
components_.insert(std::make_pair(slot,
std::unique_ptr<Component>(new Component(*this, slot))));
}
For returning a Component I decided to return a raw pointer since the lifetime of a Component object is defined by the lifetime of an AggrSystem object:
MeasurementDevice* AggrSystem::get_measurement_device(int slot) {
if (!is_slot_used(slot)) throw std::runtime_error("Empty slot");
return components_.find(slot)->second.get();
}
Is returning a raw pointer a correct decision? If I use a shared_ptr, however, then I run into problems with the implementation for the standalone system:
MeasurementDevice* StandAloneSystem::get_measurement_device() {
return this;
}
In this case I cannot return a shared_ptr using this. I guess I could create one extra level of indirection and have something like StandAloneConnMgr and StandAloneMeasurementDevice, where the first class would hold a shared_ptr to an instance of the second.
So, overall, I wanted to ask whether this a good approach when using smart pointers. Would it be preferable to use a map of shared_ptr and return a shared_ptr too, or is it better the current approach based on using unique_ptr for ownership and raw pointer for accessing?
P.S: create_conn_mgr and main are changed as well so that instead of using a raw pointer (ConnMgr*) now I use unique_ptr<ConnMgr>. I did not add the code since the question was already long enough.
First of all, I wonder whether there is a way to avoid the
dynamic_cast in get_measurement_device.
I would attempt to unify the get_measurement_device signatures so that you can make this a virtual function in the base class.
So, overall, I wanted to ask whether this a good approach when using
smart pointers.
I think you've done a good job. You've basically converted your "single ownership" news and deletes to unique_ptr in a fairly mechanical fashion. This is exactly the right first (and perhaps last) step.
I also think you made the right decision in returning raw pointers from get_measurement_device because in your original code the clients of this function did not take ownership of this pointer. Dealing with raw pointers when you do not intend to share or transfer ownership is a good pattern that most programmers will recognize.
In summary, you've correctly translated your existing design to use smart pointers without changing the semantics of your design.
From here if you want to study the possibility of changing your design to one involving shared ownership, that is a perfectly valid next step. My own preference is to prefer unique ownership designs until a use case or circumstance demands shared ownership.
Unique ownership is not only more efficient, it is also easier to reason about. That ease in reasoning typically leads to fewer accidental cyclic memory ownership patters (cyclic memory ownership == leaked memory). Coders who just slap down shared_ptr every time they see a pointer are far more likely to end up with memory ownership cycles.
That being said, cyclic memory ownership is also possible using only unique_ptr. And if it happens, you need weak_ptr to break the cycle, and weak_ptr only works with shared_ptr. So the introduction of an ownership cycle is another good reason to migrate to shared_ptr.

Factory method anti-if implementation

I'm applying the Factory design pattern in my C++ project, and below you can see how I am doing it. I try to improve my code by following the "anti-if" campaign, thus want to remove the if statements that I am having. Any idea how can I do it?
typedef std::map<std::string, Chip*> ChipList;
Chip* ChipFactory::createChip(const std::string& type) {
MCList::iterator existing = Chips.find(type);
if (existing != Chips.end()) {
return (existing->second);
}
if (type == "R500") {
return Chips[type] = new ChipR500();
}
if (type == "PIC32F42") {
return Chips[type] = new ChipPIC32F42();
}
if (type == "34HC22") {
return Chips[type] = new Chip34HC22();
}
return 0;
}
I would imagine creating a map, with string as the key, and the constructor (or something to create the object). After that, I can just get the constructor from the map using the type (type are strings) and create my object without any if. (I know I'm being a bit paranoid, but I want to know if it can be done or not.)
You are right, you should use a map from key to creation-function.
In your case it would be
typedef Chip* tCreationFunc();
std::map<std::string, tCreationFunc*> microcontrollers;
for each new chip-drived class ChipXXX add a static function:
static Chip* CreateInstance()
{
return new ChipXXX();
}
and also register this function into the map.
Your factory function should be somethink like this:
Chip* ChipFactory::createChip(std::string& type)
{
ChipList::iterator existing = microcontrollers.find(type);
if (existing != microcontrollers.end())
return existing->second();
return NULL;
}
Note that copy constructor is not needed, as in your example.
The point of the factory is not to get rid of the ifs, but to put them in a separate place of your real business logic code and not to pollute it. It is just a separation of concerns.
If you're desperate, you could write a jump table/clone() combo that would do this job with no if statements.
class Factory {
struct ChipFunctorBase {
virtual Chip* Create();
};
template<typename T> struct CreateChipFunctor : ChipFunctorBase {
Chip* Create() { return new T; }
};
std::unordered_map<std::string, std::unique_ptr<ChipFunctorBase>> jumptable;
Factory() {
jumptable["R500"] = new CreateChipFunctor<ChipR500>();
jumptable["PIC32F42"] = new CreateChipFunctor<ChipPIC32F42>();
jumptable["34HC22"] = new CreateChipFunctor<Chip34HC22>();
}
Chip* CreateNewChip(const std::string& type) {
if(jumptable[type].get())
return jumptable[type]->Create();
else
return null;
}
};
However, this kind of approach only becomes valuable when you have large numbers of different Chip types. For just a few, it's more useful just to write a couple of ifs.
Quick note: I've used std::unordered_map and std::unique_ptr, which may not be part of your STL, depending on how new your compiler is. Replace with std::map/boost::unordered_map, and std::/boost::shared_ptr.
No you cannot get rid of the ifs. the createChip method creats a new instance depending on constant (type name )you pass as argument.
but you may optimaze yuor code a little removing those 2 line out of if statment.
microcontrollers[type] = newController;
return microcontrollers[type];
To answer your question: Yes, you should make a factory with a map to functions that construct the objects you want. The objects constructed should supply and register that function with the factory themselves.
There is some reading on the subject in several other SO questions as well, so I'll let you read that instead of explaining it all here.
Generic factory in C++
Is there a way to instantiate objects from a string holding their class name?
You can have ifs in a factory - just don't have them littered throughout your code.
struct Chip{
};
struct ChipR500 : Chip{};
struct PIC32F42 : Chip{};
struct ChipCreator{
virtual Chip *make() = 0;
};
struct ChipR500Creator : ChipCreator{
Chip *make(){return new ChipR500();}
};
struct PIC32F42Creator : ChipCreator{
Chip *make(){return new PIC32F42();}
};
int main(){
ChipR500Creator m; // client code knows only the factory method interface, not the actuall concrete products
Chip *p = m.make();
}
What you are asking for, essentially, is called Virtual Construction, ie the ability the build an object whose type is only known at runtime.
Of course C++ doesn't allow constructors to be virtual, so this requires a bit of trickery. The common OO-approach is to use the Prototype pattern:
class Chip
{
public:
virtual Chip* clone() const = 0;
};
class ChipA: public Chip
{
public:
virtual ChipA* clone() const { return new ChipA(*this); }
};
And then instantiate a map of these prototypes and use it to build your objects (std::map<std::string,Chip*>). Typically, the map is instantiated as a singleton.
The other approach, as has been illustrated so far, is similar and consists in registering directly methods rather than an object. It might or might not be your personal preference, but it's generally slightly faster (not much, you just avoid a virtual dispatch) and the memory is easier to handle (you don't have to do delete on pointers to functions).
What you should pay attention however is the memory management aspect. You don't want to go leaking so make sure to use RAII idioms.

Storing a list of arbitrary objects in C++

In Java, you can have a List of Objects. You can add objects of multiple types, then retrieve them, check their type, and perform the appropriate action for that type.
For example: (apologies if the code isn't exactly correct, I'm going from memory)
List<Object> list = new LinkedList<Object>();
list.add("Hello World!");
list.add(7);
list.add(true);
for (object o : list)
{
if (o instanceof int)
; // Do stuff if it's an int
else if (o instanceof String)
; // Do stuff if it's a string
else if (o instanceof boolean)
; // Do stuff if it's a boolean
}
What's the best way to replicate this behavior in C++?
boost::variant is similar to dirkgently's suggestion of boost::any, but supports the Visitor pattern, meaning it's easier to add type-specific code later. Also, it allocates values on the stack rather than using dynamic allocation, leading to slightly more efficient code.
EDIT: As litb points out in the comments, using variant instead of any means you can only hold values from one of a prespecified list of types. This is often a strength, though it might be a weakness in the asker's case.
Here is an example (not using the Visitor pattern though):
#include <vector>
#include <string>
#include <boost/variant.hpp>
using namespace std;
using namespace boost;
...
vector<variant<int, string, bool> > v;
for (int i = 0; i < v.size(); ++i) {
if (int* pi = get<int>(v[i])) {
// Do stuff with *pi
} else if (string* si = get<string>(v[i])) {
// Do stuff with *si
} else if (bool* bi = get<bool>(v[i])) {
// Do stuff with *bi
}
}
(And yes, you should technically use vector<T>::size_type instead of int for i's type, and you should technically use vector<T>::iterator instead anyway, but I'm trying to keep it simple.)
Your example using Boost.Variant and a visitor:
#include <string>
#include <list>
#include <boost/variant.hpp>
#include <boost/foreach.hpp>
using namespace std;
using namespace boost;
typedef variant<string, int, bool> object;
struct vis : public static_visitor<>
{
void operator() (string s) const { /* do string stuff */ }
void operator() (int i) const { /* do int stuff */ }
void operator() (bool b) const { /* do bool stuff */ }
};
int main()
{
list<object> List;
List.push_back("Hello World!");
List.push_back(7);
List.push_back(true);
BOOST_FOREACH (object& o, List) {
apply_visitor(vis(), o);
}
return 0;
}
One good thing about using this technique is that if, later on, you add another type to the variant and you forget to modify a visitor to include that type, it will not compile. You have to support every possible case. Whereas, if you use a switch or cascading if statements, it's easy to forget to make the change everywhere and introduce a bug.
C++ does not support heterogenous containers.
If you are not going to use boost the hack is to create a dummy class and have all the different classes derive from this dummy class. Create a container of your choice to hold dummy class objects and you are ready to go.
class Dummy {
virtual void whoami() = 0;
};
class Lizard : public Dummy {
virtual void whoami() { std::cout << "I'm a lizard!\n"; }
};
class Transporter : public Dummy {
virtual void whoami() { std::cout << "I'm Jason Statham!\n"; }
};
int main() {
std::list<Dummy*> hateList;
hateList.insert(new Transporter());
hateList.insert(new Lizard());
std::for_each(hateList.begin(), hateList.end(),
std::mem_fun(&Dummy::whoami));
// yes, I'm leaking memory, but that's besides the point
}
If you are going to use boost you can try boost::any. Here is an example of using boost::any.
You may find this excellent article by two leading C++ experts of interest.
Now, boost::variant is another thing to look out for as j_random_hacker mentioned. So, here's a comparison to get a fair idea of what to use.
With a boost::variant the code above would look something like this:
class Lizard {
void whoami() { std::cout << "I'm a lizard!\n"; }
};
class Transporter {
void whoami() { std::cout << "I'm Jason Statham!\n"; }
};
int main() {
std::vector< boost::variant<Lizard, Transporter> > hateList;
hateList.push_back(Lizard());
hateList.push_back(Transporter());
std::for_each(hateList.begin(), hateList.end(), std::mem_fun(&Dummy::whoami));
}
How often is that sort of thing actually useful? I've been programming in C++ for quite a few years, on different projects, and have never actually wanted a heterogenous container. It may be common in Java for some reason (I have much less Java experience), but for any given use of it in a Java project there might be a way to do something different that will work better in C++.
C++ has a heavier emphasis on type safety than Java, and this is very type-unsafe.
That said, if the objects have nothing in common, why are you storing them together?
If they do have things in common, you can make a class for them to inherit from; alternately, use boost::any. If they inherit, have virtual functions to call, or use dynamic_cast<> if you really have to.
I'd just like to point out that using dynamic type casting in order to branch based on type often hints at flaws in the architecture. Most times you can achieve the same effect using virtual functions:
class MyData
{
public:
// base classes of polymorphic types should have a virtual destructor
virtual ~MyData() {}
// hand off to protected implementation in derived classes
void DoSomething() { this->OnDoSomething(); }
protected:
// abstract, force implementation in derived classes
virtual void OnDoSomething() = 0;
};
class MyIntData : public MyData
{
protected:
// do something to int data
virtual void OnDoSomething() { ... }
private:
int data;
};
class MyComplexData : public MyData
{
protected:
// do something to Complex data
virtual void OnDoSomething() { ... }
private:
Complex data;
};
void main()
{
// alloc data objects
MyData* myData[ 2 ] =
{
new MyIntData()
, new MyComplexData()
};
// process data objects
for ( int i = 0; i < 2; ++i ) // for each data object
{
myData[ i ]->DoSomething(); // no type cast needed
}
// delete data objects
delete myData[0];
delete myData[1];
};
Sadly there is no easy way of doing this in C++. You have to create a base class yourself and derive all other classes from this class. Create a vector of base class pointers and then use dynamic_cast (which comes with its own runtime overhead) to find the actual type.
Just for completeness of this topic I want to mention that you can actually do this with pure C by using void* and then casting it into whatever it has to be (ok, my example isn't pure C since it uses vectors but that saves me some code). This will work if you know what type your objects are, or if you store a field somewhere which remembers that. You most certainly DON'T want to do this but here is an example to show that it's possible:
#include <iostream>
#include <vector>
using namespace std;
int main() {
int a = 4;
string str = "hello";
vector<void*> list;
list.push_back( (void*) &a );
list.push_back( (void*) &str );
cout << * (int*) list[0] << "\t" << * (string*) list[1] << endl;
return 0;
}
While you cannot store primitive types in containers, you can create primitive type wrapper classes which will be similar to Java's autoboxed primitive types (in your example the primitive typed literals are actually being autoboxed); instances of which appear in C++ code (and can (almost) be used) just like primitive variables/data members.
See Object Wrappers for the Built-In Types from Data Structures and Algorithms with Object-Oriented Design Patterns in C++.
With the wrapped object you can use the c++ typeid() operator to compare the type.
I am pretty sure the following comparison will work:
if (typeid(o) == typeid(Int)) [where Int would be the wrapped class for the int primitive type, etc...]
(otherwise simply add a function to your primitive wrappers that returns a typeid and thus:
if (o.get_typeid() == typeid(Int)) ...
That being said, with respect to your example, this has code smell to me.
Unless this is the only place where you are checking the type of the object,
I would be inclined to use polymorphism (especially if you have other methods/functions specific with respect to type). In this case I would use the primitive wrappers adding an interfaced class declaring the deferred method (for doing 'do stuff') that would be implemented by each of your wrapped primitive classes. With this you would be able to use your container iterator and eliminate your if statement (again, if you only have this one comparison of type, setting up the deferred method using polymorphism just for this would be overkill).
I am a fairly inexperienced, but here's what I'd go with-
Create a base class for all classes you need to manipulate.
Write container class/ reuse container class.
(Revised after seeing other answers -My previous point was too cryptic.)
Write similar code.
I am sure a much better solution is possible. I am also sure a better explanation is possible. I've learnt that I have some bad C++ programming habits, so I've tried to convey my idea without getting into code.
I hope this helps.
Beside the fact, as most have pointed out, you can't do that, or more importantly, more than likely, you really don't want to.
Let's dismiss your example, and consider something closer to a real-life example. Specifically, some code I saw in a real open-source project. It attempted to emulate a cpu in a character array. Hence it would put into the array a one byte "op code", followed by 0, 1 or 2 bytes which could be a character, an integer, or a pointer to a string, based on the op code. To handle that, it involved a lot of bit-fiddling.
My simple solution: 4 separate stacks<>s: One for the "opcode" enum and one each for chars, ints and string. Take the next off the opcode stack, and the would take you which of the other three to get the operand.
There's a very good chance your actual problem can be handled in a similar way.
Well, you could create a base class and then create classes which inherit from it. Then, store them in a std::vector.
The short answer is... you can't.
The long answer is... you'd have to define your own new heirarchy of objects that all inherit from a base object. In Java all objects ultimately descend from "Object", which is what allows you to do this.
RTTI (Run time type info) in C++ has always been tough, especially cross-compiler.
You're best option is to use STL and define an interface in order to determine the object type:
public class IThing
{
virtual bool isA(const char* typeName);
}
void myFunc()
{
std::vector<IThing> things;
// ...
things.add(new FrogThing());
things.add(new LizardThing());
// ...
for (int i = 0; i < things.length(); i++)
{
IThing* pThing = things[i];
if (pThing->isA("lizard"))
{
// do this
}
// etc
}
}
Mike