Using std::bitset to count subsets of a finite set - c++
I would like to check how many subsets S of the set [1, ..., 15]
there are so that it is impossible to choose two elements from S
such that their sum is a multiple of 3.
The algorithm to check this is as follows: there is a natural bijection between
the subsets of [1, ..., 15] and the strings of length 15 with two characters (assume
the two characters are '0' and '1' to fix a convention), where the character '0' in position i means that the integer i is not in the subset, while the character '1' in position i means that the integer i is in the subset.
For example, the string "111001000000000" is associated to the subset {1, 2, 3, 6}. This subset does not fulfill the constraint described above.
I wrote a C++ code to generate all such strings, convert them to a vector of
ints between 1 and 15, and check for all couples in this set if there is one
whose sum is a multiple of 3.
This is the code:
#include <algorithm>
#include <bitset>
#include <cmath>
#include <iostream>
#include <vector>
bool check(const std::vector<int>& dset) {
if (dset.size() == 1) {
if (dset[0] % 3 == 0) { return false; }
}
for (size_t i = 0; i < dset.size() - 1; ++i) {
auto a = dset[i];
for (size_t j = i + 1; j < dset.size(); ++j) {
auto b = dset[j];
if ((a + b) % 3 == 0) { return false; }
}
}
return true;
}
int main() {
const int N = 15; // We consider subsets of [1, ..., N].
int approved = 1; // We automatically approve the empty set.
std::bitset<N> set;
for (int n = 1; n < std::pow(2, N); ++n) {
set = std::bitset<N>(n);
std::vector<int> dset(set.count());
size_t j = 0;
for (int i = 1; i <= N; ++i) {
if (set[i - 1]) {
dset[j++] = i;
}
}
// Sweep through all couples in dset.
if (check(dset)) {
++approved;
}
}
std::cout << approved << " out of " << std::pow(2, N) << std::endl;
}
The problem is that my code returns 373, which is the wrong answer (the correct one should be 378).
I guess I am doing something wrong here, but I cannot find the error in my code.
In check() function you don't need to check for dset size being 1, since it is taken care below in the for loop from index i = 0 till valid size. Remove below if statement which should result valid number whose sum is multiple of 3:
if (dset.size() == 1) {
if (dset[0] % 3 == 0) { return false; }
}
Related
given an array A of N integers, returns the smallest positive integer (greater than 0) that does not occur in A
I tried to solve this exercise I got 66 percent I can not understand why can you help? The exercise is: Write a function: int solution(vector &A); that, given an array A of N integers, returns the smallest positive integer (greater than 0) that does not occur in A. For example, given A = [1, 3, 6, 4, 1, 2], the function should return 5. Given A = [1, 2, 3], the function should return 4. Given A = [−1, −3], the function should return 1. The solution I wrote is: #include <algorithm> #include<cmath> using namespace std; int solution(vector<int> &A) { if (A.size() == 0 || (A.size() == 1 && A.at(0) <= 0)) return 1; if (A.size() == 1) return A.at(0) + 1; sort(A.begin(), A.end()); if (A.at(A.size() - 1) <= 0) return 1; auto ip = std::unique(A.begin(), A.end()); A.resize(distance(A.begin(), ip)); A.erase(remove_if(A.begin(), A.end(), [](const int i) { return i < 0; }),A.end()); if (A.at(0) != 1) return 1; if (A.size() == 1) return (A.at(0) != 1 ? 1 : 2); int i = 0; for (; i < A.size(); ++i) { if (A.at(i) != i + 1) return A.at(i - 1) + 1; } return A.at(A.size()) + 1; }
The following algorithm has a complexity O(n). No need to sort or to erase. We know that the first missing value is less or equal to n+1, if n is the array size. Then we simply have to use an array of size n+2, present[n+2], initialised to 0, and then to look at all values A[i]: if (A[i] <= 1+n && A[i] > 0) present[A[i]] = 1; Finally, in a second step we simply have to examine the array present[.], and search for the first index k such that present[k]==0. #include <iostream> #include <vector> int find_missing (const std::vector<int> &A) { int n = A.size(); std::vector<int> present (n+2, 0); int vmax = n+1; for (int i = 0; i < n; ++i) { if (A[i] <= vmax && A[i] > 0) { present[A[i]] = 1; } } for (int k = 1; k <= vmax; ++k) { if (present[k] == 0) return k; } return -1; } int main() { std::vector<int> A = {1, 2, 0, 3, -3, 5, 6, 8}; int missing = find_missing (A); std::cout << "First missing element = " << missing << std::endl; return 0; }
Well this is wrong if(A.size()==1) return A.at(0)+1; If A is {2} that code will return 3 when the correct answer is 1 Also A.erase(remove_if(A.begin(), A.end(),[](const int i) {return i < 0; }),A.end()); should be A.erase(remove_if(A.begin(), A.end(),[](const int i) {return i <= 0; }),A.end()); Also return A.at(A.size()) + 1; is a guaranteed vector out of bounds error. Even a small amount of testing and debugging would have caught these errors. It's a habit you should get into. I think there are far too many special cases in the code, which only serve to complicate the code and increase the chance of bugs.
This answer is the implementation of the proposal given in the comment by PaulMcKenzie. So, all credits go to PaulMcKenzie It is not the fastest solution, but compact. The idea is basically. Sort the data Then compare the adjacent values, if the next value is equal to the previous value+1. If not, then we found a gap. This can be implemented by using the function std::adjacent_find. Description can be found here. We put all the side conditions into the lambda. If std::adjacent_find cannot find a value, then we take the next possible positive value. I am not sure, what I could describe more. Please see the below example: #include <iostream> #include <vector> #include <algorithm> int solution(std::vector<int>& data) { // Sort std::sort(data.begin(), data.end()); // Check if there is a gap in the positive values const auto gap = std::adjacent_find(data.begin(), data.end(), [](const int p, const int n) { return (n !=p) && (n != (p + 1) && p>0); }); // If there is no gap, the take the next positive value return (gap == data.end()) ? (data.back() > 0 ? data.back() + 1 : 1) : *gap + 1; } int main() { //Some test cases std::vector<std::vector<int>> testCases{ {1,3,6,4,1,2}, {1,2,3}, {-1,-3} }; for (auto& testCase : testCases) std::cout << solution(testCase) << '\n'; return 0; }
others have already pointed out what are the main errors, but I would like to invite you to try a different solution instead of trying to fix all the bugs and spend much time on debugging, because your solution seems a little overcomplicated. Here I propose a way you can think about the problem: What is the minimum number the function can return? Since it returns a positive integer, it is 1, in the case 1 is not in the array. Since that we can use any number <=0 to see if we found our result scanning the vector (see next); In case one is not in the array, how do I find the wanted number? Your intuition is correct, if your vector is sorted it is easier: you can iterate over your data, and when you find an "hole" between two subsequent elements, then the value of the first element of the hole + 1 is you result What do I do if the array contains 1 and has no holes? Well, you return the smallest element that is not in the array, so the last element + 1. You may notice that by checking if your "candidate" value (that is a number that shouldn't be returned, so <=0) has changed during the scanning; Let's go to the code: int solution(std::vector<int>& v){ int retVal=0; std::sort(v.begin(), v.end()); for(int i=0; i<v.size()-1; i++){ if(v[i]>0 && v[i+1]>v[i]+1){ retVal=v[i]+1; break; } } if(retVal==0) { if (v.back() > 0) retVal = v.back() + 1; else retVal = 1; } return retVal; } As suggested you can use the standard library a little bit more, but I think this is reasonably simple and efficient. Other note: I think your assignment does not bother you with this, but I mention just for completeness. Most of the times you don't want a function to modify your parameters: you can pass the vector "by value" meaning that actually you pass a complete copy of your data, without touching the original one, or you can pass a const reference and create a copy inside the function.
How to find all possible combinations of adding two variables, each attached to a multiplier, summing up to a given number (cin)?
In my situation, a lorry has a capacity of 30, while a van has a capacity of 10. I need to find the number of vans/lorries needed to transport a given amount of cargo, say 100. I need to find all possible combinations of lorries + vans that will add up to 100. The basic math calculation would be: (30*lorrycount) + (10*vancount) = n, where n is number of cargo. Output Example Cargo to be transported: 100 Number of Lorry: 0 3 2 1 Number of Van: 10 1 4 7 For example, the 2nd combination is 3 lorries, 1 van. Considering that lorries have capacity = 30 and van capacity = 10, (30*3)+(10*1) = 100 = n. For now, we only have this code, which finds literally all combinations of numbers that add up to given number n, without considering the formula given above. #include <iostream> #include <vector> using namespace std; void findCombinationsUtil(int arr[], int index, int num, int reducedNum) { int lorry_capacity = 30; int van_capacity = 10; // Base condition if (reducedNum < 0) return; // If combination is found, print it if (reducedNum == 0) { for (int i = 0; i < index; i++) cout << arr[i] << " "; cout << endl; return; } // Find the previous number stored in arr[] // It helps in maintaining increasing order int prev = (index == 0) ? 1 : arr[index - 1]; // note loop starts from previous number // i.e. at array location index - 1 for (int k = prev; k <= num; k++) { // next element of array is k arr[index] = k; // call recursively with reduced number findCombinationsUtil(arr, index + 1, num, reducedNum - k); } } void findCombinations(int n) { // array to store the combinations // It can contain max n elements std::vector<int> arr(n); // allocate n elements //find all combinations findCombinationsUtil(&*arr.begin(), 0, n, n); } int main() { int n; cout << "Enter the amount of cargo you want to transport: "; cin >> n; cout << endl; //const int n = 10; findCombinations(n); return 0; } Do let me know if you have any solution to this, thank you.
An iterative way of finding all possible combinations #include <iostream> #include <vector> int main() { int cw = 100; int lw = 30, vw = 10; int maxl = cw/lw; // maximum no. of lorries that can be there std::vector<std::pair<int,int>> solutions; // for the inclusive range of 0 to maxl, find the corresponding no. of vans for each variant of no of lorries for(int l = 0; l<= maxl; ++l){ bool is_integer = (cw - l*lw)%vw == 0; // only if this is true, then there is an integer which satisfies for given l if(is_integer){ int v = (cw-l*lw)/vw; // no of vans solutions.push_back(std::make_pair(l,v)); } } for( auto& solution : solutions){ std::cout<<solution.first<<" lorries and "<< solution.second<<" vans" <<std::endl; } return 0; }
We will create a recursive function that walks a global capacities array left to right and tries to load cargo into the various vehicle types. We keep track of how much we still have to load and pass that on to any recursive call. If we reach the end of the array, we produce a solution only if the remaining cargo is zero. std::vector<int> capacities = { 30, 10 }; using Solution = std::vector<int>; using Solutions = std::vector<Solution>; void tryLoad(int remaining_cargo, int vehicle_index, Solution so_far, std::back_insert_iterator<Solutions>& solutions) { if (vehicle_index == capacities.size()) { if (remaining_cargo == 0) // we have a solution *solutions++ = so_far; return; } int capacity = capacities[vehicle_index]; for (int vehicles = 0; vehicles <= remaining_cargo / capacity; vehicles++) { Solution new_solution = so_far; new_solution.push_back(vehicles); tryLoad(remaining_cargo - vehicles * capacity, vehicle_index + 1, new_solution, solutions); } } Calling this as follows should produce the desired output in all_solutions: Solutions all_solutions; auto inserter = std::back_inserter(all_solutions) tryLoad(100, 0, Solution{}, inserter);
How can I find the minimum number of swaps in a consecutive unordered array (vector)?
I am trying to solve a problem: You are given an unordered array consisting of consecutive integers [1, 2, 3, ..., n] without any duplicates nor specific order.You are allowed to swap any two elements. You need to find the minimum number of swaps required to sort the array in ascending order. CONSTRAINTS: the number of elements must be >= 1 the elements in the array must be <= to the size of the array My code works when the numbers are not in the right position, but when the element is in the right position it enters an infinite loop, example array: [1 3 5 2 4 6 7] <- My code doesn't work because it gets stuck on 1. My code: #include <iostream> #include <vector> void swap(int &a, int &b) { int temp = a; a = b; b = temp; } int minimumSwaps(std::vector<int> arr) { int numberOfSwaps = 0; int lastElementIndex = (arr.size() - 1); bool isSwapping = true; while (isSwapping) { isSwapping = false; for (int i = 0; i < arr.size(); i++) { if (lastElementIndex - (arr.size() - arr[i]) != 0) { isSwapping = true; swap(arr[i], arr[lastElementIndex - (arr.size() - arr[i])]); numberOfSwaps++; } else { std::cout << arr[i] << " is already in its perfect position." << std::endl; } } } return numberOfSwaps; } P.S: I've just used the else statement to check what was going wrong.
Replacing lastElementIndex with its value (arr.size() - 1) in line if (lastElementIndex - (arr.size() - arr[i]) != 0) yields if ((arr.size() - 1) - (arr.size() - arr[i]) != 0) and this is equivalent to if (arr[i] != 1) That's obviously wrong. Replace the line with if (arr[i] - 1 != i)
Improving optimization of nested loop
I'm making a simple program to calculate the number of pairs in an array that are divisible by 3 array length and values are user determined. Now my code is perfectly fine. However, I just want to check if there is a faster way to calculate it which results in less compiling time? As the length of the array is 10^4 or less compiler takes less than 100ms. However, as it gets more to 10^5 it spikes up to 1000ms so why is this? and how to improve speed? #include <iostream> using namespace std; int main() { int N, i, b; b = 0; cin >> N; unsigned int j = 0; std::vector<unsigned int> a(N); for (j = 0; j < N; j++) { cin >> a[j]; if (j == 0) { } else { for (i = j - 1; i >= 0; i = i - 1) { if ((a[j] + a[i]) % 3 == 0) { b++; } } } } cout << b; return 0; }
Your algorithm has O(N^2) complexity. There is a faster way. (a[i] + a[j]) % 3 == ((a[i] % 3) + (a[j] % 3)) % 3 Thus, you need not know the exact numbers, you need to know their remainders of division by three only. Zero remainder of the sum can be received with two numbers with zero remainders (0 + 0) and with two numbers with remainders 1 and 2 (1 + 2). The result will be equal to r[1]*r[2] + r[0]*(r[0]-1)/2 where r[i] is the quantity of numbers with remainder equal to i. int r[3] = {}; for (int i : a) { r[i % 3]++; } std::cout << r[1]*r[2] + (r[0]*(r[0]-1)) / 2; The complexity of this algorithm is O(N).
I've encountered this problem before, and while I don't find my particular solution, you could improve running times by hashing. The code would look something like this: // A C++ program to check if arr[0..n-1] can be divided // in pairs such that every pair is divisible by k. #include <bits/stdc++.h> using namespace std; // Returns true if arr[0..n-1] can be divided into pairs // with sum divisible by k. bool canPairs(int arr[], int n, int k) { // An odd length array cannot be divided into pairs if (n & 1) return false; // Create a frequency array to count occurrences // of all remainders when divided by k. map<int, int> freq; // Count occurrences of all remainders for (int i = 0; i < n; i++) freq[arr[i] % k]++; // Traverse input array and use freq[] to decide // if given array can be divided in pairs for (int i = 0; i < n; i++) { // Remainder of current element int rem = arr[i] % k; // If remainder with current element divides // k into two halves. if (2*rem == k) { // Then there must be even occurrences of // such remainder if (freq[rem] % 2 != 0) return false; } // If remainder is 0, then there must be two // elements with 0 remainder else if (rem == 0) { if (freq[rem] & 1) return false; } // Else number of occurrences of remainder // must be equal to number of occurrences of // k - remainder else if (freq[rem] != freq[k - rem]) return false; } return true; } /* Driver program to test above function */ int main() { int arr[] = {92, 75, 65, 48, 45, 35}; int k = 10; int n = sizeof(arr)/sizeof(arr[0]); canPairs(arr, n, k)? cout << "True": cout << "False"; return 0; } That works for a k (in your case 3) But then again, this is not my code, but the code you can find in the following link. with a proper explanation. I didn't just paste the link since it's bad practice I think.
Power set of large set
I have to calculate power set of set which may have more elements upto 10^5. I tried an algo and the code below but it failed (I think cause large value of pow(2, size)). void printPowerSet(int *set, int set_size) { unsigned int pow_set_size = pow(2, set_size); int counter, j,sum=0; for(counter = 0; counter < pow_set_size; counter++) { for(j = 0; j < set_size; j++) { if(counter & (1<<j)) std::cout<<set[i]<<" "; } std::cout<<sum; sum=0; printf("\n"); } } Is there any other algorithm or how can I fix this one (if it is possible)?? OR Can you suggest me how to do it i.e. finding subset of large set. As pointed out in an answer it seems I'm stuck in X-Y problem. Basically, I need sum of all subsets of any set. Now if you can suggest me any other approach to solve the problem. Thank you.
Here is an algorithm which will print out the power set of any set that will fit in your computer's memory. Given enough time, it will print the power set of a set of length 10^5. However, "enough time" will be something like several trillion billion gazillion years. c++14 #include <iostream> #include <vector> #include <algorithm> using namespace std; #include <iostream> void printPowerset (const vector<int>& original_set) { auto print_set = [&original_set](auto first, auto last) -> ostream& { cout << '('; auto sep = ""; for ( ; first != last ; ++first, sep = ",") { cout << sep << original_set[(*first) - 1]; } return cout << ')'; }; const int n = original_set.size(); std::vector<int> index_stack(n + 1, 0); int k = 0; while(1){ if (index_stack[k]<n){ index_stack[k+1] = index_stack[k] + 1; k++; } else{ index_stack[k-1]++; k--; } if (k==0) break; print_set(begin(index_stack) + 1, begin(index_stack) + 1 + k); } print_set(begin(index_stack), begin(index_stack)) << endl; } int main(){ auto nums = vector<int> { 2, 4, 6, 8 }; printPowerset(nums); nums = vector<int> { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 }; printPowerset(nums); return 0; } expected results: first power set (4 items): (2)(2,4)(2,4,6)(2,4,6,8)(2,4,8)(2,6)(2,6,8)(2,8)(4)(4,6)(4,6,8)(4,8)(6)(6,8)(8)() second power set (10 items) (2)(2,4)(2,4,6)(2,4,6,8)(2,4,6,8,10)(2,4,6,8,10,12)(2,4,6,8,10,12,14)(2,4,6,8,10,12,14,16)(2,4,6,8,10,12,14,16,18)(2,4,6,8,10,12,14,16,18,20)(2,4,6,8,10,12,14,16,20)(2,4,6,8,10,12,14,18)(2,4,6,8,10,12,14,18,20)(2,4,6,8,10,12,14,20)(2,4,6,8,10,12,16)(2,4,6,8,10,12,16,18)(2,4,6,8,10,12,16,18,20)(2,4,6,8,10,12,16,20)(2,4,6,8,10,12,18)(2,4,6,8,10,12,18,20)(2,4,6,8,10,12,20)(2,4,6,8,10,14)(2,4,6,8,10,14,16)(2,4,6,8,10,14,16,18)(2,4,6,8,10,14,16,18,20)(2,4,6,8,10,14,16,20)(2,4,6,8,10,14,18)(2,4,6,8,10,14,18,20)(2,4,6,8,10,14,20)(2,4,6,8,10,16)(2,4,6,8,10,16,18)(2,4,6,8,10,16,18,20)(2,4,6,8,10,16,20)(2,4,6,8,10,18)(2,4,6,8,10,18,20)(2,4,6,8,10,20)(2,4,6,8,12)(2,4,6,8,12,14)(2,4,6,8,12,14,16)(2,4,6,8,12,14,16,18)(2,4,6,8,12,14,16,18,20)(2,4,6,8,12,14,16,20)(2,4,6,8,12,14,18)(2,4,6,8,12,14,18,20)(2,4,6,8,12,14,20)(2,4,6,8,12,16)(2,4,6,8,12,16,18)(2,4,6,8,12,16,18,20)(2,4,6,8,12,16,20)(2,4,6,8,12,18)(2,4,6,8,12,18,20)(2,4,6,8,12,20)(2,4,6,8,14)(2,4,6,8,14,16)(2,4,6,8,14,16,18)(2,4,6,8,14,16,18,20)(2,4,6,8,14,16,20)(2,4,6,8,14,18)(2,4,6,8,14,18,20)(2,4,6,8,14,20)(2,4,6,8,16)(2,4,6,8,16,18)(2,4,6,8,16,18,20)(2,4,6,8,16,20)(2,4,6,8,18)(2,4,6,8,18,20)(2,4,6,8,20)(2,4,6,10)(2,4,6,10,12)(2,4,6,10,12,14)(2,4,6,10,12,14,16)(2,4,6,10,12,14,16,18)(2,4,6,10,12,14,16,18,20)(2,4,6,10,12,14,16,20)(2,4,6,10,12,14,18)(2,4,6,10,12,14,18,20)(2,4,6,10,12,14,20)(2,4,6,10,12,16)(2,4,6,10,12,16,18)(2,4,6,10,12,16,18,20)(2,4,6,10,12,16,20)(2,4,6,10,12,18)(2,4,6,10,12,18,20)(2,4,6,10,12,20)(2,4,6,10,14)(2,4,6,10,14,16)(2,4,6,10,14,16,18)(2,4,6,10,14,16,18,20)(2,4,6,10,14,16,20)(2,4,6,10,14,18)(2,4,6,10,14,18,20)(2,4,6,10,14,20)(2,4,6,10,16)(2,4,6,10,16,18)(2,4,6,10,16,18,20)(2,4,6,10,16,20)(2,4,6,10,18)(2,4,6,10,18,20)(2,4,6,10,20)(2,4,6,12)(2,4,6,12,14)(2,4,6,12,14,16)(2,4,6,12,14,16,18)(2,4,6,12,14,16,18,20)(2,4,6,12,14,16,20)(2,4,6,12,14,18)(2,4,6,12,14,18,20)(2,4,6,12,14,20)(2,4,6,12,16)(2,4,6,12,16,18)(2,4,6,12,16,18,20)(2,4,6,12,16,20)(2,4,6,12,18)(2,4,6,12,18,20)(2,4,6,12,20)(2,4,6,14)(2,4,6,14,16)(2,4,6,14,16,18)(2,4,6,14,16,18,20)(2,4,6,14,16,20)(2,4,6,14,18)(2,4,6,14,18,20)(2,4,6,14,20)(2,4,6,16)(2,4,6,16,18)(2,4,6,16,18,20)(2,4,6,16,20)(2,4,6,18)(2,4,6,18,20)(2,4,6,20)(2,4,8)(2,4,8,10)(2,4,8,10,12)(2,4,8,10,12,14)(2,4,8,10,12,14,16)(2,4,8,10,12,14,16,18)(2,4,8,10,12,14,16,18,20)(2,4,8,10,12,14,16,20)(2,4,8,10,12,14,18)(2,4,8,10,12,14,18,20)(2,4,8,10,12,14,20)(2,4,8,10,12,16)(2,4,8,10,12,16,18)(2,4,8,10,12,16,18,20)(2,4,8,10,12,16,20)(2,4,8,10,12,18)(2,4,8,10,12,18,20)(2,4,8,10,12,20)(2,4,8,10,14)(2,4,8,10,14,16)(2,4,8,10,14,16,18)(2,4,8,10,14,16,18,20)(2,4,8,10,14,16,20)(2,4,8,10,14,18)(2,4,8,10,14,18,20)(2,4,8,10,14,20)(2,4,8,10,16)(2,4,8,10,16,18)(2,4,8,10,16,18,20)(2,4,8,10,16,20)(2,4,8,10,18)(2,4,8,10,18,20)(2,4,8,10,20)(2,4,8,12)(2,4,8,12,14)(2,4,8,12,14,16)(2,4,8,12,14,16,18)(2,4,8,12,14,16,18,20)(2,4,8,12,14,16,20)(2,4,8,12,14,18)(2,4,8,12,14,18,20)(2,4,8,12,14,20)(2,4,8,12,16)(2,4,8,12,16,18)(2,4,8,12,16,18,20)(2,4,8,12,16,20)(2,4,8,12,18)(2,4,8,12,18,20)(2,4,8,12,20)(2,4,8,14)(2,4,8,14,16)(2,4,8,14,16,18)(2,4,8,14,16,18,20)(2,4,8,14,16,20)(2,4,8,14,18)(2,4,8,14,18,20)(2,4,8,14,20)(2,4,8,16)(2,4,8,16,18)(2,4,8,16,18,20)(2,4,8,16,20)(2,4,8,18)(2,4,8,18,20)(2,4,8,20)(2,4,10)(2,4,10,12)(2,4,10,12,14)(2,4,10,12,14,16)(2,4,10,12,14,16,18)(2,4,10,12,14,16,18,20)(2,4,10,12,14,16,20)(2,4,10,12,14,18)(2,4,10,12,14,18,20)(2,4,10,12,14,20)(2,4,10,12,16)(2,4,10,12,16,18)(2,4,10,12,16,18,20)(2,4,10,12,16,20)(2,4,10,12,18)(2,4,10,12,18,20)(2,4,10,12,20)(2,4,10,14)(2,4,10,14,16)(2,4,10,14,16,18)(2,4,10,14,16,18,20)(2,4,10,14,16,20)(2,4,10,14,18)(2,4,10,14,18,20)(2,4,10,14,20)(2,4,10,16)(2,4,10,16,18)(2,4,10,16,18,20)(2,4,10,16,20)(2,4,10,18)(2,4,10,18,20)(2,4,10,20)(2,4,12)(2,4,12,14)(2,4,12,14,16)(2,4,12,14,16,18)(2,4,12,14,16,18,20)(2,4,12,14,16,20)(2,4,12,14,18)(2,4,12,14,18,20)(2,4,12,14,20)(2,4,12,16)(2,4,12,16,18)(2,4,12,16,18,20)(2,4,12,16,20)(2,4,12,18)(2,4,12,18,20)(2,4,12,20)(2,4,14)(2,4,14,16)(2,4,14,16,18)(2,4,14,16,18,20)(2,4,14,16,20)(2,4,14,18)(2,4,14,18,20)(2,4,14,20)(2,4,16)(2,4,16,18)(2,4,16,18,20)(2,4,16,20)(2,4,18)(2,4,18,20)(2,4,20)(2,6)(2,6,8)(2,6,8,10)(2,6,8,10,12)(2,6,8,10,12,14)(2,6,8,10,12,14,16)(2,6,8,10,12,14,16,18)(2,6,8,10,12,14,16,18,20)(2,6,8,10,12,14,16,20)(2,6,8,10,12,14,18)(2,6,8,10,12,14,18,20)(2,6,8,10,12,14,20)(2,6,8,10,12,16)(2,6,8,10,12,16,18)(2,6,8,10,12,16,18,20)(2,6,8,10,12,16,20)(2,6,8,10,12,18)(2,6,8,10,12,18,20)(2,6,8,10,12,20)(2,6,8,10,14)(2,6,8,10,14,16)(2,6,8,10,14,16,18)(2,6,8,10,14,16,18,20)(2,6,8,10,14,16,20)(2,6,8,10,14,18)(2,6,8,10,14,18,20)(2,6,8,10,14,20)(2,6,8,10,16)(2,6,8,10,16,18)(2,6,8,10,16,18,20)(2,6,8,10,16,20)(2,6,8,10,18)(2,6,8,10,18,20)(2,6,8,10,20)(2,6,8,12)(2,6,8,12,14)(2,6,8,12,14,16)(2,6,8,12,14,16,18)(2,6,8,12,14,16,18,20)(2,6,8,12,14,16,20)(2,6,8,12,14,18)(2,6,8,12,14,18,20)(2,6,8,12,14,20)(2,6,8,12,16)(2,6,8,12,16,18)(2,6,8,12,16,18,20)(2,6,8,12,16,20)(2,6,8,12,18)(2,6,8,12,18,20)(2,6,8,12,20)(2,6,8,14)(2,6,8,14,16)(2,6,8,14,16,18)(2,6,8,14,16,18,20)(2,6,8,14,16,20)(2,6,8,14,18)(2,6,8,14,18,20)(2,6,8,14,20)(2,6,8,16)(2,6,8,16,18)(2,6,8,16,18,20)(2,6,8,16,20)(2,6,8,18)(2,6,8,18,20)(2,6,8,20)(2,6,10)(2,6,10,12)(2,6,10,12,14)(2,6,10,12,14,16)(2,6,10,12,14,16,18)(2,6,10,12,14,16,18,20)(2,6,10,12,14,16,20)(2,6,10,12,14,18)(2,6,10,12,14,18,20)(2,6,10,12,14,20)(2,6,10,12,16)(2,6,10,12,16,18)(2,6,10,12,16,18,20)(2,6,10,12,16,20)(2,6,10,12,18)(2,6,10,12,18,20)(2,6,10,12,20)(2,6,10,14)(2,6,10,14,16)(2,6,10,14,16,18)(2,6,10,14,16,18,20)(2,6,10,14,16,20)(2,6,10,14,18)(2,6,10,14,18,20)(2,6,10,14,20)(2,6,10,16)(2,6,10,16,18)(2,6,10,16,18,20)(2,6,10,16,20)(2,6,10,18)(2,6,10,18,20)(2,6,10,20)(2,6,12)(2,6,12,14)(2,6,12,14,16)(2,6,12,14,16,18)(2,6,12,14,16,18,20)(2,6,12,14,16,20)(2,6,12,14,18)(2,6,12,14,18,20)(2,6,12,14,20)(2,6,12,16)(2,6,12,16,18)(2,6,12,16,18,20)(2,6,12,16,20)(2,6,12,18)(2,6,12,18,20)(2,6,12,20)(2,6,14)(2,6,14,16)(2,6,14,16,18)(2,6,14,16,18,20)(2,6,14,16,20)(2,6,14,18)(2,6,14,18,20)(2,6,14,20)(2,6,16)(2,6,16,18)(2,6,16,18,20)(2,6,16,20)(2,6,18)(2,6,18,20)(2,6,20)(2,8)(2,8,10)(2,8,10,12)(2,8,10,12,14)(2,8,10,12,14,16)(2,8,10,12,14,16,18)(2,8,10,12,14,16,18,20)(2,8,10,12,14,16,20)(2,8,10,12,14,18)(2,8,10,12,14,18,20)(2,8,10,12,14,20)(2,8,10,12,16)(2,8,10,12,16,18)(2,8,10,12,16,18,20)(2,8,10,12,16,20)(2,8,10,12,18)(2,8,10,12,18,20)(2,8,10,12,20)(2,8,10,14)(2,8,10,14,16)(2,8,10,14,16,18)(2,8,10,14,16,18,20)(2,8,10,14,16,20)(2,8,10,14,18)(2,8,10,14,18,20)(2,8,10,14,20)(2,8,10,16)(2,8,10,16,18)(2,8,10,16,18,20)(2,8,10,16,20)(2,8,10,18)(2,8,10,18,20)(2,8,10,20)(2,8,12)(2,8,12,14)(2,8,12,14,16)(2,8,12,14,16,18)(2,8,12,14,16,18,20)(2,8,12,14,16,20)(2,8,12,14,18)(2,8,12,14,18,20)(2,8,12,14,20)(2,8,12,16)(2,8,12,16,18)(2,8,12,16,18,20)(2,8,12,16,20)(2,8,12,18)(2,8,12,18,20)(2,8,12,20)(2,8,14)(2,8,14,16)(2,8,14,16,18)(2,8,14,16,18,20)(2,8,14,16,20)(2,8,14,18)(2,8,14,18,20)(2,8,14,20)(2,8,16)(2,8,16,18)(2,8,16,18,20)(2,8,16,20)(2,8,18)(2,8,18,20)(2,8,20)(2,10)(2,10,12)(2,10,12,14)(2,10,12,14,16)(2,10,12,14,16,18)(2,10,12,14,16,18,20)(2,10,12,14,16,20)(2,10,12,14,18)(2,10,12,14,18,20)(2,10,12,14,20)(2,10,12,16)(2,10,12,16,18)(2,10,12,16,18,20)(2,10,12,16,20)(2,10,12,18)(2,10,12,18,20)(2,10,12,20)(2,10,14)(2,10,14,16)(2,10,14,16,18)(2,10,14,16,18,20)(2,10,14,16,20)(2,10,14,18)(2,10,14,18,20)(2,10,14,20)(2,10,16)(2,10,16,18)(2,10,16,18,20)(2,10,16,20)(2,10,18)(2,10,18,20)(2,10,20)(2,12)(2,12,14)(2,12,14,16)(2,12,14,16,18)(2,12,14,16,18,20)(2,12,14,16,20)(2,12,14,18)(2,12,14,18,20)(2,12,14,20)(2,12,16)(2,12,16,18)(2,12,16,18,20)(2,12,16,20)(2,12,18)(2,12,18,20)(2,12,20)(2,14)(2,14,16)(2,14,16,18)(2,14,16,18,20)(2,14,16,20)(2,14,18)(2,14,18,20)(2,14,20)(2,16)(2,16,18)(2,16,18,20)(2,16,20)(2,18)(2,18,20)(2,20)(4)(4,6)(4,6,8)(4,6,8,10)(4,6,8,10,12)(4,6,8,10,12,14)(4,6,8,10,12,14,16)(4,6,8,10,12,14,16,18)(4,6,8,10,12,14,16,18,20)(4,6,8,10,12,14,16,20)(4,6,8,10,12,14,18)(4,6,8,10,12,14,18,20)(4,6,8,10,12,14,20)(4,6,8,10,12,16)(4,6,8,10,12,16,18)(4,6,8,10,12,16,18,20)(4,6,8,10,12,16,20)(4,6,8,10,12,18)(4,6,8,10,12,18,20)(4,6,8,10,12,20)(4,6,8,10,14)(4,6,8,10,14,16)(4,6,8,10,14,16,18)(4,6,8,10,14,16,18,20)(4,6,8,10,14,16,20)(4,6,8,10,14,18)(4,6,8,10,14,18,20)(4,6,8,10,14,20)(4,6,8,10,16)(4,6,8,10,16,18)(4,6,8,10,16,18,20)(4,6,8,10,16,20)(4,6,8,10,18)(4,6,8,10,18,20)(4,6,8,10,20)(4,6,8,12)(4,6,8,12,14)(4,6,8,12,14,16)(4,6,8,12,14,16,18)(4,6,8,12,14,16,18,20)(4,6,8,12,14,16,20)(4,6,8,12,14,18)(4,6,8,12,14,18,20)(4,6,8,12,14,20)(4,6,8,12,16)(4,6,8,12,16,18)(4,6,8,12,16,18,20)(4,6,8,12,16,20)(4,6,8,12,18)(4,6,8,12,18,20)(4,6,8,12,20)(4,6,8,14)(4,6,8,14,16)(4,6,8,14,16,18)(4,6,8,14,16,18,20)(4,6,8,14,16,20)(4,6,8,14,18)(4,6,8,14,18,20)(4,6,8,14,20)(4,6,8,16)(4,6,8,16,18)(4,6,8,16,18,20)(4,6,8,16,20)(4,6,8,18)(4,6,8,18,20)(4,6,8,20)(4,6,10)(4,6,10,12)(4,6,10,12,14)(4,6,10,12,14,16)(4,6,10,12,14,16,18)(4,6,10,12,14,16,18,20)(4,6,10,12,14,16,20)(4,6,10,12,14,18)(4,6,10,12,14,18,20)(4,6,10,12,14,20)(4,6,10,12,16)(4,6,10,12,16,18)(4,6,10,12,16,18,20)(4,6,10,12,16,20)(4,6,10,12,18)(4,6,10,12,18,20)(4,6,10,12,20)(4,6,10,14)(4,6,10,14,16)(4,6,10,14,16,18)(4,6,10,14,16,18,20)(4,6,10,14,16,20)(4,6,10,14,18)(4,6,10,14,18,20)(4,6,10,14,20)(4,6,10,16)(4,6,10,16,18)(4,6,10,16,18,20)(4,6,10,16,20)(4,6,10,18)(4,6,10,18,20)(4,6,10,20)(4,6,12)(4,6,12,14)(4,6,12,14,16)(4,6,12,14,16,18)(4,6,12,14,16,18,20)(4,6,12,14,16,20)(4,6,12,14,18)(4,6,12,14,18,20)(4,6,12,14,20)(4,6,12,16)(4,6,12,16,18)(4,6,12,16,18,20)(4,6,12,16,20)(4,6,12,18)(4,6,12,18,20)(4,6,12,20)(4,6,14)(4,6,14,16)(4,6,14,16,18)(4,6,14,16,18,20)(4,6,14,16,20)(4,6,14,18)(4,6,14,18,20)(4,6,14,20)(4,6,16)(4,6,16,18)(4,6,16,18,20)(4,6,16,20)(4,6,18)(4,6,18,20)(4,6,20)(4,8)(4,8,10)(4,8,10,12)(4,8,10,12,14)(4,8,10,12,14,16)(4,8,10,12,14,16,18)(4,8,10,12,14,16,18,20)(4,8,10,12,14,16,20)(4,8,10,12,14,18)(4,8,10,12,14,18,20)(4,8,10,12,14,20)(4,8,10,12,16)(4,8,10,12,16,18)(4,8,10,12,16,18,20)(4,8,10,12,16,20)(4,8,10,12,18)(4,8,10,12,18,20)(4,8,10,12,20)(4,8,10,14)(4,8,10,14,16)(4,8,10,14,16,18)(4,8,10,14,16,18,20)(4,8,10,14,16,20)(4,8,10,14,18)(4,8,10,14,18,20)(4,8,10,14,20)(4,8,10,16)(4,8,10,16,18)(4,8,10,16,18,20)(4,8,10,16,20)(4,8,10,18)(4,8,10,18,20)(4,8,10,20)(4,8,12)(4,8,12,14)(4,8,12,14,16)(4,8,12,14,16,18)(4,8,12,14,16,18,20)(4,8,12,14,16,20)(4,8,12,14,18)(4,8,12,14,18,20)(4,8,12,14,20)(4,8,12,16)(4,8,12,16,18)(4,8,12,16,18,20)(4,8,12,16,20)(4,8,12,18)(4,8,12,18,20)(4,8,12,20)(4,8,14)(4,8,14,16)(4,8,14,16,18)(4,8,14,16,18,20)(4,8,14,16,20)(4,8,14,18)(4,8,14,18,20)(4,8,14,20)(4,8,16)(4,8,16,18)(4,8,16,18,20)(4,8,16,20)(4,8,18)(4,8,18,20)(4,8,20)(4,10)(4,10,12)(4,10,12,14)(4,10,12,14,16)(4,10,12,14,16,18)(4,10,12,14,16,18,20)(4,10,12,14,16,20)(4,10,12,14,18)(4,10,12,14,18,20)(4,10,12,14,20)(4,10,12,16)(4,10,12,16,18)(4,10,12,16,18,20)(4,10,12,16,20)(4,10,12,18)(4,10,12,18,20)(4,10,12,20)(4,10,14)(4,10,14,16)(4,10,14,16,18)(4,10,14,16,18,20)(4,10,14,16,20)(4,10,14,18)(4,10,14,18,20)(4,10,14,20)(4,10,16)(4,10,16,18)(4,10,16,18,20)(4,10,16,20)(4,10,18)(4,10,18,20)(4,10,20)(4,12)(4,12,14)(4,12,14,16)(4,12,14,16,18)(4,12,14,16,18,20)(4,12,14,16,20)(4,12,14,18)(4,12,14,18,20)(4,12,14,20)(4,12,16)(4,12,16,18)(4,12,16,18,20)(4,12,16,20)(4,12,18)(4,12,18,20)(4,12,20)(4,14)(4,14,16)(4,14,16,18)(4,14,16,18,20)(4,14,16,20)(4,14,18)(4,14,18,20)(4,14,20)(4,16)(4,16,18)(4,16,18,20)(4,16,20)(4,18)(4,18,20)(4,20)(6)(6,8)(6,8,10)(6,8,10,12)(6,8,10,12,14)(6,8,10,12,14,16)(6,8,10,12,14,16,18)(6,8,10,12,14,16,18,20)(6,8,10,12,14,16,20)(6,8,10,12,14,18)(6,8,10,12,14,18,20)(6,8,10,12,14,20)(6,8,10,12,16)(6,8,10,12,16,18)(6,8,10,12,16,18,20)(6,8,10,12,16,20)(6,8,10,12,18)(6,8,10,12,18,20)(6,8,10,12,20)(6,8,10,14)(6,8,10,14,16)(6,8,10,14,16,18)(6,8,10,14,16,18,20)(6,8,10,14,16,20)(6,8,10,14,18)(6,8,10,14,18,20)(6,8,10,14,20)(6,8,10,16)(6,8,10,16,18)(6,8,10,16,18,20)(6,8,10,16,20)(6,8,10,18)(6,8,10,18,20)(6,8,10,20)(6,8,12)(6,8,12,14)(6,8,12,14,16)(6,8,12,14,16,18)(6,8,12,14,16,18,20)(6,8,12,14,16,20)(6,8,12,14,18)(6,8,12,14,18,20)(6,8,12,14,20)(6,8,12,16)(6,8,12,16,18)(6,8,12,16,18,20)(6,8,12,16,20)(6,8,12,18)(6,8,12,18,20)(6,8,12,20)(6,8,14)(6,8,14,16)(6,8,14,16,18)(6,8,14,16,18,20)(6,8,14,16,20)(6,8,14,18)(6,8,14,18,20)(6,8,14,20)(6,8,16)(6,8,16,18)(6,8,16,18,20)(6,8,16,20)(6,8,18)(6,8,18,20)(6,8,20)(6,10)(6,10,12)(6,10,12,14)(6,10,12,14,16)(6,10,12,14,16,18)(6,10,12,14,16,18,20)(6,10,12,14,16,20)(6,10,12,14,18)(6,10,12,14,18,20)(6,10,12,14,20)(6,10,12,16)(6,10,12,16,18)(6,10,12,16,18,20)(6,10,12,16,20)(6,10,12,18)(6,10,12,18,20)(6,10,12,20)(6,10,14)(6,10,14,16)(6,10,14,16,18)(6,10,14,16,18,20)(6,10,14,16,20)(6,10,14,18)(6,10,14,18,20)(6,10,14,20)(6,10,16)(6,10,16,18)(6,10,16,18,20)(6,10,16,20)(6,10,18)(6,10,18,20)(6,10,20)(6,12)(6,12,14)(6,12,14,16)(6,12,14,16,18)(6,12,14,16,18,20)(6,12,14,16,20)(6,12,14,18)(6,12,14,18,20)(6,12,14,20)(6,12,16)(6,12,16,18)(6,12,16,18,20)(6,12,16,20)(6,12,18)(6,12,18,20)(6,12,20)(6,14)(6,14,16)(6,14,16,18)(6,14,16,18,20)(6,14,16,20)(6,14,18)(6,14,18,20)(6,14,20)(6,16)(6,16,18)(6,16,18,20)(6,16,20)(6,18)(6,18,20)(6,20)(8)(8,10)(8,10,12)(8,10,12,14)(8,10,12,14,16)(8,10,12,14,16,18)(8,10,12,14,16,18,20)(8,10,12,14,16,20)(8,10,12,14,18)(8,10,12,14,18,20)(8,10,12,14,20)(8,10,12,16)(8,10,12,16,18)(8,10,12,16,18,20)(8,10,12,16,20)(8,10,12,18)(8,10,12,18,20)(8,10,12,20)(8,10,14)(8,10,14,16)(8,10,14,16,18)(8,10,14,16,18,20)(8,10,14,16,20)(8,10,14,18)(8,10,14,18,20)(8,10,14,20)(8,10,16)(8,10,16,18)(8,10,16,18,20)(8,10,16,20)(8,10,18)(8,10,18,20)(8,10,20)(8,12)(8,12,14)(8,12,14,16)(8,12,14,16,18)(8,12,14,16,18,20)(8,12,14,16,20)(8,12,14,18)(8,12,14,18,20)(8,12,14,20)(8,12,16)(8,12,16,18)(8,12,16,18,20)(8,12,16,20)(8,12,18)(8,12,18,20)(8,12,20)(8,14)(8,14,16)(8,14,16,18)(8,14,16,18,20)(8,14,16,20)(8,14,18)(8,14,18,20)(8,14,20)(8,16)(8,16,18)(8,16,18,20)(8,16,20)(8,18)(8,18,20)(8,20)(10)(10,12)(10,12,14)(10,12,14,16)(10,12,14,16,18)(10,12,14,16,18,20)(10,12,14,16,20)(10,12,14,18)(10,12,14,18,20)(10,12,14,20)(10,12,16)(10,12,16,18)(10,12,16,18,20)(10,12,16,20)(10,12,18)(10,12,18,20)(10,12,20)(10,14)(10,14,16)(10,14,16,18)(10,14,16,18,20)(10,14,16,20)(10,14,18)(10,14,18,20)(10,14,20)(10,16)(10,16,18)(10,16,18,20)(10,16,20)(10,18)(10,18,20)(10,20)(12)(12,14)(12,14,16)(12,14,16,18)(12,14,16,18,20)(12,14,16,20)(12,14,18)(12,14,18,20)(12,14,20)(12,16)(12,16,18)(12,16,18,20)(12,16,20)(12,18)(12,18,20)(12,20)(14)(14,16)(14,16,18)(14,16,18,20)(14,16,20)(14,18)(14,18,20)(14,20)(16)(16,18)(16,18,20)(16,20)(18)(18,20)(20)()
Since number of elements in the set can go upto 10^5 and hence the size of the set will go upto 2^(10^5) which is huge. You can just either print it or if you want to store it , store it in a file.
It is not possible, as you pointed out yourself power set contains pow(2, size) no of elements. You need to print the entire set that can only be done by generating the set using backtracking, there is nothing better. To find sum of all subsets of a given set is however a simpler problem. If the no of elements is n, then each element in the array occurs 2^(n-1) times in the power set. Pseudo code : int sum = 0; for(int i = 0;i < n;i++){ sum += ( set[i] * ( 1 << (n-1) ) ); //pow(2, n-1) == 1 << (n-1) } cout << sum << endl; You would need a Big Integer Library for larger values of n.