(C++) Storing an int value of 10^80 [duplicate] - c++

This question already has an answer here:
What variable type for extremely big integer numbers?
(1 answer)
Closed 3 years ago.
I have a problem where I need to work with variables
1 <= N <= 10^80
One of the test-cases works with a value:
3141592653589793238462643383279502884197169399375
and using unsigned long long int, the program sees this value maximum as:
18446744073709551615
Apparently, I need to store a value greater than that.
How do I solve this problem?
#include <iostream>
using namespace std;
int main()
{
unsigned long long int N;
cin >> N;
unsigned long long int Z;
int result = 0;
unsigned long long int num = N;
while (N > 0) {
Z += N % 10;
N /= 10;
}
while (Z % 9 != 0) {
Z += num;
result++;
}
cout << Z;
return 0;
}

In my opinion you should use big integer. There are few ways.
First, using C - Library, which has C++ interface. The GNU Multiple Precision Arithmetic Library: http://gmplib.org/
The second way - you should implement your own BigInteger Class.
template<class Type>
class BigInt
{
typedef typename Type BT;
protected:
std::vector<Type> value_;
};
In other words you just split the big number and record each part into the vector.

Related

Find the number of ways the N balls could be placed in the M boxes

You have N different balls numbered from 1 to N, and M different boxes numbered from 1 to M.
Input:
First line of input contains the number of test cases T. After that, next T lines contain the value of N and M.
Output:
For each test case, print the answer. As it can be very large, you should print it modulo 10^9 + 7.
I tried the below code, but it gives an error:
#include<iostream>
#include<cmath>
#include<math.h>
using namespace std;
int main()
{
unsigned short int T;
unsigned long int N,M;
cin>>T;
for (int i = 0; i < T; i++)
{
cin>>N>>M;
long int res;
res= pow(M,N);
int c=0;
c=pow(10,9);
res=res%(c + 7);
cout<<res<<endl;
}
return 0;
}
You must be facing integer overflow problem, that's why you must have been getting wrong answer.
Do the following steps to fix this problem.
change the unsigned long to long long or unsigned long long. (Why? Think).
Use the logarithmic user-defined function to calculate the value of the res = pow(M,N) along with the modulo consideration side-by-side. This will boost up your program.
See my code snippet to check what changes to be made:
#include<iostream>
#define MOD 1000000007
int main() {
unsigned short int T;
unsigned long long N , M , result;
unsigned long long power(unsigned long long, unsigned long long); /*prototype of power*/
std::cin>>T;
for (int i = 0; i < T; i++) {
std::cin >> N >> M;
result = power(M , N);
std::cout << result << std::endl;
}
return 0;
}
unsigned long long power(unsigned long long M, unsigned long long N) {
if(N == 0) {
return 1;
}
unsigned long long result = power(M , N/2);
result = (result * result) % MOD;
if(N%2 == 1) {
result = (result * M) % MOD;
}
return result;
}

C++ - how to find the length of an integer

I'm trying to find a way to find the length of an integer (number of digits) and then place it in an integer array. The assignment also calls for doing this without the use of classes from the STL, although the program spec does say we can use "common C libraries" (gonna ask my professor if I can use cmath, because I'm assuming log10(num) + 1 is the easiest way, but I was wondering if there was another way).
Ah, and this doesn't have to handle negative numbers. Solely non-negative numbers.
I'm attempting to create a variant "MyInt" class that can handle a wider range of values using a dynamic array. Any tips would be appreciated! Thanks!
Not necessarily the most efficient, but one of the shortest and most readable using C++:
std::to_string(num).length()
The number of digits of an integer n in any base is trivially obtained by dividing until you're done:
unsigned int number_of_digits = 0;
do {
++number_of_digits;
n /= base;
} while (n);
There is a much better way to do it
#include<cmath>
...
int size = trunc(log10(num)) + 1
....
works for int and decimal
If you can use C libraries then one method would be to use sprintf, e.g.
#include <cstdio>
char s[32];
int len = sprintf(s, "%d", i);
"I mean the number of digits in an integer, i.e. "123" has a length of 3"
int i = 123;
// the "length" of 0 is 1:
int len = 1;
// and for numbers greater than 0:
if (i > 0) {
// we count how many times it can be divided by 10:
// (how many times we can cut off the last digit until we end up with 0)
for (len = 0; i > 0; len++) {
i = i / 10;
}
}
// and that's our "length":
std::cout << len;
outputs 3
Closed formula for the longest int (I used int here, but works for any signed integral type):
1 + (int) ceil((8*sizeof(int)-1) * log10(2))
Explanation:
sizeof(int) // number bytes in int
8*sizeof(int) // number of binary digits (bits)
8*sizeof(int)-1 // discount one bit for the negatives
(8*sizeof(int)-1) * log10(2) // convert to decimal, because:
// 1 bit == log10(2) decimal digits
(int) ceil((8*sizeof(int)-1) * log10(2)) // round up to whole digits
1 + (int) ceil((8*sizeof(int)-1) * log10(2)) // make room for the minus sign
For an int type of 4 bytes, the result is 11. An example of 4 bytes int with 11 decimal digits is: "-2147483648".
If you want the number of decimal digits of some int value, you can use the following function:
unsigned base10_size(int value)
{
if(value == 0) {
return 1u;
}
unsigned ret;
double dval;
if(value > 0) {
ret = 0;
dval = value;
} else {
// Make room for the minus sign, and proceed as if positive.
ret = 1;
dval = -double(value);
}
ret += ceil(log10(dval+1.0));
return ret;
}
I tested this function for the whole range of int in g++ 9.3.0 for x86-64.
int intLength(int i) {
int l=0;
for(;i;i/=10) l++;
return l==0 ? 1 : l;
}
Here's a tiny efficient one
Being a computer nerd and not a maths nerd I'd do:
char buffer[64];
int len = sprintf(buffer, "%d", theNum);
Would this be an efficient approach? Converting to a string and finding the length property?
int num = 123
string strNum = to_string(num); // 123 becomes "123"
int length = strNum.length(); // length = 3
char array[3]; // or whatever you want to do with the length
How about (works also for 0 and negatives):
int digits( int x ) {
return ( (bool) x * (int) log10( abs( x ) ) + 1 );
}
Best way is to find using log, it works always
int len = ceil(log10(num))+1;
Code for finding Length of int and decimal number:
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
int len,num;
cin >> num;
len = log10(num) + 1;
cout << len << endl;
return 0;
}
//sample input output
/*45566
5
Process returned 0 (0x0) execution time : 3.292 s
Press any key to continue.
*/
There are no inbuilt functions in C/C++ nor in STL for finding length of integer but there are few ways by which it can found
Here is a sample C++ code to find the length of an integer, it can be written in a function for reuse.
#include<iostream>
using namespace std;
int main()
{
long long int n;
cin>>n;
unsigned long int integer_length = 0;
while(n>0)
{
integer_length++;
n = n/10;
}
cout<<integer_length<<endl;
return 0;
}
Here is another way, convert the integer to string and find the length, it accomplishes same with a single line:
#include<iostream>
#include<cstring>
using namespace std;
int main()
{
long long int n;
cin>>n;
unsigned long int integer_length = 0;
// convert to string
integer_length = to_string(n).length();
cout<<integer_length<<endl;
return 0;
}
Note: Do include the cstring header file
The easiest way to use without any libraries in c++ is
#include <iostream>
using namespace std;
int main()
{
int num, length = 0;
cin >> num;
while(num){
num /= 10;
length++;
}
cout << length;
}
You can also use this function:
int countlength(int number)
{
static int count = 0;
if (number > 0)
{
count++;
number /= 10;
countlength(number);
}
return count;
}
#include <math.h>
int intLen(int num)
{
if (num == 0 || num == 1)
return 1;
else if(num < 0)
return ceil(log10(num * -1))+1;
else
return ceil(log10(num));
}
Most efficient code to find length of a number.. counts zeros as well, note "n" is the number to be given.
#include <iostream>
using namespace std;
int main()
{
int n,len= 0;
cin>>n;
while(n!=0)
{
len++;
n=n/10;
}
cout<<len<<endl;
return 0;
}

factorial of big numbers with strings in c++

I am doing a factorial program with strings because i need the factorial of Numbers greater than 250
I intent with:
string factorial(int n){
string fact="1";
for(int i=2; i<=n; i++){
b=atoi(fact)*n;
}
}
But the problem is that atoi not works. How can i convert my string in a integer.
And The most important Do I want to know if the program of this way will work with the factorial of 400 for example?
Not sure why you are trying to use string. Probably to save some space by not using integer vector? This is my solution by using integer vector to store factorial and print.Works well with 400 or any large number for that matter!
//Factorial of a big number
#include<iostream>
#include<vector>
using namespace std;
int main(){
int num;
cout<<"Enter the number :";
cin>>num;
vector<int> res;
res.push_back(1);
int carry=0;
for(int i=2;i<=num;i++){
for(int j=0;j<res.size();j++){
int tmp=res[j]*i;
res[j]=(tmp+carry)%10 ;
carry=(tmp+carry)/10;
}
while(carry!=0){
res.push_back(carry%10);
carry=carry/10;
}
}
for(int i=res.size()-1;i>=0;i--) cout<<res[i];
cout<<endl;
return 0;
}
Enter the number :400
Factorial of 400 :64034522846623895262347970319503005850702583026002959458684445942802397169186831436278478647463264676294350575035856810848298162883517435228961988646802997937341654150838162426461942352307046244325015114448670890662773914918117331955996440709549671345290477020322434911210797593280795101545372667251627877890009349763765710326350331533965349868386831339352024373788157786791506311858702618270169819740062983025308591298346162272304558339520759611505302236086810433297255194852674432232438669948422404232599805551610635942376961399231917134063858996537970147827206606320217379472010321356624613809077942304597360699567595836096158715129913822286578579549361617654480453222007825818400848436415591229454275384803558374518022675900061399560145595206127211192918105032491008000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
There's a web site that will calculate factorials for you: http://www.nitrxgen.net/factorialcalc.php. It reports:
The resulting factorial of 250! is 493 digits long.
The result also contains 62 trailing zeroes (which constitutes to 12.58% of the whole number)
3232856260909107732320814552024368470994843717673780666747942427112823747555111209488817915371028199450928507353189432926730931712808990822791030279071281921676527240189264733218041186261006832925365133678939089569935713530175040513178760077247933065402339006164825552248819436572586057399222641254832982204849137721776650641276858807153128978777672951913990844377478702589172973255150283241787320658188482062478582659808848825548800000000000000000000000000000000000000000000000000000000000000
Many systems using C++ double only work up to 1E+308 or thereabouts; the value of 250! is too large to store in such numbers.
Consequently, you'll need to use some sort of multi-precision arithmetic library, either of your own devising using C++ string values, or using some other widely-used multi-precision library (GNU GMP for example).
The code below uses unsigned double long to calculate very large digits.
#include<iostream.h>
int main()
{
long k=1;
while(k!=0)
{
cout<<"\nLarge Factorial Calculator\n\n";
cout<<"Enter a number be calculated:";
cin>>k;
if (k<=33)
{
unsigned double long fact=1;
fact=1;
for(int b=k;b>=1;b--)
{
fact=fact*b;
}
cout<<"\nThe factorial of "<<k<<" is "<<fact<<"\n";
}
else
{
int numArr[10000];
int total,rem=0,count;
register int i;
//int i;
for(i=0;i<10000;i++)
numArr[i]=0;
numArr[10000]=1;
for(count=2;count<=k;count++)
{
while(i>0)
{
total=numArr[i]*count+rem;
rem=0;
if(total>9)
{
numArr[i]=total%10;
rem=total/10;
}
else
{
numArr[i]=total;
}
i--;
}
rem=0;
total=0;
i=10000;
}
cout<<"The factorial of "<<k<<" is \n\n";
for(i=0;i<10000;i++)
{
if(numArr[i]!=0 || count==1)
{
cout<<numArr[i];
count=1;
}
}
cout<<endl;
}
cout<<"\n\n";
}//while
return 0;
}
Output:
![Large Factorial Calculator
Enter a number be calculated:250
The factorial of 250 is
32328562609091077323208145520243684709948437176737806667479424271128237475551112
09488817915371028199450928507353189432926730931712808990822791030279071281921676
52724018926473321804118626100683292536513367893908956993571353017504051317876007
72479330654023390061648255522488194365725860573992226412548329822048491377217766
50641276858807153128978777672951913990844377478702589172973255150283241787320658
18848206247858265980884882554880000000000000000000000000000000000000000000000000
000000000000][1]
You can make atoi compile by adding c_str(), but it will be a long way to go till getting factorial. Currently you have no b around. And if you had, you still multiply int by int. So even if you eventually convert that to string before return, your range is still limited. Until you start to actually do multiplication with ASCII or use a bignum library there's no point to have string around.
Your factorial depends on conversion to int, which will overflow pretty fast, so you want be able to compute large factorials that way. To properly implement computation on big numbers you need to implement logic as for computation on paper, rules that you were tought in primary school, but treat long long ints as "atoms", not individual digits. And don't do it on strings, it would be painfully slow and full of nasty conversions
If you are going to solve factorial for numbers larger than around 12, you need a different approach than using atoi, since that just gives you a 32-bit integer, and no matter what you do, you are not going to get more than 2 billion (give or take) out of that. Even if you double the size of the number, you'll only get to about 20 or 21.
It's not that hard (relatively speaking) to write a string multiplication routine that takes a small(ish) number and multiplies each digit and ripples the results through to the the number (start from the back of the number, and fill it up).
Here's my obfuscated code - it is intentionally written such that you can't just take it and hand in as school homework, but it appears to work (matches the number in Jonathan Leffler's answer), and works up to (at least) 20000! [subject to enough memory].
std::string operator*(const std::string &s, int x)
{
int l = (int)s.length();
std::string r;
r.resize(l);
std::fill(r.begin(), r.end(), '0');
int b = 0;
int e = ~b;
const int c = 10;
for(int i = l+e; i != e;)
{
int d = (s[i]-0x30) * x, p = i + b;
while (d && p > e)
{
int t = r[p] - 0x30 + (d % c);
r[p] = (t % c) + 0x30;
d = t / c + d / c;
p--;
}
while (d)
{
r = static_cast<char>((d % c) +0x30)+r;
d /= c;
b++;
}
i--;
}
return r;
}
In C++, the largest integer type is 'long long', and it hold 64 bits of memory, so obviously you can't store 250! in an integer type. It is a clever idea to use strings, but what you are basically doing with your code is (I have never used the atoi() function, so I don't know if it even works with strings larger than 1 character, but it doesn't matter):
covert the string to integer (a string that if this code worked well, in one moment contains the value of 249!)
multiply the value of the string
So, after you are done multiplying, you don't even convert the integer back to string. And even if you did that, at one moment when you convert the string back to an integer, your program will crash, because the integer won't be able to hold the value of the string.
My suggestion is, to use some class for big integers. Unfortunately, there isn't one available in C++, so you'll have to code it by yourself or find one on the internet. But, don't worry, even if you code it by yourself, if you think a little, you'll see it's not that hard. You can even use your idea with the strings, which, even tough is not the best approach, for this problem, will still yield the results in the desired time not using too much memory.
This is a typical high precision problem.
You can use an array of unsigned long long instead of string.
like this:
struct node
{
unsigned long long digit[100000];
}
It should be faster than string.
But You still can use string unless you are urgent.
It may take you a few days to calculate 10000!.
I like use string because it is easy to write.
#include <bits/stdc++.h>
#pragma GCC optimize (2)
using namespace std;
const int MAXN = 90;
int n, m;
int a[MAXN];
string base[MAXN], f[MAXN][MAXN];
string sum, ans;
template <typename _T>
void Swap(_T &a, _T &b)
{
_T temp;
temp = a;
a = b;
b = temp;
}
string operator + (string s1, string s2)
{
string ret;
int digit, up = 0;
int len1 = s1.length(), len2 = s2.length();
if (len1 < len2) Swap(s1, s2), Swap(len1, len2);
while(len2 < len1) s2 = '0' + s2, len2++;
for (int i = len1 - 1; i >= 0; i--)
{
digit = s1[i] + s2[i] - '0' - '0' + up; up = 0;
if (digit >= 10) up = digit / 10, digit %= 10;
ret = char(digit + '0') + ret;
}
if (up) ret = char(up + '0') + ret;
return ret;
}
string operator * (string str, int p)
{
string ret = "0", f; int digit, mul;
int len = str.length();
for (int i = len - 1; i >= 0; i--)
{
f = "";
digit = str[i] - '0';
mul = p * digit;
while(mul)
{
digit = mul % 10 , mul /= 10;
f = char(digit + '0') + f;
}
for (int j = 1; j < len - i; j++) f = f + '0';
ret = ret + f;
}
return ret;
}
int main()
{
freopen("factorial.out", "w", stdout);
string ans = "1";
for (int i = 1; i <= 5000; i++)
{
ans = ans * i;
cout << i << "! = " << ans << endl;
}
return 0;
}
Actually, I know where the problem raised At the point where we multiply , there is the actual problem ,when numbers get multiplied and get bigger and bigger.
this code is tested and is giving the correct result.
#include <bits/stdc++.h>
using namespace std;
#define mod 72057594037927936 // 2^56 (17 digits)
// #define mod 18446744073709551616 // 2^64 (20 digits) Not supported
long long int prod_uint64(long long int x, long long int y)
{
return x * y % mod;
}
int main()
{
long long int n=14, s = 1;
while (n != 1)
{
s = prod_uint64(s , n) ;
n--;
}
}
Expexted output for 14! = 87178291200
The logic should be:
unsigned int factorial(int n)
{
unsigned int b=1;
for(int i=2; i<=n; i++){
b=b*n;
}
return b;
}
However b may get overflowed. So you may use a bigger integral type.
Or you can use float type which is inaccurate but can hold much bigger numbers.
But it seems none of the built-in types are big enough.

The most efficient way to reverse a number

I am looking for an efficient algorithm to reverse a number, e.g.
Input: 3456789
Output: 9876543
In C++ there are plenty of options with shifting and bit masks but what would be the most efficient way ?
My platform: x86_64
Numbers range: XXX - XXXXXXXXXX (3 - 9 digits)
EDIT
Last digit of my input will never be a zero so there is no leading zeros problem.
Something like this will work:
#include <iostream>
int main()
{
long in = 3456789;
long out = 0;
while(in)
{
out *= 10;
out += in % 10;
in /= 10;
}
std::cout << out << std::endl;
return 0;
}
#include <stdio.h>
unsigned int reverse(unsigned int val)
{
unsigned int retval = 0;
while( val > 0)
{
retval = 10*retval + val%10;
val /= 10;
}
printf("returning - %d", retval);
return retval;
}
int main()
{
reverse(123);
}
You may convert the number to string and then reverse the string with STL algorithms. Code below should work:
long number = 123456789;
stringstream ss;
ss << number;
string numberToStr = ss.str();
std::reverse(numberToStr.begin(), numberToStr.end());
cout << atol(numberToStr.c_str());
You may need to include those relevant header files. I am not sure whether it is the most efficient way, but STL algorithms are generally very efficient.
static public int getReverseInt(int value) {
int resultNumber = 0;
for (int i = value; i != 0;) {
int d = i / 10;
resultNumber = (resultNumber - d) * 10 + i;
i = d;
}
return resultNumber;
}
I think this will be the fastest possible method without using asm. Note that d*10 + i is equivalent to i%10 but much faster since modulo is around 10 times slower than multiplication.
I tested it and it is about 25 % faster than other answers.
int ans=0;
int rev(int n)
{
ans=(ans+(n%10))*10; // using recursive function to reverse a number;
if(n>9)
rev(n/10);
}
int main()
{
int m=rev(456123); // m=32
return 0;
}
//Recursive method to find the reverse of a number
#include <bits/stdc++.h>
using namespace std;
int reversDigits(int num)
{
static int rev_num = 0;
static int base_pos = 1;
if(num > 0)
{
reversDigits(num/10);
rev_num += (num%10)*base_pos;
base_pos *= 10;
}
return rev_num;
}
int main()
{
int num = 4562;
cout << "Reverse " << reversDigits(num);
} ``
// recursive method to reverse number. lang = java
static void reverseNumber(int number){
// number == 0 is the base case
if(number !=0 ){
//recursive case
System.out.print(number %10);
reverseNumber(number /10);
}
}
This solution is not as efficient but it does solve the problem and can be useful.
It returns long long for any signed integer(int, long, long long, etc) and unsigned long long for any unsigned integer (unsigned int, unsigned long, unsigned long long, etc).
The char type depends of compiler implementation can be signed or unsigned.
#include <iostream>
#include <string>
#include <algorithm>
template <bool B>
struct SignedNumber
{
};
template <>
struct SignedNumber<true>
{
typedef long long type;
};
template <>
struct SignedNumber<false>
{
typedef unsigned long long type;
};
template <typename TNumber = int,
typename TResult = typename SignedNumber<std::is_signed<TNumber>::value>::type,
typename = typename std::void_t<std::enable_if_t<std::numeric_limits<TNumber>::is_integer>>>
TResult ReverseNumber(TNumber value)
{
bool isSigned = std::is_signed_v<TNumber>;
int sign = 1;
if (value < 0)
{
value *= -1;
sign = -1;
}
std::string str = std::to_string(value);
std::reverse(str.begin(), str.end());
return isSigned ? std::stoll(str) * sign : std::stoull(str) * sign;
}
int main()
{
std::cout << ReverseNumber(true) << std::endl; //bool -> unsigned long long
std::cout << ReverseNumber(false) << std::endl; //bool -> unsigned long long
std::cout << ReverseNumber('#') << std::endl; //char -> long long or unsigned long long
std::cout << ReverseNumber(46) << std::endl; //int -> long long
std::cout << ReverseNumber(-46) << std::endl; //int -> long long
std::cout << ReverseNumber(46U) << std::endl; //unsigned int -> unsigned long long
std::cout << ReverseNumber(46L) << std::endl; //long -> long long
std::cout << ReverseNumber(-46LL) << std::endl; //long long -> long long
std::cout << ReverseNumber(46UL) << std::endl; //unsigned long -> unsigned long long
std::cout << ReverseNumber(4600ULL) << std::endl; //unsigned long long -> unsigned long long
}
Output
1
0
64
64
-64
64
64
-64
64
64
Test this code
https://repl.it/#JomaCorpFX/IntegerToStr#main.cpp
If it is 32-bit unsigned integer (987,654,321 being max input) and if you have 4GB free memory(by efficiency, did you mean memory too?),
result=table[value]; // index 12345 has 54321, index 123 has 321
should be fast enough. Assuming memory is accessed at 100 ns time or 200 cycles and integer is 7 digits on average, other solutions have these:
7 multiplications,
7 adds,
7 modulo,
7 divisions,
7 loop iterations with 7 comparisons
if these make more than 100 nanoseconds / 200 cycles, then table would be faster. For example, 1 integer division can be as high as 40 cycles, so I guess this can be fast enough. If inputs are repeated, then data will coming from cache will have even less latency.
But if there are millions of reversing operations in parallel, then computing by CPU is absolutely the better choice (probably 30x-100x speedup using vectorized compute loop + multithreading) than accessing table. It has multiple pipelines per core and multiple cores. You can even choose CUDA/OpenCL with a GPU for extra throughput and this reversing solution from other answers look like perfectly embarrassingly parallelizable since 1 input computes independently of other inputs.
This is the easiest one:
#include<iostream>
using namespace std;
int main()
{
int number, reversed=0;
cout<<"Input a number to Reverse: ";
cin>>number;
while(number!=0)
{
reversed= reversed*10;
reversed=reversed+number%10;
number=number/10;
}
cout<<"Reversed number is: "<<reversed<<endl;
}

How do you implement the factorial function in C++? [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicates:
Calculating large factorials in C++
Howto compute the factorial of x
How do you implement the factorial function in C++? And by this I mean properly implement it using whatever argument checking and error handling logic is appropriate for a general purpose math library in C++.
Recursive:
unsigned int factorial(unsigned int n)
{
if (n == 0)
return 1;
return n * factorial(n - 1);
}
Iterative:
unsigned int iter_factorial(unsigned int n)
{
unsigned int ret = 1;
for(unsigned int i = 1; i <= n; ++i)
ret *= i;
return ret;
}
Compile time:
template <int N>
struct Factorial
{
enum { value = N * Factorial<N - 1>::value };
};
template <>
struct Factorial<0>
{
enum { value = 1 };
};
void foo()
{
int x = Factorial<4>::value; // == 24
int y = Factorial<0>::value; // == 1
}
Besides the obvious loops and recursions, modern C++ compilers support the gamma function as tgamma(), closely related to factorial:
#include <iostream>
#include <cmath>
int main()
{
int n;
std::cin >> n;
std::cout << std::tgamma(n+1) << '\n';
}
test run: https://ideone.com/TiUQ3
You might want to take a look at boost/math/special_functions/factorials.hpp if you have Boost installed. You can read about it at: Boost Factorial