create a monitor class in C++ that terminates gracefully [duplicate] - c++

This question already has answers here:
How do I terminate a thread in C++11?
(7 answers)
How to stop the thread execution in C++
(3 answers)
Proper way to terminate a thread in c++
(1 answer)
Closed 3 years ago.
My main function loads a monitoring class. This class calls external services to periodically get some data and report health status.
These are the task_1 and task_2 in the class below, that can have sub tasks. The tasks accumulate some values that are stored to a shared "Data" class.
So each task_N is coupled with a thread that executes, sleeps for a while and does this forever until the program stops.
My basic problem is that I cannot stop the threads in the Monitor class, since they might be waiting for the timer to expire (sleep)
#include <iostream>
#include <thread>
#include <utility>
#include "Settings.hpp"
#include "Data.hpp"
class Monitors {
public:
Monitors(uint32_t timeout1, uint32_t timeout2, Settings settings, std::shared_ptr<Data> data)
: timeout_1(timeout1), timeout_2(timeout2), settings_(std::move(settings)), data_(std::move(data)) {}
void start() {
thread_1 = std::thread(&Monitors::task_1, this);
thread_2 = std::thread(&Monitors::task_2, this);
started_ = true;
}
void stop() {
started_ = false;
thread_1.join();
thread_2.join();
std::cout << "stopping threads" << std::endl;
}
virtual ~Monitors() {
std::cout << "Monitor stops" << std::endl;
}
private:
void subtask_1_1() {
//std::cout << "subtask_1_1 reads " << settings_.getWeb1() << std::endl;
}
void subtask_1_2() {
//std::cout << "subtask_1_2" << std::endl;
data_->setValue1(21);
}
void task_1() {
while(started_) {
subtask_1_1();
subtask_1_2();
std::this_thread::sleep_for(std::chrono::milliseconds(timeout_1));
std::cout << "task1 done" << std::endl;
}
}
void subtask_2_1() {
//std::cout << "subtask_2_1" << std::endl;
}
void subtask_2_2() {
//std::cout << "subtask_2_2" << std::endl;
}
void task_2() {
while(started_) {
subtask_2_1();
subtask_2_2();
std::this_thread::sleep_for(std::chrono::milliseconds(timeout_2));
std::cout << "task2 done" << std::endl;
}
}
private:
bool started_ {false};
std::thread thread_1;
std::thread thread_2;
uint32_t timeout_1;
uint32_t timeout_2;
Settings settings_;
std::shared_ptr<Data> data_;
};
The main function is here:
auto data = std::make_shared<Data>(10,20);
Settings set("hello", "world");
Monitors mon(1000, 24000,set,data);
mon.start();
int count = 1;
while(true) {
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
std::cout << data->getValue2() << " and count is " << count << std::endl;
count++;
if ( count == 10)
break;
}
std::cout << "now I am here" << std::endl;
mon.stop();
return 0;
Now when I call mon.stop() the main thread stops only when the timer exprires.
How can I gracefully call mon.stop() and interrupt and call the task_N?
UPDATE: Since I don't want to call std::terminate, which is the proper way to implement a monitor class in c++

Related

How to correctly pause and resume a std::thread?

I'm new to multithreading in C++. I just want to define a class TaskManager that allows me to handle the execution of a general task. The core logic of the task should be implemented in the task() method. Then I want to implement the start(), pause(), and resume() methods to handle the execution of task(). Is there any problem with this implementation? Is it the right way to handle this kind of problem? is there a way to abstract the core logic from the task() method?
#include <iostream>
#include <thread>
#include <chrono>
class TaskManager{
private:
std::condition_variable cv;
std::mutex mtx;
std::thread task_thread;
bool paused = true;
bool finished = false;
int counter = 0;
int MAX_COUNT = INT_MAX;
public:
~TaskManager(){
if (this->task_thread.joinable()){
this->task_thread.join();
}
}
void task(){
// Finishing condition. ==> counter < this->MAX_COUNT
while(counter < this->MAX_COUNT){
std::unique_lock<std::mutex> ul(this->mtx);
this->cv.wait(ul, [this] {return (!this->paused);});
// CORE LOGIC...
counter++;
}
std::cout << "Finished!" << std::endl;
this->finished = true;
}
void start(){
std::unique_lock<std::mutex> ul(this->mtx);
this->paused = false;
task_thread = std::thread([this]{this->task();});
cv.notify_one();
}
void pause(){
std::unique_lock<std::mutex> ul(this->mtx);
if (!this->finished) {
this->paused = true;
this->cv.notify_one();
}
}
void resume(){
std::unique_lock<std::mutex> ul(this->mtx);
if (!this->finished) {
this->paused = false;
this->cv.notify_one();
}
}
int getCounter() {
return this->counter;
}
};
int main() {
TaskManager tm;
std::cout << "counter before start(): " << tm.getCounter() << std::endl;
tm.start();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
std::cout << "counter after 10 ms: " << tm.getCounter() << std::endl;
tm.pause();
std::cout << "counter after pause(): " << tm.getCounter() << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(10));
std::cout << "counter after 10 ms: " << tm.getCounter() << std::endl;
tm.resume();
std::cout << "counter after resume(): " << tm.getCounter() << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(10));
std::cout << "counter after 10 ms: " << tm.getCounter() << std::endl;
return 0;
}
Output:
counter before start(): 0
counter after 10 ms: 266967
counter after pause(): 267526
counter after 10 ms: 267526
counter after resume(): 267526
counter after 10 ms: 487041
Finished!
Is there any problem with this implementation?
There's data race on counter
You probably don't want to hold the lock while executing // CORE LOGIC.... If you mean to protect counter, you should prefer another mutex for it.
finished should be under the lock too. Alternatively, it could be atomic. Note that unnecessary notifications don't hurt, so you can sip finished altogether
Is it the right way to handle this kind of problem?
Depending on why do you want to pause in the first place. For some reasons to pause there could be a better approach, like C++20 latch/semaphore/barrier.
is there a way to abstract the core logic from the task() method?
To what extent. You can change it to
void CoreLogic(std::function<void()> pause_callback) {
pause_callback();
// Core logic
}
You cannot pause a thread in an arbitrary point with C++ facilities. Maybe you can with platform facilities (like, Windows has SuspendThread), but it may not be a good idea (imagine a thread acquires malloc internal lock when paused).

boost::this_thread::sleep_for sleeping entire program

C++98 and Boost 1.54
I'm having trouble figuring out why using boost::this_thread::sleep_for is sleeping my entire program. The only time and place the Wait() function is called is inside this thread, and this thread's sole purpose is to read file names in a directory and trigger an upload.
But for some reason, when it reaches the boost::this_thread::sleep_for line in the Wait() function, it hangs there and sleeps all the other threads as well. I'm unsure what I am missing, so any help would be appreciated.
Code:
void Upload::ReadFileNames()
{
cout << "[DEBUG] ReadFileNames -> A " << endl;
Wait();
cout << "[DEBUG] ReadFileNames -> B " << endl;
// read filename stuff
}
void Upload::Wait()
{
typedef boost::chrono::duration<long, boost::ratio<60> > seconds;
int randomWaitTime = 0;
try{
randomWaitTime = lexical_cast<unsigned int>(getId());
randomWaitTime = randomWaitTime * 10;
}
catch ( const boost::bad_lexical_cast & e){
// cout << "[LOG] FileUpLoad : Wait : bad_lexical_cast : " << e.what() << endl ;
randomWaitTime = 0;
}
seconds testTimeToWait(randomWaitTime);
cout << "[DEBUG] Wait() -> A" << endl;
boost::this_thread::sleep_for(testTimeToWait);
cout << "[DEBUG] Wait() -> B" << endl;
cout << "RANDOM WAIT TIME = " << randomWaitTime << endl;
}
main.cpp
int main()
{
pthread_t threadA;
pthread_create(&threadA,NULL,threadAfn,NULL);
pthread_t threadB;
pthread_create(&threadB,NULL,threadBfn,NULL);
pthread_t Upload; // <--- Thread in question
pthread_create(&Upload,NULL,Uploadfn,NULL);
pthread_join(threadA,NULL);
pthread_join(threadB,NULL);
pthread_join(Upload,NULL); // <--- Thread in question
return 0;
}
Output
[DEBUG] ReadFileNames -> A
[DEBUG] Wait() -> A
// hangs here and rest of the threads are locked/slept as well?
it hangs there and sleeps all the other threads as well
No it doesn't. If it seems that way, that is because the other threads were already stuck or finished.
Look for things that block (mutex.lock, condition wait, IO operations, etc.) or check that the threads didn't exit.
Notes
Your seconds calculations is off. On my system, the following:
Live On Coliru
#include <boost/chrono.hpp>
#include <iostream>
int main() {
std::cout << boost::chrono::duration<long, boost::ratio<60> >(1)/boost::chrono::seconds(1) << std::endl;
}
Prints
60
So, what you named seconds is actually minutes. Just do this instead:
using boost::chrono::seconds;
int delay = std::strtoul(getId().c_str(), NULL, 10)*10;
sleep_for(seconds(delay));
Your random delay is only random if the getId return is. Using boost/random.hpp you can make it truly random, with good range control. E.g. to sleep between 1'000 and 3'000 ms:
int random_gen(int low, int high) { // not threadsafe
static boost::random_device rdev;
static boost::mt19937 prng(rdev);
return boost::uniform_int<>(low, high)(prng);
}
void Upload::Wait() {
int const ms_delay = random_gen(1000, 3000);
cout << "RANDOM WAIT TIME = " << ms_delay << endl;
sleep_for(milliseconds(ms_delay));
}
Note to seed using random_device as shown (so true random seed) you need to link the random library. Otherwise, you can "stoop" to a time-based seed:
static boost::mt19937 prng(std::time(NULL));
Here's a self-contained version of your code with the various suggestions applied, demonstrating that there is no deadlock/softlock:
Live On Coliru
#include <boost/asio.hpp>
#include <boost/chrono.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/thread.hpp>
#include <iostream>
#include <boost/random.hpp>
using boost::this_thread::sleep_for;
using boost::chrono::seconds;
using boost::chrono::milliseconds;
using boost::lexical_cast;
using std::cout;
using std::endl;
struct Upload {
std::string getId() const { return "42"; }
void Wait();
void ReadFileNames();
};
void Upload::ReadFileNames() {
cout << "[DEBUG] ReadFileNames -> A " << endl;
Wait();
cout << "[DEBUG] ReadFileNames -> B " << endl;
// read filename stuff
}
int random_gen(int low, int high) { // not threadsafe
static boost::mt19937 prng(std::time(NULL));
return boost::uniform_int<>(low, high)(prng);
}
void Upload::Wait() {
int const ms_delay = random_gen(1000, 3000);
cout << "RANDOM WAIT TIME = " << ms_delay << endl;
sleep_for(milliseconds(ms_delay));
}
void background(char const* name) {
// desync different background threads
sleep_for(milliseconds(boost::hash_value(name) % 1000));
for (int i=0; i<5; ++i) {
sleep_for(seconds(1));
std::clog << name << " " << i << std::endl;
}
}
void threadAfn() { background("thread A"); }
void threadBfn() { background("thread B"); }
void Uploadfn() {
Upload u;
u.ReadFileNames();
}
int main() {
boost::thread threadA(threadAfn);
boost::thread threadB(threadBfn);
boost::thread Upload(Uploadfn);
threadA.join();
threadB.join();
Upload.join();
}
Prints, e.g.:
[DEBUG] ReadFileNames -> A
RANDOM WAIT TIME = 1150
[DEBUG] ReadFileNames -> B
thread A 0
thread B 0
thread A 1
thread B 1
thread A 2
thread B 2
thread A 3
thread B 3
thread A 4
thread B 4

Executing a non blocking thread in C++

I have a main program, this main program executes a thread that perform an action until the user triggers a stop. The problem that I have is if I add th.join() the main program won't continue until the thread finishes. And If there is no .join() the program crashs.
#include <iostream>
#include <thread>
#include <optional>
static bool s_finished = false;
using namespace std::literals::chrono_literals;
void SendData(int id)
{
std::cout << "Working thread: " << id << std::endl;
std::cout << "Started thread id: " << std::this_thread::get_id() << std::endl;
while (!s_finished)
{
std::cout << "Working\n";
std::this_thread::sleep_for(1s);
}
}
void startRecording(std::optional<int> t)
{
std::thread th1 (SendData, 1);
//th1.join();
std::cout << "[startRecording] Other Task" << std::endl;
}
void stopRecording()
{
s_finished = true;
std::cout << "[stopRecording] Other Task" << std::endl;
}
int main()
{
std::cout << "Start Program!" << std::endl;
startRecording();
std::this_thread::sleep_for(5s);
stopRecording();
return 0;
}
How can I do this?
Joining a thread will cause the program to stop until that thread is finished, and that's why the program blocks. We have to call join() eventually so that all child threads finish before the program exits, but we shouldn't call join until we need the child thread to be finished.
The simplest way to get the program to work is to return the thread from startRecording, so that we have control of it inside main. Then, we join the thread at the end of main, after we call stopRecording.
#include <iostream>
#include <thread>
#include <optional>
#include <atomic>
// (1) This needs to be atomic to avoid data races
std::atomic<bool> s_finished { false };
using namespace std::literals::chrono_literals;
void SendData(int id)
{
std::cout << "Working thread: " << id << std::endl;
std::cout << "Started thread id: " << std::this_thread::get_id() << std::endl;
while (!s_finished)
{
std::cout << "Working\n";
std::this_thread::sleep_for(1s);
}
}
std::thread startRecording(std::optional<int> t)
{
std::thread th1 (SendData, 1);
std::cout << "[startRecording] Other Task" << std::endl;
// (2) We return the thread so we can join it in main:
return th1;
}
void stopRecording()
{
s_finished = true;
std::cout << "[stopRecording] Other Task" << std::endl;
}
int main()
{
std::cout << "Start Program!" << std::endl;
// (3) We save the thread to a variable named 'worker'
// so we can join it later. I also added an input to startRecording b/c it needed one
std::thread worker = startRecording(std::optional<int>{1});
std::this_thread::sleep_for(5s);
stopRecording();
// (4) Join here, at the end
worker.join();
return 0;
}
Now, the program prints the expected output, then exits without problems:
Start Program!
[startRecording] Other Task
Working thread: 1
Started thread id: 139985258444544
Working
Working
Working
Working
Working
[stopRecording] Other Task
I marked my changes with (1), (2), (3), and (4) in the comments of the code. They're pretty small, and if you have questions about any of them I can provide additional explanation!
Addendum - using global variables when the signature of startRecording can't be changed
In general, it's best to avoid global variables, but I know it's not always possible to do so. if startRecording's signature can't be changed, we can't return a thread, so the thread has to be accessed globally. Here's how to do that:
#include <iostream>
#include <thread>
#include <optional>
#include <atomic>
// (1) This needs to be atomic to avoid data races
std::atomic<bool> s_finished { false };
// (2) we initialize this in startRecording
std::thread worker;
using namespace std::literals::chrono_literals;
void SendData(int id)
{
std::cout << "Working thread: " << id << std::endl;
std::cout << "Started thread id: " << std::this_thread::get_id() << std::endl;
while (!s_finished)
{
std::cout << "Working\n";
std::this_thread::sleep_for(1s);
}
}
void startRecording(std::optional<int> t)
{
// (3) worker gets initialized, and thread starts
worker = std::thread(SendData, 1);
std::cout << "[startRecording] Other Task" << std::endl;
}
void stopRecording()
{
s_finished = true;
std::cout << "[stopRecording] Other Task" << std::endl;
}
int main()
{
std::cout << "Start Program!" << std::endl;
startRecording(std::optional<int>{1});
std::this_thread::sleep_for(5s);
stopRecording();
// (4) Join here, at the end
worker.join();
return 0;
}

What's wrong with this boost::asio and boost::coroutine usage pattern?

In this question I described boost::asio and boost::coroutine usage pattern which causes random crashes of my application and I published extract from my code and valgrind and GDB output.
In order to investigate the problem further I created smaller proof of concept application which applies the same pattern. I saw that the same problem arises in the smaller program which source I publish here.
The code starts a few threads and creates a connection pool with a few dummy connections (user supplied numbers). Additional arguments are unsigned integer numbers which plays the role of fake requests. The dummy implementation of sendRequest function just starts asynchronous timer for waiting number of seconds equal to the input number and yileds from the function.
Can someone see the problem with this code and can he propose some fix for it?
#include "asiocoroutineutils.h"
#include "concurrentqueue.h"
#include <iostream>
#include <thread>
#include <boost/lexical_cast.hpp>
using namespace std;
using namespace boost;
using namespace utils;
#define id this_thread::get_id() << ": "
// ---------------------------------------------------------------------------
/*!
* \brief This is a fake Connection class
*/
class Connection
{
public:
Connection(unsigned connectionId)
: _id(connectionId)
{
}
unsigned getId() const
{
return _id;
}
void sendRequest(asio::io_service& ioService,
unsigned seconds,
AsioCoroutineJoinerProxy,
asio::yield_context yield)
{
cout << id << "Connection " << getId()
<< " Start sending: " << seconds << endl;
// waiting on this timer is palceholder for any asynchronous operation
asio::steady_timer timer(ioService);
timer.expires_from_now(chrono::seconds(seconds));
coroutineAsyncWait(timer, yield);
cout << id << "Connection " << getId()
<< " Received response: " << seconds << endl;
}
private:
unsigned _id;
};
typedef std::unique_ptr<Connection> ConnectionPtr;
typedef std::shared_ptr<asio::steady_timer> TimerPtr;
// ---------------------------------------------------------------------------
class ConnectionPool
{
public:
ConnectionPool(size_t connectionsCount)
{
for(size_t i = 0; i < connectionsCount; ++i)
{
cout << "Creating connection: " << i << endl;
_connections.emplace_back(new Connection(i));
}
}
ConnectionPtr getConnection(TimerPtr timer,
asio::yield_context& yield)
{
lock_guard<mutex> lock(_mutex);
while(_connections.empty())
{
cout << id << "There is no free connection." << endl;
_timers.emplace_back(timer);
timer->expires_from_now(
asio::steady_timer::clock_type::duration::max());
_mutex.unlock();
coroutineAsyncWait(*timer, yield);
_mutex.lock();
cout << id << "Connection was freed." << endl;
}
cout << id << "Getting connection: "
<< _connections.front()->getId() << endl;
ConnectionPtr connection = std::move(_connections.front());
_connections.pop_front();
return connection;
}
void addConnection(ConnectionPtr connection)
{
lock_guard<mutex> lock(_mutex);
cout << id << "Returning connection " << connection->getId()
<< " to the pool." << endl;
_connections.emplace_back(std::move(connection));
if(_timers.empty())
return;
auto timer = _timers.back();
_timers.pop_back();
auto& ioService = timer->get_io_service();
ioService.post([timer]()
{
cout << id << "Wake up waiting getConnection." << endl;
timer->cancel();
});
}
private:
mutex _mutex;
deque<ConnectionPtr> _connections;
deque<TimerPtr> _timers;
};
typedef unique_ptr<ConnectionPool> ConnectionPoolPtr;
// ---------------------------------------------------------------------------
class ScopedConnection
{
public:
ScopedConnection(ConnectionPool& pool,
asio::io_service& ioService,
asio::yield_context& yield)
: _pool(pool)
{
auto timer = make_shared<asio::steady_timer>(ioService);
_connection = _pool.getConnection(timer, yield);
}
Connection& get()
{
return *_connection;
}
~ScopedConnection()
{
_pool.addConnection(std::move(_connection));
}
private:
ConnectionPool& _pool;
ConnectionPtr _connection;
};
// ---------------------------------------------------------------------------
void sendRequest(asio::io_service& ioService,
ConnectionPool& pool,
unsigned seconds,
asio::yield_context yield)
{
cout << id << "Constructing request ..." << endl;
AsioCoroutineJoiner joiner(ioService);
ScopedConnection connection(pool, ioService, yield);
asio::spawn(ioService, bind(&Connection::sendRequest,
connection.get(),
std::ref(ioService),
seconds,
AsioCoroutineJoinerProxy(joiner),
placeholders::_1));
joiner.join(yield);
cout << id << "Processing response ..." << endl;
}
// ---------------------------------------------------------------------------
void threadFunc(ConnectionPool& pool,
ConcurrentQueue<unsigned>& requests)
{
try
{
asio::io_service ioService;
while(true)
{
unsigned request;
if(!requests.tryPop(request))
break;
cout << id << "Scheduling request: " << request << endl;
asio::spawn(ioService, bind(sendRequest,
std::ref(ioService),
std::ref(pool),
request,
placeholders::_1));
}
ioService.run();
}
catch(const std::exception& e)
{
cerr << id << "Error: " << e.what() << endl;
}
}
// ---------------------------------------------------------------------------
int main(int argc, char* argv[])
{
if(argc < 3)
{
cout << "Usage: ./async_request poolSize threadsCount r0 r1 ..."
<< endl;
return -1;
}
try
{
auto poolSize = lexical_cast<size_t>(argv[1]);
auto threadsCount = lexical_cast<size_t>(argv[2]);
ConcurrentQueue<unsigned> requests;
for(int i = 3; i < argc; ++i)
{
auto request = lexical_cast<unsigned>(argv[i]);
requests.tryPush(request);
}
ConnectionPoolPtr pool(new ConnectionPool(poolSize));
vector<unique_ptr<thread>> threads;
for(size_t i = 0; i < threadsCount; ++i)
{
threads.emplace_back(
new thread(threadFunc, std::ref(*pool), std::ref(requests)));
}
for_each(threads.begin(), threads.end(), mem_fn(&thread::join));
}
catch(const std::exception& e)
{
cerr << "Error: " << e.what() << endl;
}
return 0;
}
Here are some helper utilities used by the above code:
#pragma once
#include <boost/asio/steady_timer.hpp>
#include <boost/asio/spawn.hpp>
namespace utils
{
inline void coroutineAsyncWait(boost::asio::steady_timer& timer,
boost::asio::yield_context& yield)
{
boost::system::error_code ec;
timer.async_wait(yield[ec]);
if(ec && ec != boost::asio::error::operation_aborted)
throw std::runtime_error(ec.message());
}
class AsioCoroutineJoiner
{
public:
explicit AsioCoroutineJoiner(boost::asio::io_service& io)
: _timer(io), _count(0) {}
void join(boost::asio::yield_context yield)
{
assert(_count > 0);
_timer.expires_from_now(
boost::asio::steady_timer::clock_type::duration::max());
coroutineAsyncWait(_timer, yield);
}
void inc()
{
++_count;
}
void dec()
{
assert(_count > 0);
--_count;
if(0 == _count)
_timer.cancel();
}
private:
boost::asio::steady_timer _timer;
std::size_t _count;
}; // AsioCoroutineJoiner class
class AsioCoroutineJoinerProxy
{
public:
AsioCoroutineJoinerProxy(AsioCoroutineJoiner& joiner)
: _joiner(joiner)
{
_joiner.inc();
}
AsioCoroutineJoinerProxy(const AsioCoroutineJoinerProxy& joinerProxy)
: _joiner(joinerProxy._joiner)
{
_joiner.inc();
}
~AsioCoroutineJoinerProxy()
{
_joiner.dec();
}
private:
AsioCoroutineJoiner& _joiner;
}; // AsioCoroutineJoinerProxy class
} // utils namespace
For completeness of the code the last missing part is ConcurrentQueue class. It is too long to paste it here, but if you want you can find it here.
Example usage of the application is:
./connectionpooltest 3 3 5 7 8 1 0 9 2 4 3 6
where the first number 3 are fake connections count and the second number 3 are the number of used threads. Numbers after them are fake requests.
The output of valgrind and GDB is the same as in the mentioned above question.
Used version of boost is 1.57. The compiler is GCC 4.8.3. The operating system is CentOS Linux release 7.1.1503
It seems that all valgrind errors are caused because of BOOST_USE_VALGRIND macro is not defined as Tanner Sansbury points in comment related to this question. It seems that except this the program is correct.

C++ Timer pausing execution of program until finished

C++, XCode 4.6.3, OSX 10.8.2, deploying on iOS
I am trying to create a timed event.
My thought process was to create a thread, do the timing in it and then at the end have it call another function. This is working however it is pausing the rest of the program.
//Launch a thread
std::thread t1(start_thread);
//Join the thread with the main thread
t1.join();
void start_thread()
{
std::cout << "thread started" << std::endl;
auto start = std::chrono::high_resolution_clock::now();
std::this_thread::sleep_until(start + std::chrono::seconds(20));
stop_thread();
}
void stop_thread()
{
std::cout << "thread stopped." << std::endl;
}
Is there a way to do this that doesn't pause program execution?
Update:
I could declare the thread in the header file and join in the stop_thread():
void stop_thread()
{
std::cout << "thread stopped." << std::endl;
ti.join();
}
but that throws:
Type 'std::thread' does not provide a call operator
UPDATE 2: Calling t1.detach() instead of join seems to work.
You're right it works:
Here is an example coming from cpp reference
http://en.cppreference.com/w/cpp/thread/thread/detach
#include <iostream>
#include <chrono>
#include <thread>
void independentThread()
{
std::cout << "Starting concurrent thread.\n";
std::this_thread::sleep_for(std::chrono::seconds(2));
std::cout << "Exiting concurrent thread.\n";
}
void threadCaller()
{
std::cout << "Starting thread caller.\n";
std::thread t(independentThread);
t.detach();
std::this_thread::sleep_for(std::chrono::seconds(1));
std::cout << "Exiting thread caller.\n";
}
int main()
{
threadCaller();
std::this_thread::sleep_for(std::chrono::seconds(5));
}
Output:
Starting thread caller.
Starting concurrent thread.
Exiting thread caller.
Exiting concurrent thread.
We see that the concurrent thread ends after the thread caller ends. This is not possible if detach is not called.
Hope that helps, but Jason found the solution.
Use a class instead.
enum{ PAUSED, STARTED, STOPPED };
class AsyncEvent
{
protected:
unsigned char mState;
public:
AsyncEvent():mState(PAUSED){ mThread = std::thread(&AsyncEvent::run,this); }
~AsyncEvent(){ mThread.join(); }
private:
std::thread mThread;
void run()
{
std::cout << "thread started" << std::endl;
while(mState != STOPPED)
{
if(mState == PAUSED)break;
auto start = std::chrono::high_resolution_clock::now();
std::this_thread::sleep_until(start + std::chrono::seconds(20));
}
}
void stop()
{
mState = STOPPED;
}
void pause()
{
mState = PAUSED;
}
};