I have a method that needs a lot of memory (compared with stack size) to store temporary results.
I'm considering using static variables as local temporary storage.
I did some research and found out that initialization of static variables is not thread-safe in C++98.
So, question is, what if I just need the space but don't care about the initialization?
Or, further, what is the problem of using static variables as local storage?
It's not just a matter of initialization. A static variable, even one defined within a function, is a single instance that's shared by all calls to that function — even calls in different threads. If you use a static variable as a scratch buffer, all your threads will be sharing the same scratch buffer, and you'll need to use explicit synchronization to keep them from interfering with each other. You'll also need to figure out how to make the threads share the buffer effectively; if they're all trying to use the same parts at the same time and frequently have to wait for mutex locks, you lose the benefit of concurrency and might as well just use a single thread.
It'd be much easier to have the function just allocate its scratch area on the heap and delete it before returning. (You can use std::unique_ptr in C++11 to ensure that the buffer is deleted when the pointer goes out of scope, or std::auto_ptr if you're stuck with C++98.)
static variables exist only once. That means if you have multithreaded code where two threads would need the space, you are out of luck. It will bite you one day.
static variables exist forever. That means once you are done with the task needing the space, the space is gone forever. That will bite you from day one.
If you need more memory than you are willing to allocate on the stack (and many implementations have much more severe restrictions for stack memory), then allocate the memory on the heap, and free it when you are done with it.
I am new to c++ and have one question to global variables. I see in many examples that global variables are pointers with addresses of the heap. So the pointers are in the memory for global/static variables and the data behind the addresses is on the heap, right?
Instead of this you can declare global (no-pointer) variables that are stored the data. So the data is stored in the memory for global/static variables and not on the heap.
Has this solution any disadvantages over the first solution with the pointers and the heap?
Edit:
First solution:
//global
Sport *sport;
//somewhere
sport = new Sport;
Second solution:
//global
Sport sport;
A disadvantage of storing your data in a global/static variable is that the size is fixed at compile time and can't be changed as opposed to heap storage where the size can be determined at runtime and grow or shrink repeatedly over the run. The lifetime is also fixed as the complete run of the program from start to finish for global/static variables as opposed to heap storage where it can be acquired and released (even repeatedly) all through the runtime of the program. On the other hand, global and static storage management is all handled for you by the compiler where as heap storage has to be explicitly managed by your code. So in summary, global/static storage is easier but not as flexible as heap storage.
You are right in your hypothesis of where the objects are located. About usage,
It's horses for courses. There is no definite rule, it depends on the design & the type of functionality you want to implement. For example:
One may choose the pointer version to achieve lazy initialization or polymorphic behavior, neither of which is possible with global non pointer object approach.
Right. Declared variables go in the DataSegment. And they sit there for the life of the program. You cannot free them. You cannot reallocate them. In Windows, the DataSegment is a fixed size....if you put everything there you may run out of memory (at least it used to be this way).
Can you release the memory of an array defined with static allocation?
No, it is not possible to de-allocate statically allocated memory.
Depending on the language (for example C/C++, using pointers) you may be able to use the memory held by this array for other purposes, but doing so will only re-use the memory; memory won't be released per-se.
This said, this idea of reusing static memory for / with variables other than the variables originally defined there, is only suggested to help understand the nature of this type of allocation. In practical terms, and in particular as a novice, it makes absolutely no sense to have the need for such a feature:
either the variable is expected to have a lifetime as long as the program
at which case it should be declared static
or the variable is not going to be needed at some time during program execution
at which case it should be dynamically allocated (? shortly after/during program initialization) and released whenever appropriate.
No, static allocation means it's automatically allocated at the start of the program, and lives for the entire duration of the program, and then is automatically released at termination.
In short... no.
Think of this memory as being "application scoped" and thus allocated/deallocated following the life-cycle of the application.
this is possible.
static arrays are deallocated automatically before process finishes.
no... its not possible but if you assign that array pointer to other pointer it will cause memory leak..
I've searched, but I've not understood very well these three concepts. When do I have to use dynamic allocation (in the heap) and what's its real advantage? What are the problems of static and stack? Could I write an entire application without allocating variables in the heap?
I heard that others languages incorporate a "garbage collector" so you don't have to worry about memory. What does the garbage collector do?
What could you do manipulating the memory by yourself that you couldn't do using this garbage collector?
Once someone said to me that with this declaration:
int * asafe=new int;
I have a "pointer to a pointer". What does it mean? It is different of:
asafe=new int;
?
A similar question was asked, but it didn't ask about statics.
Summary of what static, heap, and stack memory are:
A static variable is basically a global variable, even if you cannot access it globally. Usually there is an address for it that is in the executable itself. There is only one copy for the entire program. No matter how many times you go into a function call (or class) (and in how many threads!) the variable is referring to the same memory location.
The heap is a bunch of memory that can be used dynamically. If you want 4kb for an object then the dynamic allocator will look through its list of free space in the heap, pick out a 4kb chunk, and give it to you. Generally, the dynamic memory allocator (malloc, new, et c.) starts at the end of memory and works backwards.
Explaining how a stack grows and shrinks is a bit outside the scope of this answer, but suffice to say you always add and remove from the end only. Stacks usually start high and grow down to lower addresses. You run out of memory when the stack meets the dynamic allocator somewhere in the middle (but refer to physical versus virtual memory and fragmentation). Multiple threads will require multiple stacks (the process generally reserves a minimum size for the stack).
When you would want to use each one:
Statics/globals are useful for memory that you know you will always need and you know that you don't ever want to deallocate. (By the way, embedded environments may be thought of as having only static memory... the stack and heap are part of a known address space shared by a third memory type: the program code. Programs will often do dynamic allocation out of their static memory when they need things like linked lists. But regardless, the static memory itself (the buffer) is not itself "allocated", but rather other objects are allocated out of the memory held by the buffer for this purpose. You can do this in non-embedded as well, and console games will frequently eschew the built in dynamic memory mechanisms in favor of tightly controlling the allocation process by using buffers of preset sizes for all allocations.)
Stack variables are useful for when you know that as long as the function is in scope (on the stack somewhere), you will want the variables to remain. Stacks are nice for variables that you need for the code where they are located, but which isn't needed outside that code. They are also really nice for when you are accessing a resource, like a file, and want the resource to automatically go away when you leave that code.
Heap allocations (dynamically allocated memory) is useful when you want to be more flexible than the above. Frequently, a function gets called to respond to an event (the user clicks the "create box" button). The proper response may require allocating a new object (a new Box object) that should stick around long after the function is exited, so it can't be on the stack. But you don't know how many boxes you would want at the start of the program, so it can't be a static.
Garbage Collection
I've heard a lot lately about how great Garbage Collectors are, so maybe a bit of a dissenting voice would be helpful.
Garbage Collection is a wonderful mechanism for when performance is not a huge issue. I hear GCs are getting better and more sophisticated, but the fact is, you may be forced to accept a performance penalty (depending upon use case). And if you're lazy, it still may not work properly. At the best of times, Garbage Collectors realize that your memory goes away when it realizes that there are no more references to it (see reference counting). But, if you have an object that refers to itself (possibly by referring to another object which refers back), then reference counting alone will not indicate that the memory can be deleted. In this case, the GC needs to look at the entire reference soup and figure out if there are any islands that are only referred to by themselves. Offhand, I'd guess that to be an O(n^2) operation, but whatever it is, it can get bad if you are at all concerned with performance. (Edit: Martin B points out that it is O(n) for reasonably efficient algorithms. That is still O(n) too much if you are concerned with performance and can deallocate in constant time without garbage collection.)
Personally, when I hear people say that C++ doesn't have garbage collection, my mind tags that as a feature of C++, but I'm probably in the minority. Probably the hardest thing for people to learn about programming in C and C++ are pointers and how to correctly handle their dynamic memory allocations. Some other languages, like Python, would be horrible without GC, so I think it comes down to what you want out of a language. If you want dependable performance, then C++ without garbage collection is the only thing this side of Fortran that I can think of. If you want ease of use and training wheels (to save you from crashing without requiring that you learn "proper" memory management), pick something with a GC. Even if you know how to manage memory well, it will save you time which you can spend optimizing other code. There really isn't much of a performance penalty anymore, but if you really need dependable performance (and the ability to know exactly what is going on, when, under the covers) then I'd stick with C++. There is a reason that every major game engine that I've ever heard of is in C++ (if not C or assembly). Python, et al are fine for scripting, but not the main game engine.
The following is of course all not quite precise. Take it with a grain of salt when you read it :)
Well, the three things you refer to are automatic, static and dynamic storage duration, which has something to do with how long objects live and when they begin life.
Automatic storage duration
You use automatic storage duration for short lived and small data, that is needed only locally within some block:
if(some condition) {
int a[3]; // array a has automatic storage duration
fill_it(a);
print_it(a);
}
The lifetime ends as soon as we exit the block, and it starts as soon as the object is defined. They are the most simple kind of storage duration, and are way faster than in particular dynamic storage duration.
Static storage duration
You use static storage duration for free variables, which might be accessed by any code all times, if their scope allows such usage (namespace scope), and for local variables that need extend their lifetime across exit of their scope (local scope), and for member variables that need to be shared by all objects of their class (classs scope). Their lifetime depends on the scope they are in. They can have namespace scope and local scope and class scope. What is true about both of them is, once their life begins, lifetime ends at the end of the program. Here are two examples:
// static storage duration. in global namespace scope
string globalA;
int main() {
foo();
foo();
}
void foo() {
// static storage duration. in local scope
static string localA;
localA += "ab"
cout << localA;
}
The program prints ababab, because localA is not destroyed upon exit of its block. You can say that objects that have local scope begin lifetime when control reaches their definition. For localA, it happens when the function's body is entered. For objects in namespace scope, lifetime begins at program startup. The same is true for static objects of class scope:
class A {
static string classScopeA;
};
string A::classScopeA;
A a, b; &a.classScopeA == &b.classScopeA == &A::classScopeA;
As you see, classScopeA is not bound to particular objects of its class, but to the class itself. The address of all three names above is the same, and all denote the same object. There are special rule about when and how static objects are initialized, but let's not concern about that now. That's meant by the term static initialization order fiasco.
Dynamic storage duration
The last storage duration is dynamic. You use it if you want to have objects live on another isle, and you want to put pointers around that reference them. You also use them if your objects are big, and if you want to create arrays of size only known at runtime. Because of this flexibility, objects having dynamic storage duration are complicated and slow to manage. Objects having that dynamic duration begin lifetime when an appropriate new operator invocation happens:
int main() {
// the object that s points to has dynamic storage
// duration
string *s = new string;
// pass a pointer pointing to the object around.
// the object itself isn't touched
foo(s);
delete s;
}
void foo(string *s) {
cout << s->size();
}
Its lifetime ends only when you call delete for them. If you forget that, those objects never end lifetime. And class objects that define a user declared constructor won't have their destructors called. Objects having dynamic storage duration requires manual handling of their lifetime and associated memory resource. Libraries exist to ease use of them. Explicit garbage collection for particular objects can be established by using a smart pointer:
int main() {
shared_ptr<string> s(new string);
foo(s);
}
void foo(shared_ptr<string> s) {
cout << s->size();
}
You don't have to care about calling delete: The shared ptr does it for you, if the last pointer that references the object goes out of scope. The shared ptr itself has automatic storage duration. So its lifetime is automatically managed, allowing it to check whether it should delete the pointed to dynamic object in its destructor. For shared_ptr reference, see boost documents: http://www.boost.org/doc/libs/1_37_0/libs/smart_ptr/shared_ptr.htm
It's been said elaborately, just as "the short answer":
static variable (class)
lifetime = program runtime (1)
visibility = determined by access modifiers (private/protected/public)
static variable (global scope)
lifetime = program runtime (1)
visibility = the compilation unit it is instantiated in (2)
heap variable
lifetime = defined by you (new to delete)
visibility = defined by you (whatever you assign the pointer to)
stack variable
visibility = from declaration until scope is exited
lifetime = from declaration until declaring scope is exited
(1) more exactly: from initialization until deinitialization of the compilation unit (i.e. C / C++ file). Order of initialization of compilation units is not defined by the standard.
(2) Beware: if you instantiate a static variable in a header, each compilation unit gets its own copy.
The main difference is speed and size.
Stack
Dramatically faster to allocate. It is done in O(1), since it is allocated when setting up the stack frame, so it is essentially free. The drawback is that if you run out of stack space you are in deep trouble. You can adjust the stack size, but, IIRC, you have ~2MB to play with. Also, as soon as you exit the function everything on the stack is cleared. So, it can be problematic to refer to it later. (Pointers to stack allocated objects lead to bugs.)
Heap
Dramatically slower to allocate. But, you have GB to play with, and point to.
Garbage Collector
The garbage collector is some code that runs in the background and frees memory. When you allocate memory on the heap it is very easy to forget to free it, which is known as a memory leak. Over time, the memory your application consumes grows and grows until it crashes. Having a garbage collector periodically free the memory you no longer need helps eliminate this class of bugs. Of course, this comes at a price, as the garbage collector slows things down.
What are the problems of static and stack?
The problem with "static" allocation is that the allocation is made at compile-time: you can't use it to allocate some variable number of data, the number of which isn't known until run-time.
The problem with allocating on the "stack" is that the allocation is destroyed as soon as the subroutine which does the allocation returns.
I could write an entire application without allocate variables in the heap?
Perhaps but not a non-trivial, normal, big application (but so-called "embedded" programs might be written without the heap, using a subset of C++).
What garbage collector does ?
It keeps watching your data ("mark and sweep") to detect when your application is no longer referencing it. This is convenient for the application, because the application doesn't need to deallocate the data ... but the garbage collector might be computationally expensive.
Garbage collectors aren't a usual feature of C++ programming.
What could you do manipulating the memory by yourself that you couldn't do using this garbage collector?
Learn the C++ mechanisms for deterministic memory deallocation:
'static': never deallocated
'stack': as soon as the variable "goes out of scope"
'heap': when the pointer is deleted (explicitly deleted by the application, or implicitly deleted within some-or-other subroutine)
Stack memory allocation (function variables, local variables) can be problematic when your stack is too "deep" and you overflow the memory available to stack allocations. The heap is for objects that need to be accessed from multiple threads or throughout the program lifecycle. You can write an entire program without using the heap.
You can leak memory quite easily without a garbage collector, but you can also dictate when objects and memory is freed. I have run in to issues with Java when it runs the GC and I have a real time process, because the GC is an exclusive thread (nothing else can run). So if performance is critical and you can guarantee there are no leaked objects, not using a GC is very helpful. Otherwise it just makes you hate life when your application consumes memory and you have to track down the source of a leak.
What if your program does not know upfront how much memory to allocate (hence you cannot use stack variables). Say linked lists, the lists can grow without knowing upfront what is its size. So allocating on a heap makes sense for a linked list when you are not aware of how many elements would be inserted into it.
An advantage of GC in some situations is an annoyance in others; reliance on GC encourages not thinking much about it. In theory, waits until 'idle' period or until it absolutely must, when it will steal bandwidth and cause response latency in your app.
But you don't have to 'not think about it.' Just as with everything else in multithreaded apps, when you can yield, you can yield. So for example, in .Net, it is possible to request a GC; by doing this, instead of less frequent longer running GC, you can have more frequent shorter running GC, and spread out the latency associated with this overhead.
But this defeats the primary attraction of GC which appears to be "encouraged to not have to think much about it because it is auto-mat-ic."
If you were first exposed to programming before GC became prevalent and were comfortable with malloc/free and new/delete, then it might even be the case that you find GC a little annoying and/or are distrustful(as one might be distrustful of 'optimization,' which has had a checkered history.) Many apps tolerate random latency. But for apps that don't, where random latency is less acceptable, a common reaction is to eschew GC environments and move in the direction of purely unmanaged code (or god forbid, a long dying art, assembly language.)
I had a summer student here a while back, an intern, smart kid, who was weaned on GC; he was so adament about the superiorty of GC that even when programming in unmanaged C/C++ he refused to follow the malloc/free new/delete model because, quote, "you shouldn't have to do this in a modern programming language." And you know? For tiny, short running apps, you can indeed get away with that, but not for long running performant apps.
Stack is a memory allocated by the compiler, when ever we compiles the program, in default compiler allocates some memory from OS ( we can change the settings from compiler settings in your IDE) and OS is the one which give you the memory, its depends on many available memory on the system and many other things, and coming to stack memory is allocate when we declare a variable they copy(ref as formals) those variables are pushed on to stack they follow some naming conventions by default its CDECL in Visual studios
ex: infix notation:
c=a+b;
the stack pushing is done right to left PUSHING, b to stack, operator, a to stack and result of those i,e c to stack.
In pre fix notation:
=+cab
Here all the variables are pushed to stack 1st (right to left)and then the operation are made.
This memory allocated by compiler is fixed. So lets assume 1MB of memory is allocated to our application, lets say variables used 700kb of memory(all the local variables are pushed to stack unless they are dynamically allocated) so remaining 324kb memory is allocated to heap.
And this stack has less life time, when the scope of the function ends these stacks gets cleared.