My Athena DB is in ap-south-1 region and AWS QuickSight doesn't exist in that region.
How can I connect QuickSight with Athena in that case?
All you need to do is to copy table definitions from one region to another. There are several ways to do that
With AWS Console
This approach is the most simple one and doesn't require additional setup as everything is based on Athena DDL statements.
Get table definition with
SHOW CREATE TABLE `database`.`table`;
This should output something like:
CREATE EXTERNAL TABLE `database`.`table`(
`col_1` string,
`col_2` bigint,
...
`col_n` string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
's3://some/location/on/s3'
TBLPROPERTIES (
'classification'='parquet',
...
'compressionType'='gzip')
Change to a desired region
Create database where you want to store table definitions, or use default one.
Execute statement produced by SHOW CREATE TABLE. Note, you might need to change name of database with respect to previous step
If you table is partitioned then you would need to load all partitions.
If data on S3 adheres HIVE partitioning style, i.e.
s3://some/location/on/s3
|
├── day=01
| ├── hour=00
| └── hour=01
...
then you can use
MSCK REPAIR TABLE `database`.`table`
Alternatively, you can load partitions one by one
ALTER TABLE `database`.`table`
ADD PARTITION (day='01', hour='00')
LOCATION 's3://some/location/on/s3/01/00';
ALTER TABLE `database`.`table`
ADD PARTITION (day='01', hour='01')
LOCATION 's3://some/location/on/s3/01/01';
...
With AWS API
You can use AWS SDK, e.g. boto3 for python, which provide an easy to use, object-oriented API. Here you have two options:
Use Athena client. Like in a previous approach, you would need to get table definition statement from AWS Console. But all other steps, can be done in scripted manner with the use of start_query_execution method of Athena Client. There are plenty resources online, e.g. this one
Use AWS Glue client. This method is solely based on operation within AWS Glue Data Catalog, which is used by Athena during query execution. Main idea is to create two glue clients, one for source and one for destination catalog. For example
import boto3
KEY_ID = "__KEY_ID__"
SECRET = "__SECRET__"
glue_source = boto3.client(
'glue',
region_name="ap-south-1",
aws_access_key_id=KEY_ID,
aws_secret_access_key=SECRET
)
glue_destination = boto3.client(
'glue',
region_name="us-east-1",
aws_access_key_id=KEY_ID,
aws_secret_access_key=SECRET
)
# Or you can do it with creating sessions
glue_source = boto3.session.Session(profile_name="profile_for_ap_south_1").client("glue")
glue_destination = boto3.session.Session(profile_name="profile_for_us_east_1").client("glue")
Then you would need to use get and create type methods. This would also require parsing responses that would get from glue clients.
With AWS Glue crawlers
Although, you can use AWS Glue crawlers to "rediscover" data on S3, I wouldn't recommend this approach since you already know structure of you data.
The answer of #Ilya Kisil is correct but I would like to bring some more details and alternative solutions.
There are two different approaches you can take.
As suggested by Ilya, copy the table definitions from one region (source region) to another (destination region). The idea is to reference the data of the other region.
I found the Glue Crawlers much easier and faster. You need to create a Glue Crawler in the source region and specify the S3 bucket of the destination region where the metadata is located. Once you do it, you will see in the Athena source region all the tables of the destination region! Behind the scenes what Glue Crawler does is what Ilya explained in the "With AWS Console" section. So, instead of creating the table one by one and loading the partitions (if exist), you can just create one Glue Crawler.
Note, that it holds a reference to your destination region tables. So that it doesn't copy the data. At first glance, it seems to be great! Why should we copy the data if we could reference it? But when you take a deeper look, you can find that you are probably going to pay more money $$$. When you reference data, you will pay for the data each query returns and if you consume the data a lot, and you have TB/PB of data, it might be too expensive, and if cost is a consideration for you, I would recommend you consider the second solution.
Also note, that although the data is not being copied to the source region and just referenced, behind the scenes, when you execute a query, AWS saves the data temporarily in the source region. So, if you need to be GDPR compliant you might need to be aware of that.
Copy the data from the destination region to the source region and have a process that keeps synchronizing it. Then you will not pay for the Athena queries, but rather pay for the storage that is usually cheaper. If possible, you can also copy just what you need or aggregate the data, so you have less copied storage => and less cost.
A convenient way to do it is by creating a Glue Job that will be responsible for copying the data from the destination region S3 bucket to the source region S3 bucket. And then you can add it to a Glue Workflow that will run this job once a day or whatever is proper for you.
To Summarize:
There are lots of things to consider and I mentioned some of them. In each use case, you have advantages and disadvantages and you can find what is the right one for you.
(Solution 1) Advantages:
Easy. Just some clicks.
Fast.
Referencing the data and no need to have duplicated data.
(Solution 1) Disadvantages:
Might be way more expensive (depends on the data usage).
(Solution 2) Advantages:
Might be much cheaper
(Solution 2) Disadvantages:
Slow/Longer solution
Need to copy existing data and then have a process to copy new data
Related
I have a lambda job which infrequently dumps a parquet file into an S3 bucket/Glue table using AWS Wrangler.
This Glue table appears to be increasing the table version number every time there is new data, even though the schema is unchanged.
I do not think the problem is with the lambda job/wrangler, since it deposits the parquet files as expected. I have also tested that code separately and it works as expected.
Something is going on with the Glue data catalogue table that makes it increase versions despite no changes to the schema.
I have checked for differences in the underlying parquet files to see if there are some schema, data type etc changes between updates, and there are none.
I have checked for differences between the Glue table versions via the console and AWS CLI (aws glue get-table-versions) and found no differences there either (only the UpdateTime and VersionId changes).
I have tried to recreate my setup with the same code and do not find this issue. I have tried to delete and recreate the Glue table in the same place, but the issue reoccurs.
Question: What could be causing my Glue table version numbers to increase when there are no schema changes?
Note:
The code in question looks like this. It's part of a bigger function (this is really just generating logs of what the main lambda function is doing). It works fine on its own and doesn't use variables etc from the rest of the code. I don't see how this could be the issue but including it here anyway.
#other functions do some things when triggered by a new file in another s3 bucket
#this function is just logging which files were processed. It's the Glue table from these log files which is having issues with the version number increasing every time a new log file is added.
import aws-wrangler as wr
def log(resource, filename):
log_df = build_log(resource, filename) # for building the log df, just columns of date, time, file used etc
wr.s3.to_parquet(
df=log_df,
path=log_path(), #s3 bucket where parquet logs are being put
dataset=True,
catalog_versioning=False,
database="MYDB",
partition_cols=['date'],
table='log',
mode='append'
)
This is, I think due to partitioning. You are partitioning based on date, so I guess for every day of time unit a new partition will be added. The new partitions are the reason why the table version is being incremented.
I have a task to analyze weather forecast data in Quicksight. The forecast data is held in NetCDF binary files in a public S3 bucket. The question is: how do you expose the contents of these binary files to Quicksight or even Athena?
There are python libraries that will decode the data from the binary files, such as Iris. They are used like this:
import iris
filename = iris.sample_data_path('forecast_20200304.nc')
cubes = iris.load(filename)
print(cubes)
So what would be the AWS workflow and services necessary to create a data ingestion pipeline that would:
Respond to an SQS message that a new binary file is available
Access the new binary file and decode it to access the forecast data
Add the decoded data to the set of already decoded data from previous SQS notifications
Make all the decoded data available in Athena / Quicksight
Tricky one, this...
What I would do is probably something like this:
Write a Lambda function in Python that is triggered when new files appear in the S3 bucket – either by S3 notifications (if you control the bucket), by SNS, SQS, or by schedule in EventBridge. The function uses the code snipplet included in your question to transform each new file and upload the transformed data to another S3 bucket.
I don't know the size of these files and how often they are published, so whether to convert to CSV, JSON, or Parquet is something you have to decide – if the data is small CSV will probably be easiest and will be good enough.
With the converted data in a new S3 bucket all you need to do is create an Athena table for the data set and start using QuickSight.
If you end up with a lot of small files you might want to implement a second step where you once per day combine the converted files into bigger files, and possibly Parquet, but don't do anything like that unless you have to.
An alternative way would be to use Athena Federated Query: by implementing Lambda function(s) that respond to specific calls from Athena you can make Athena read any data source that you want. It's currently in preview, and as far as I know all the example code is written in Java – but theoretically it would be possible to write the Lambda functions in Python.
I'm not sure whether it would be less work than implementing an ETL workflow like the one you suggest, but yours is one of the use cases for which Athena Federated Query was designed for and it might be worth looking into. If NetCDF files are common and a data source for such files would be useful for other people I'm sure the Athena team would love to talk to you and help you out.
I have the following requirements:
For every deleted record in RDS we need to archive it into somewhere cheaper on AWS.
Reduce storage cost
Not using Glacier
Context oriented (e.g. a file per table)
re-import is not a requirement
I'm not an experienced user with AWS, so I'm still a bit lost among the amount of options it has to offer and I'd like to know if you have more ideas to help me clear it out.
Initial thoughts:
The microservice that deletes the record, might send it to a broker (RabbitMQ for e.g.) and another microservice (let's call it archiver) will listen to it, write into a file, zip and send to S3. This approach has some technical challenges though: in order to make sense create big files, I need to wait the queue to growth a bit, wrap it into a stream and zip inside S3. The transaction control is very weak as well, since file writing and ack on messages are signal based i.e. I'll remove the messages from the broker just after the file is created.
Add a new column to the "archiveble" tables as "deleted (bool)" and run a separate job fetching only those records and saving them into S3. Discarded they don't want the new microservice with access to other's databases.
Following the same approach as in the first item, but instead of save into S3, save into a cheaper database. SimpleDB?
option 1, but instead of rabbitmq, write it to a kinesis firehose and direct that to an s3 location - it doesn't get much cheaper or easier than that.
I have a whole bunch of data in AWS S3 stored in JSON format. It looks like this:
s3://my-bucket/store-1/20190101/sales.json
s3://my-bucket/store-1/20190102/sales.json
s3://my-bucket/store-1/20190103/sales.json
s3://my-bucket/store-1/20190104/sales.json
...
s3://my-bucket/store-2/20190101/sales.json
s3://my-bucket/store-2/20190102/sales.json
s3://my-bucket/store-2/20190103/sales.json
s3://my-bucket/store-2/20190104/sales.json
...
It's all the same schema. I want to get all that JSON data into a single database table. I can't find a good tutorial that explains how to set this up.
Ideally, I would also be able to perform small "normalization" transformations on some columns, too.
I assume Glue is the right choice, but I am open to other options!
If you need to process data using Glue and there is no need to have a table registered in Glue Catalog then there is no need to run Glue Crawler. You can setup a job and use getSourceWithFormat() with recurse option set to true and paths pointing to the root folder (in your case it's ["s3://my-bucket/"] or ["s3://my-bucket/store-1", "s3://my-bucket/store-2", ...]). In the job you can also apply any required transformations and then write the result into another S3 bucket, relational DB or a Glue Catalog.
Yes, Glue is a great tool for this!
Use a crawler to create a table in the glue data catalog (remember to set Create a single schema for each S3 path under Grouping behavior for S3 data when creating the crawler)
Read more about it here
Then you can use relationalize to flatten our your json structure, read more about that here
Json and AWS Glue may not be the best match. Since AWS Glue is based on hadoop, it inherits hadoop's "one-row-per-newline" restriction, so even if your data is in json, it has to be formatted with one json object per line [1]. Since you'll be pre-processing your data anyway to get it into this line-separated format, it may be easier to use csv instead of json.
Edit 2022-11-29: There does appear to be some tooling now for jsonl, which is the actual format that AWS expects, making this less of an automatic win for csv. I would say if your data is already in json format, it's probably smarter to convert it to jsonl than to convert to csv.
I have a Spark batch job which is executed hourly. Each run generates and stores new data in S3 with the directory naming pattern DATA/YEAR=?/MONTH=?/DATE=?/datafile.
After uploading the data to S3, I want to investigate it using Athena. Also, I would like to visualize them in QuickSight by connecting to Athena as a data source.
The problem is that after each run of my Spark batch, the newly generated data stored in S3 will not be discovered by Athena, unless I manually run the query MSCK REPAIR TABLE.
Is there a way to make Athena update the data automatically, so that I can create a fully automatic data visualization pipeline?
There are a number of ways to schedule this task. How do you schedule your workflows? Do you use a system like Airflow, Luigi, Azkaban, cron, or using an AWS Data pipeline?
From any of these, you should be able to fire off the following CLI command.
$ aws athena start-query-execution --query-string "MSCK REPAIR TABLE some_database.some_table" --result-configuration "OutputLocation=s3://SOMEPLACE"
Another option would be AWS Lambda. You could have a function that calls MSCK REPAIR TABLE some_database.some_table in response to a new upload to S3.
An example Lambda Function could be written as such:
import boto3
def lambda_handler(event, context):
bucket_name = 'some_bucket'
client = boto3.client('athena')
config = {
'OutputLocation': 's3://' + bucket_name + '/',
'EncryptionConfiguration': {'EncryptionOption': 'SSE_S3'}
}
# Query Execution Parameters
sql = 'MSCK REPAIR TABLE some_database.some_table'
context = {'Database': 'some_database'}
client.start_query_execution(QueryString = sql,
QueryExecutionContext = context,
ResultConfiguration = config)
You would then configure a trigger to execute your Lambda function when new data are added under the DATA/ prefix in your bucket.
Ultimately, explicitly rebuilding the partitions after you run your Spark Job using a job scheduler has the advantage of being self documenting. On the other hand, AWS Lambda is convenient for jobs like this one.
You should be running ADD PARTITION instead:
aws athena start-query-execution --query-string "ALTER TABLE ADD PARTITION..."
Which adds a the newly created partition from your S3 location
Athena leverages Hive for partitioning data.
To create a table with partitions, you must define it during the CREATE TABLE statement. Use PARTITIONED BY to define the keys by which to partition data.
There's multiple ways to solve the issue and get the table updated:
Call MSCK REPAIR TABLE. This will scan ALL data. It's costly as every file is read in full (at least it's fully charged by AWS). Also it's painfully slow. In short: Don't do it!
Create partitions by your own by calling ALTER TABLE ADD PARTITION abc .... This is good in a sense no data is scanned and costs are low. Also the query is fast, so no problems here. It's also a good choice if you have very cluttered file structure without any common pattern (which doesn't seem it's your case as it's a nicely organised S3 key pattern). There's also downsides to this approach: A) It's hard to maintain B) All partitions will to be stored in GLUE catalog. This can become an issue when you have a lot of partitions as they need to be read out and passed to Athena and EMRs Hadoop infrastructure.
Use partition projection. There's two different styles you might want to evaluate. Here's the variant with does create the partitions for Hadoop at query time. This means there's no GLUE catalog entries send over the network and thus large amounts of partitions can be handled quicker. The downside is you might 'hit' some partitions that might not exist. These will of course be ignored, but internally all partitions that COULD match your query will be generated - no matter if they are on S3 or not (so always add partition filters to your query!). If done correctly, this option is a fire and forget approach as there's no updates needed.
CREATE EXTERNAL TABLE `mydb`.`mytable`
(
...
)
PARTITIONED BY (
`YEAR` int,
`MONTH` int,
`DATE` int)
...
LOCATION
's3://DATA/'
TBLPROPERTIES(
"projection.enabled" = "true",
"projection.account.type" = "integer",
"projection.account.range" = "1,50",
"projection.YEAR.type" = "integer",
"projection.YEAR.range" = "2020,2025",
"projection.MONTH.type" = "integer",
"projection.MONTH.range" = "1,12",
"projection.DATE.type" = "integer",
"projection.DATE.range" = "1,31",
"storage.location.template" = "s3://DATA/YEAR=${YEAR}/MONTH=${MONTH}/DATE=${DATE}/"
);
https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html
Just to list all options: You can also use GLUE crawlers. But it doesn't seemed to be a favourable approach as it's not as flexible as advertised.
You get more control on GLUE using Glue Data Catalog API directly, which might be an alternative to approach #2 if you have a lot of automated scripts
that do the preparation work to setup your table.
In short:
If your application is SQL centric, you like the leanest approach with no scripts, use partition projection
If you have many partitions, use partition projection
If you have a few partitions or partitions do not have a generic pattern, use approach #2
If you're script heavy and scripts do most of the work anyway and are easier to handle for you, consider approach #5
If you're confused and have no clue where to start - try partition projection first! It should fit 95% of the use cases.