legacy opengl - rendering cube map layout, understanding glTexCoord3f parameters - opengl

I would like to render a cube map layout (orthographic projection) - something like this. Let's focus on the +X face (right on the picture). The code which renders +X face looks this way:
glBegin(GL_QUADS);
glTexCoord3f(1, 1, -1);
glVertex2i(0,0);
glTexCoord3f(1, 1, 1);
glVertex2i(256,0);
glTexCoord3f(1, -1, 1);
glVertex2i(256, 256);
glTexCoord3f(1, -1, -1);
glVertex2i(0, 256);
glEnd();
It looks like that glTexCoord3f uses ndc values, but I don't understand why y value is positive for the first two vertices and negative for the next, from my understanding it should be opposite ( I imagine that I observe cube faces from the cube center).

No glTexCoord3D does not use NDC !!! its a direction vector instead.
I was struggling in the past with the same ... GL_TEXTURE_CUBE_MAP are hard to start with ...
To make things easier here is mine render in old API (C++ member from mine engine) for those:
void OpenGL_TXR::cube_draw_CW(double size,int unit)
{
int i,j;
double a=size;
double pnt[8][3]=
{
+a,-a,+a,
+a,+a,+a,
-a,+a,+a,
-a,-a,+a,
+a,-a,-a,
+a,+a,-a,
-a,+a,-a,
-a,-a,-a
};
int tab[24]=
{
0,1,2,3,
7,6,5,4,
4,5,1,0,
5,6,2,1,
6,7,3,2,
7,4,0,3
};
glColor3f(1,1,1);
glBegin(GL_QUADS);
for (i=23;i>=0;i--)
{
j=tab[i];
glMultiTexCoord3dv(GL_TEXTURE0+unit,pnt[j]);
glVertex3dv(pnt[j]);
}
glEnd();
}
size is the cube half size and unit is texture unit where is your cube map binded.
But it renders a textured cube. If you want to render your layout then just use different vertexes but the same texture coords. Something like this:
void cube_draw2D_CW(double size,int unit)
{
int i,j;
// U
// W N E S
// D
const double a=size,a0=-3.0*a,a1=a0+a+a,a2=a1+a+a,a3=a2+a+a;
const double b=1.7320508075688772935274463415059; // sqrt(3.0)
double pnttxr[8][3]=
{
+b,-b,+b,
+b,+b,+b,
-b,+b,+b,
-b,-b,+b,
+b,-b,-b,
+b,+b,-b,
-b,+b,-b,
-b,-b,-b
};
double pntver[24][3]=
{
a1+a,a0+a-a,+0.0,
a1+a,a0+a+a,+0.0,
a1-a,a0+a+a,+0.0,
a1-a,a0+a-a,+0.0,
a1+a,a2+a-a,+0.0,
a1+a,a2+a+a,+0.0,
a1-a,a2+a+a,+0.0,
a1-a,a2+a-a,+0.0,
a0+a,a1+a-a,+0.0,
a0+a,a1+a+a,+0.0,
a0-a,a1+a+a,+0.0,
a0-a,a1+a-a,+0.0,
a1+a,a1+a-a,+0.0,
a1+a,a1+a+a,+0.0,
a1-a,a1+a+a,+0.0,
a1-a,a1+a-a,+0.0,
a2+a,a1+a-a,+0.0,
a2+a,a1+a+a,+0.0,
a2-a,a1+a+a,+0.0,
a2-a,a1+a-a,+0.0,
a3+a,a1+a-a,+0.0,
a3+a,a1+a+a,+0.0,
a3-a,a1+a+a,+0.0,
a3-a,a1+a-a,+0.0,
};
int tabtxr[24]=
{
4,0,3,7, // D
1,5,6,2, // U
3,2,6,7, // W
0,1,2,3, // N
4,5,1,0, // E
7,6,5,4, // S
};
int tabver[24]=
{
0,1,2,3,
4,5,6,7,
8,9,10,11,
12,13,14,15,
16,17,18,19,
20,21,22,23,
};
glColor3f(1,1,1);
glBegin(GL_QUADS);
for (i=23;i>=0;i--)
{
j=tabtxr[i];
glMultiTexCoord3dv(GL_TEXTURE0+unit,pnttxr[j]);
j=tabver[i];
glVertex3dv(pntver[j]);
}
glEnd();
}
Here preview:

Related

GLUT torus colliding with camera

I want to implement collision of 6 torus which are randomly disturbed in the game area. It is a simple 3D space game using the perspective view and in first person. I saw some stack overflow answer suggesting to compute distance of whatever (player) to torus cell and if bigger than half or whole cell size you are colliding +/- your coordinate system and map topology tweaks. But if we take the distance that means we're only considering the z co-ordinates so if the camera moved to that distance (without considering x,y coordinates) it's always taking as a collision which is wrong right?
I'm hoping to do this using AABB algorithm. Is it ok to consider camera position and torus position as 2 boxes and check the collision (box to box collision) or camera as a point and torus as a box (point to box)? Or can somebody suggest best way to do that?
Below is the code that I've tried so far.
float im[16], m[16], znear = 0.1, zfar = 100.0, fovx = 45.0 * M_PI / 180.0;
glm::vec3 p0, p1, p2, p3, o, u, v;
//p0, p1, p2, p3 holds your znear camera screen corners in world coordinates
void ChangeSize(int w, int h)
{
GLfloat fAspect;
// Prevent a divide by zero
if(h == 0)
h = 1;
// Set Viewport to window dimensions
glViewport(0, 0, w, h);
// Calculate aspect ratio of the window
fAspect = (GLfloat)w*1.0/(GLfloat)h;
// Set the perspective coordinate system
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// field of view of 45 degrees, near and far planes 1.0 and 1000
//that znear and zfar should typically have a ratio of 1000:1 to make sorting out z depth easier for the GPU
gluPerspective(45.0f, fAspect, 0.1f, 300.0f); //may need to make larger depending on project
// Modelview matrix reset
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// get camera matrix (must be in right place in code before model transformations)
glGetFloatv(GL_MODELVIEW_MATRIX, im); // get camera inverse matrix
matrix_inv(m, im); // m = inverse(im)
u = glm::vec3(m[0], m[1], m[2]); // x axis
v = glm::vec3(m[4], m[5], m[6]); // y axis
o = glm::vec3(m[12], m[13], m[14]); // origin
o -= glm::vec3(m[8], m[9], m[10]) * znear; // z axis offset
// scale by FOV
u *= znear * tan(0.5 * fovx);
v *= znear * tan(0.5 * fovx / fAspect);
// get rectangle coorners
p0 = o - u - v;
p1 = o + u - v;
p2 = o + u + v;
p3 = o - u + v;
}
void matrix_inv(float* a, float* b) // a[16] = Inverse(b[16])
{
float x, y, z;
// transpose of rotation matrix
a[0] = b[0];
a[5] = b[5];
a[10] = b[10];
x = b[1]; a[1] = b[4]; a[4] = x;
x = b[2]; a[2] = b[8]; a[8] = x;
x = b[6]; a[6] = b[9]; a[9] = x;
// copy projection part
a[3] = b[3];
a[7] = b[7];
a[11] = b[11];
a[15] = b[15];
// convert origin: new_pos = - new_rotation_matrix * old_pos
x = (a[0] * b[12]) + (a[4] * b[13]) + (a[8] * b[14]);
y = (a[1] * b[12]) + (a[5] * b[13]) + (a[9] * b[14]);
z = (a[2] * b[12]) + (a[6] * b[13]) + (a[10] * b[14]);
a[12] = -x;
a[13] = -y;
a[14] = -z;
}
//Store torus coordinates
std::vector<std::vector<GLfloat>> translateTorus = { { 0.0, 1.0, -10.0, 1 }, { 0.0, 4.0, -6.0, 1 } , { -1.0, 0.0, -4.0, 1 },
{ 3.0, 1.0, -6.0, 1 }, { 1.0, -1.0, -9.0, 1 } , { 4.0, 1.0, -4.0, 1 } };
GLfloat xpos, ypos, zpos, flagToDisplayCrystal;
//Looping through 6 Torus
for (int i = 0; i < translateTorus.size(); i++) {
//Get the torus coordinates
xpos = translateTorus[i][0];
ypos = translateTorus[i][1];
zpos = translateTorus[i][2];
//This variable will work as a variable to display crystal after collision
flagToDisplayCrystal = translateTorus[i][3];
//p0 min, p2 max
//Creating a square using Torus index coordinates and radius
double halfside = 1.0 / 2;
//This (xpos+halfside), (xpos-halfside), (ypos+halfside), (ypos-halfside) are //created using Torus index and radius
float d1x = p0[0] - (xpos + halfside);
float d1y = p0[1] - (ypos + halfside);
float d2x = (xpos - halfside) - p2[0];
float d2y = (ypos - halfside) - p2[1];
//Collision is checking here
//For square's min z and max z is checking whether equal to camera's min //z and max z
if ((d1x > 0.0f || d1y > 0.0f || d2x > 0.0f || d2y > 0.0f) && p2[2] == zpos && p0[2] == zpos) {
//If there is collision update the variable as 0
translateTorus[i][3] = 0;
}
else {
if (flagToDisplayCrystal == 1) {
glPushMatrix();
glEnable(GL_TEXTURE_2D);
glTranslatef(xpos, ypos, zpos);
glRotatef(fPlanetRot, 0.0f, -1.0f, 0.0f);
glColor3f(0.0, 0.0, 0.0);
// Select the texture object
glBindTexture(GL_TEXTURE_2D, textures[3]);
glutSolidTorus(0.1, 1.0, 30, 30);
glDisable(GL_TEXTURE_2D);
glPopMatrix();
}
}
}
as I mentioned in the comments you got 2 options either use OpenGL rendering or compute entirely on CPU side without it. Let start with rendering first:
render your scene
but instead of color of torus and stuff use integer indexes (for example 0 empty space, 1 obstacle, 2 torus ...) you can even have separate indexes for each object in the world so you know exactly which one is hit etc ...
so: clear screen with empty color, render your scene (using indexes instead of color with glColor??(???)) without lighting or shading or whatever. But Do not swap buffers !!! as that would show the stuff on screen and cause flickering.
read rendered screen and depth buffers
you simply use glReadPixels to copy your screen and depth buffers into CPU side memory (1D arrays) lets call them scr[],zed[].
scan the scr[] for color matching torus indexes
simply loop through all pixels and if torus pixel found check its depth. If it is close enough to camera you found your collision.
render normally
now clear screen again and render your screen with colors and lighting... now you can swap buffers too.
Beware depth buffer will be non linear which requires linearization to obtain original depth in world units. For more about it and example of reading both scr,zed see:
depth buffer got by glReadPixels is always 1
OpenGL 3D-raypicking with high poly meshes
The other approach is is much faster in case you have not too many torus'es. You simply compute intersection between camera znear plane and torus. Which boils down to either AABB vs rectangle intersection or cylinder vs. rectangle intersection.
However if you not familiar with 3D vector math you might get lost quickly.
let assume the torus is described by AABB. Then intersection between that and rectangle boils down to checking intersection between line (each edge of AABB) and rectangle. So simply finding instersection between plane and line and checking if the point is inside rectangle.
if our rectangle is defined by its vertexes in CW or CCW order (p0,p1,p2,p3) and line by endpoints q0,q1 then:
n = normalize(cross(p1-p0,p2-p1)) // is rectangle normal
dq = normalize(q1-q0) // is line direction
q = q0 + dq*dot(dq,p1-p0) // is plane/line intersection
So now just check if q is inside rectangle. There are 2 ways either test if all crosses between q-edge_start and edge_end-edge_start have the same direction or all dots between all edge_normal and q-edge_point has the same sign or zero.
The problem is that both AABB and rectangle must be in the same coordinate system so either transform AABB into camera coordinates by using modelview matrix or transform the rectangle into world coordinates using inverse of modelview. The latter is better as you do it just once instead of transforming each torus'es AABB ...
For more info about math side see:
Cone to box collision
Understanding 4x4 homogenous transform matrices
The rectangle itself is just extracted from your camera matrix (part of modelviev) position, and x,y basis vectors gives you the "center" and axises of your rectangle... The size must be derived from the perspective matrix (or parameters you passed to it especially aspect ratio, FOV and znear)
Well first you need to obtain camera (view) matrix. The GL_MODELVIEW usually holds:
GL_MODELVIEW = Inverse(Camera)*Rendered_Object
so you need to find the place in your code where your GL_MODELVIEW holds just the Inverse(Camera) transformation and there place:
float aspect=float(xs)/float(ys); // aspect from OpenGL window resolution
float im[16],m[16],znear=0.1,zfar=100.0,fovx=60.0*M_PI/180.0;
vec3 p0,p1,p2,p3,o,u,v; // 3D vectors
// this is how my perspective is set
// glMatrixMode(GL_PROJECTION);
// glLoadIdentity();
// gluPerspective(fovx*180.0/(M_PI*aspect),aspect,znear,zfar);
// get camera matrix (must be in right place in code before model transformations)
glGetFloatv(GL_MODELVIEW_MATRIX,im); // get camera inverse matrix
matrix_inv(m,im); // m = inverse(im)
u =vec3(m[ 0],m[ 1],m[ 2]); // x axis
v =vec3(m[ 4],m[ 5],m[ 6]); // y axis
o =vec3(m[12],m[13],m[14]); // origin
o-=vec3(m[ 8],m[ 9],m[10])*znear; // z axis offset
// scale by FOV
u*=znear*tan(0.5*fovx);
v*=znear*tan(0.5*fovx/aspect);
// get rectangle coorners
p0=o-u-v;
p1=o+u-v;
p2=o+u+v;
p3=o-u+v;
// render it for debug
glColor3f(1.0,1.0,0.0);
glBegin(GL_QUADS);
glColor3f(1.0,0.0,0.0); glVertex3fv(p0.dat);
glColor3f(0.0,0.0,0.0); glVertex3fv(p1.dat);
glColor3f(0.0,0.0,1.0); glVertex3fv(p2.dat);
glColor3f(1.0,1.0,1.0); glVertex3fv(p3.dat);
glEnd();
Which basicaly loads the matrix into CPU side variables inverse it like this:
void matrix_inv(float *a,float *b) // a[16] = Inverse(b[16])
{
float x,y,z;
// transpose of rotation matrix
a[ 0]=b[ 0];
a[ 5]=b[ 5];
a[10]=b[10];
x=b[1]; a[1]=b[4]; a[4]=x;
x=b[2]; a[2]=b[8]; a[8]=x;
x=b[6]; a[6]=b[9]; a[9]=x;
// copy projection part
a[ 3]=b[ 3];
a[ 7]=b[ 7];
a[11]=b[11];
a[15]=b[15];
// convert origin: new_pos = - new_rotation_matrix * old_pos
x=(a[ 0]*b[12])+(a[ 4]*b[13])+(a[ 8]*b[14]);
y=(a[ 1]*b[12])+(a[ 5]*b[13])+(a[ 9]*b[14]);
z=(a[ 2]*b[12])+(a[ 6]*b[13])+(a[10]*b[14]);
a[12]=-x;
a[13]=-y;
a[14]=-z;
}
And compute the corners with perspective in mind as described above...
I used GLSL like vec3 but you can use any 3D math even own like float p0[3],.... You just need +,- and multiplying by constant.
Now the p0,p1,p2,p3 holds your znear camera screen corners in world coordinates.
[Edit1] example
I managed to put together simple example for this. Here support functiosn used first:
//---------------------------------------------------------------------------
void glutSolidTorus(float r,float R,int na,int nb) // render torus(r,R)
{
float *pnt=new float[(na+1)*(nb+1)*3*2]; if (pnt==NULL) return;
float *nor=pnt+((na+1)*(nb+1)*3);
float ca,sa,cb,sb,a,b,da,db,x,y,z,nx,ny,nz;
int ia,ib,i,j;
da=2.0*M_PI/float(na);
db=2.0*M_PI/float(nb);
glBegin(GL_LINES);
for (i=0,a=0.0,ia=0;ia<=na;ia++,a+=da){ ca=cos(a); sa=sin(a);
for ( b=0.0,ib=0;ib<=nb;ib++,b+=db){ cb=cos(b); sb=sin(b);
z=r*ca;
x=(R+z)*cb; nx=(x-(R*cb))/r;
y=(R+z)*sb; ny=(y-(R*sb))/r;
z=r*sa; nz=sa;
pnt[i]=x; nor[i]=nx; i++;
pnt[i]=y; nor[i]=ny; i++;
pnt[i]=z; nor[i]=nz; i++;
}}
glEnd();
for (ia=0;ia<na;ia++)
{
i=(ia+0)*(nb+1)*3;
j=(ia+1)*(nb+1)*3;
glBegin(GL_QUAD_STRIP);
for (ib=0;ib<=nb;ib++)
{
glNormal3fv(nor+i); glVertex3fv(pnt+i); i+=3;
glNormal3fv(nor+j); glVertex3fv(pnt+j); j+=3;
}
glEnd();
}
delete[] pnt;
}
//---------------------------------------------------------------------------
const int AABB_lin[]= // AABB lines
{
0,1,
1,2,
2,3,
3,0,
4,5,
5,6,
6,7,
7,4,
0,4,
1,5,
2,6,
3,7,
-1
};
const int AABB_fac[]= // AABB quads
{
3,2,1,0,
4,5,6,7,
0,1,5,4,
1,2,6,5,
2,3,7,6,
3,0,4,7,
-1
};
void AABBSolidTorus(vec3 *aabb,float r,float R) // aabb[8] = AABB of torus(r,R)
{
R+=r;
aabb[0]=vec3(-R,-R,-r);
aabb[1]=vec3(+R,-R,-r);
aabb[2]=vec3(+R,+R,-r);
aabb[3]=vec3(-R,+R,-r);
aabb[4]=vec3(-R,-R,+r);
aabb[5]=vec3(+R,-R,+r);
aabb[6]=vec3(+R,+R,+r);
aabb[7]=vec3(-R,+R,+r);
}
//---------------------------------------------------------------------------
void matrix_inv(float *a,float *b) // a[16] = Inverse(b[16])
{
float x,y,z;
// transpose of rotation matrix
a[ 0]=b[ 0];
a[ 5]=b[ 5];
a[10]=b[10];
x=b[1]; a[1]=b[4]; a[4]=x;
x=b[2]; a[2]=b[8]; a[8]=x;
x=b[6]; a[6]=b[9]; a[9]=x;
// copy projection part
a[ 3]=b[ 3];
a[ 7]=b[ 7];
a[11]=b[11];
a[15]=b[15];
// convert origin: new_pos = - new_rotation_matrix * old_pos
x=(a[ 0]*b[12])+(a[ 4]*b[13])+(a[ 8]*b[14]);
y=(a[ 1]*b[12])+(a[ 5]*b[13])+(a[ 9]*b[14]);
z=(a[ 2]*b[12])+(a[ 6]*b[13])+(a[10]*b[14]);
a[12]=-x;
a[13]=-y;
a[14]=-z;
}
//---------------------------------------------------------------------------
const int QUAD_lin[]= // quad lines
{
0,1,
1,2,
2,3,
3,0,
-1
};
const int QUAD_fac[]= // quad quads
{
0,1,2,3,
-1
};
void get_perspective_znear(vec3 *quad) // quad[4] = world coordinates of 4 corners of screen at znear distance from camera
{
vec3 o,u,v; // 3D vectors
float im[16],m[16],znear,zfar,aspect,fovx;
// get stuff from perspective
glGetFloatv(GL_PROJECTION_MATRIX,m); // get perspective projection matrix
zfar =0.5*m[14]*(1.0-((m[10]-1.0)/(m[10]+1.0)));// compute zfar from perspective matrix
znear=zfar*(m[10]+1.0)/(m[10]-1.0); // compute znear from perspective matrix
aspect=m[5]/m[0];
fovx=2.0*atan(1.0/m[5])*aspect;
// get stuff from camera matrix (must be in right place in code before model transformations)
glGetFloatv(GL_MODELVIEW_MATRIX,im); // get camera inverse matrix
matrix_inv(m,im); // m = inverse(im)
u =vec3(m[ 0],m[ 1],m[ 2]); // x axis
v =vec3(m[ 4],m[ 5],m[ 6]); // y axis
o =vec3(m[12],m[13],m[14]); // origin
o-=vec3(m[ 8],m[ 9],m[10])*znear; // z axis offset
// scale by FOV
u*=znear*tan(0.5*fovx);
v*=znear*tan(0.5*fovx/aspect);
// get rectangle coorners
quad[0]=o-u-v;
quad[1]=o+u-v;
quad[2]=o+u+v;
quad[3]=o-u+v;
}
//---------------------------------------------------------------------------
bool collideLineQuad(vec3 *lin,vec3 *quad) // return if lin[2] is colliding quad[4]
{
float t,l,u,v;
vec3 p,p0,p1,dp;
vec3 U,V,W;
// quad (rectangle) basis vectors
U=quad[1]-quad[0]; u=length(U); u*=u;
V=quad[3]-quad[0]; v=length(V); v*=v;
W=normalize(cross(U,V));
// convert line from world coordinates to quad local ones
p0=lin[0]-quad[0]; p0=vec3(dot(p0,U)/u,dot(p0,V)/v,dot(p0,W));
p1=lin[1]-quad[0]; p1=vec3(dot(p1,U)/u,dot(p1,V)/v,dot(p1,W));
dp=p1-p0;
// test if crossing the plane
if (fabs(dp.z)<1e-10) return false;
t=-p0.z/dp.z;
p=p0+(t*dp);
// test inside 2D quad (rectangle)
if ((p.x<0.0)||(p.x>1.0)) return false;
if ((p.y<0.0)||(p.y>1.0)) return false;
// inside line
if ((t<0.0)||(t>1.0)) return false;
return true;
}
//---------------------------------------------------------------------------
bool collideQuadQuad(vec3 *quad0,vec3 *quad1) // return if quad0[4] is colliding quad1[4]
{
int i;
vec3 l[2];
// lines vs. quads
for (i=0;QUAD_lin[i]>=0;)
{
l[0]=quad0[QUAD_lin[i]]; i++;
l[1]=quad0[QUAD_lin[i]]; i++;
if (collideLineQuad(l,quad1)) return true;
}
for (i=0;QUAD_lin[i]>=0;)
{
l[0]=quad1[QUAD_lin[i]]; i++;
l[1]=quad1[QUAD_lin[i]]; i++;
if (collideLineQuad(l,quad0)) return true;
}
// ToDo coplanar quads tests (not needed for AABB test)
return false;
}
//---------------------------------------------------------------------------
bool collideAABBQuad(vec3 *aabb,vec3 *quad) // return if aabb[8] is colliding quad[4]
{
int i;
vec3 q[4],n,p;
// test all AABB faces (rectangle) for intersection with quad (rectangle)
for (i=0;AABB_fac[i]>=0;)
{
q[0]=aabb[AABB_fac[i]]; i++;
q[1]=aabb[AABB_fac[i]]; i++;
q[2]=aabb[AABB_fac[i]]; i++;
q[3]=aabb[AABB_fac[i]]; i++;
if (collideQuadQuad(q,quad)) return true;
}
// test if one point of quad is fully inside AABB
for (i=0;AABB_fac[i]>=0;i+=4)
{
n=cross(aabb[AABB_fac[i+1]]-aabb[AABB_fac[i+0]],
aabb[AABB_fac[i+2]]-aabb[AABB_fac[i+1]]);
if (dot(n,quad[0]-aabb[AABB_fac[i+0]])>0.0) return false;
}
return true;
}
//---------------------------------------------------------------------------
And here the usage (during rendering):
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
int i;
float m[16];
mat4 m0,m1;
vec4 v4;
float aspect=float(xs)/float(ys);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(60.0/aspect,aspect,0.1,20.0);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
static float anim=180.0; anim+=0.1; if (anim>=360.0) anim-=360.0;
glEnable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
vec3 line[2],quad[4],aabb[8]; // 3D vectors
get_perspective_znear(quad);
// store view matrix for latter
glMatrixMode(GL_MODELVIEW);
glGetFloatv(GL_MODELVIEW_MATRIX,m);
m0=mat4(m[0],m[1],m[2],m[3],m[4],m[5],m[6],m[7],m[8],m[9],m[10],m[11],m[12],m[13],m[14],m[15]);
m0=inverse(m0);
// <<-- here should be for start that loop through your toruses
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
// set/animate torus position
glTranslatef(0.3,0.3,3.5*(-1.0-cos(anim)));
glRotatef(+75.0,0.5,0.5,0.0);
// get actual matrix and convert it to the change
glGetFloatv(GL_MODELVIEW_MATRIX,m);
m1=m0*mat4(m[0],m[1],m[2],m[3],m[4],m[5],m[6],m[7],m[8],m[9],m[10],m[11],m[12],m[13],m[14],m[15]);
// render torus and compute its AABB
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glColor3f(1.0,1.0,1.0);
glutSolidTorus(0.1,0.5,36,36);
AABBSolidTorus(aabb,0.1,0.5);
glDisable(GL_LIGHT0);
glDisable(GL_LIGHTING);
// convert AABB to the same coordinates as quad
for (i=0;i<8;i++) aabb[i]=(m1*vec4(aabb[i],1.0)).xyz;
// restore original view matrix
glPopMatrix();
// render wireframe AABB
glColor3f(0.0,1.0,0.0);
glBegin(GL_LINES);
for (i=0;AABB_lin[i]>=0;i++)
glVertex3fv(aabb[AABB_lin[i]].dat);
glEnd();
/*
// render filled AABB for debug
glBegin(GL_QUADS);
for (i=0;AABB_fac[i]>=0;i++)
glVertex3fv(aabb[AABB_fac[i]].dat);
glEnd();
// render quad for debug
glBegin(GL_QUADS);
glColor3f(1.0,1.0,1.0);
for (i=0;QUAD_fac[i]>=0;i++)
glVertex3fv(quad[QUAD_fac[i]].dat);
glEnd();
*/
// render X on colision
if (collideAABBQuad(aabb,quad))
{
glColor3f(1.0,0.0,0.0);
glBegin(GL_LINES);
glVertex3fv(quad[0].dat);
glVertex3fv(quad[2].dat);
glVertex3fv(quad[1].dat);
glVertex3fv(quad[3].dat);
glEnd();
}
// <<-- here should be end of the for that loop through your toruses
glFlush();
SwapBuffers(hdc);
just ignore the GLUT solid torus function as you already got it ... Here preview:
The red cross indicates collision with screen ...

OpenGL 3D-raypicking with high poly meshes

How to implement 3d raypicking in an 3d scene with models that contain high poly meshes?
It takes too much time to iterate over all triangles to perform a triangle-line-intersection test. I know that there exist methods like octree etc. and it should be possible to use these for the models in the scene, but I do not know how I should use these concepts at mesh-level. But if you use an octree at mesh-level, how should one cover problems with polygons, that exceed the boundaries of the octree volumes?
Do you have any advice which method is suitable or recommended for 3d ray-intersections with high poly models for real-time OpenGl applications?
For ray picking rendered objects (like by mouse) the best option is to use the already rendered buffers as there is very little cost of reading them in comparison to ray intersection tests on complex scene. The idea is to render each pick-able rendered object to separate buffer per each info you need about them for example like this:
Depth buffer
this will give you the 3D position of the ray intersection with object.
Stencil buffer
if each object rendered to stencil with its ID (or its index in object list) then you can get the picked object directly.
any other
there are also secondary color attachments and FBO's out there. So you can add any other stuff like normal vector or what ever you need.
If coded right all of this will reduce performance only slightly (even not at all) as you do not need to compute anything its just a single write per fragment per buffer.
The picking itself is easy you just read the corresponding pixel from all the buffers you need and convert to wanted format.
Here simple C++/VCL example using fixed pipeline (no shaders)...
//---------------------------------------------------------------------------
#include <vcl.h>
#include <math.h>
#pragma hdrstop
#include "Unit1.h"
#include "gl_simple.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
//---------------------------------------------------------------------------
void matrix_mul_vector(double *c,double *a,double *b,double w=1.0)
{
double q[3];
q[0]=(a[ 0]*b[0])+(a[ 4]*b[1])+(a[ 8]*b[2])+(a[12]*w);
q[1]=(a[ 1]*b[0])+(a[ 5]*b[1])+(a[ 9]*b[2])+(a[13]*w);
q[2]=(a[ 2]*b[0])+(a[ 6]*b[1])+(a[10]*b[2])+(a[14]*w);
for(int i=0;i<3;i++) c[i]=q[i];
}
//---------------------------------------------------------------------------
class glMouse
{
public:
int sx,sy; // framebuffer position [pixels]
double pos[3]; // [GCS] ray end coordinate (or z_far)
double beg[3]; // [GCS] ray start (z_near)
double dir[3]; // [GCS] ray direction
double depth; // [GCS] perpendicular distance to camera
WORD id; // selected object id
double x0,y0,xs,ys,zFar,zNear; // viewport and projection
double *eye; // camera direct matrix pointer
double fx,fy; // perspective scales
glMouse(){ eye=NULL; for (int i=0;i<3;i++) { pos[i]=0.0; beg[i]=0.0; dir[i]=0.0; } id=0; x0=0.0; y0=0.0; xs=0.0; ys=0.0; fx=0.0; fy=0.0; depth=0.0; }
glMouse(glMouse& a){ *this=a; };
~glMouse(){};
glMouse* operator = (const glMouse *a) { *this=*a; return this; };
// glMouse* operator = (const glMouse &a) { ...copy... return this; };
void resize(double _x0,double _y0,double _xs,double _ys,double *_eye)
{
double per[16];
x0=_x0; y0=_y0; xs=_xs; ys=_ys; eye=_eye;
glGetDoublev(GL_PROJECTION_MATRIX,per);
zFar =0.5*per[14]*(1.0-((per[10]-1.0)/(per[10]+1.0)));
zNear=zFar*(per[10]+1.0)/(per[10]-1.0);
fx=per[0];
fy=per[5];
}
void pick(double x,double y) // test screen x,y [pixels] position
{
int i;
double l;
GLfloat _z;
GLint _id;
sx=x; sy=ys-1.0-y;
// read depth z and linearize
glReadPixels(sx,sy,1,1,GL_DEPTH_COMPONENT,GL_FLOAT,&_z); // read depth value
depth=_z; // logarithmic
depth=(2.0*depth)-1.0; // logarithmic NDC
depth=(2.0*zNear)/(zFar+zNear-(depth*(zFar-zNear))); // linear <0,1>
depth=zNear + depth*(zFar-zNear); // linear <zNear,zFar>
// read object ID
glReadPixels(sx,sy,1,1,GL_STENCIL_INDEX,GL_INT,&_id); // read stencil value
id=_id;
// win [pixel] -> GL NDC <-1,+1>
x= (2.0*(x-x0)/xs)-1.0;
y=1.0-(2.0*(y-y0)/ys);
// ray start GL camera [LCS]
beg[2]=-zNear;
beg[1]=(-beg[2]/fy)*y;
beg[0]=(-beg[2]/fx)*x;
// ray direction GL camera [LCS]
for (l=0.0,i=0;i<3;i++) l+=beg[i]*beg[i]; l=1.0/sqrt(l);
for (i=0;i<3;i++) dir[0]=beg[0]*l;
// ray end GL camera [LCS]
pos[2]=-depth;
pos[1]=(-pos[2]/fy)*y;
pos[0]=(-pos[2]/fx)*x;
// convert to [GCS]
matrix_mul_vector(beg,eye,beg);
matrix_mul_vector(pos,eye,pos);
matrix_mul_vector(dir,eye,dir,0.0);
}
};
//---------------------------------------------------------------------------
// camera & mouse
double eye[16],ieye[16]; // direct view,inverse view and perspective matrices
glMouse mouse;
// objects
struct object
{
WORD id; // unique non zero ID
double m[16]; // direct model matrix
object(){}; object(object& a){ *this=a; }; ~object(){}; object* operator = (const object *a) { *this=*a; return this; }; /*object* operator = (const object &a) { ...copy... return this; };*/
};
const int objs=7;
object obj[objs];
// textures
GLuint txr=-1;
//---------------------------------------------------------------------------
void matrix_inv(double *a,double *b) // a[16] = Inverse(b[16])
{
double x,y,z;
// transpose of rotation matrix
a[ 0]=b[ 0];
a[ 5]=b[ 5];
a[10]=b[10];
x=b[1]; a[1]=b[4]; a[4]=x;
x=b[2]; a[2]=b[8]; a[8]=x;
x=b[6]; a[6]=b[9]; a[9]=x;
// copy projection part
a[ 3]=b[ 3];
a[ 7]=b[ 7];
a[11]=b[11];
a[15]=b[15];
// convert origin: new_pos = - new_rotation_matrix * old_pos
x=(a[ 0]*b[12])+(a[ 4]*b[13])+(a[ 8]*b[14]);
y=(a[ 1]*b[12])+(a[ 5]*b[13])+(a[ 9]*b[14]);
z=(a[ 2]*b[12])+(a[ 6]*b[13])+(a[10]*b[14]);
a[12]=-x;
a[13]=-y;
a[14]=-z;
}
//---------------------------------------------------------------------------
void gl_draw()
{
int i; object *o;
double a;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT );
glEnable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glEnable(GL_STENCIL_TEST);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
glStencilMask(0xFFFF); // Write to stencil buffer
glStencilFunc(GL_ALWAYS,0,0xFFFF); // Set any stencil to 0
for (o=obj,i=0;i<objs;i++,o++)
{
glMatrixMode(GL_MODELVIEW);
glLoadMatrixd(ieye);
glMultMatrixd(o->m);
glStencilFunc(GL_ALWAYS,o->id,0xFFFF); // Set any stencil to object ID
vao_draw();
}
glStencilFunc(GL_ALWAYS,0,0xFFFF); // Set any stencil to 0
glDisable(GL_STENCIL_TEST); // no need fot testing
// render mouse
glMatrixMode(GL_MODELVIEW);
glLoadMatrixd(ieye);
a=0.1*mouse.depth;
glColor3f(0.0,1.0,0.0);
glBegin(GL_LINES);
glVertex3d(mouse.pos[0]+a,mouse.pos[1],mouse.pos[2]);
glVertex3d(mouse.pos[0]-a,mouse.pos[1],mouse.pos[2]);
glVertex3d(mouse.pos[0],mouse.pos[1]+a,mouse.pos[2]);
glVertex3d(mouse.pos[0],mouse.pos[1]-a,mouse.pos[2]);
glVertex3d(mouse.pos[0],mouse.pos[1],mouse.pos[2]+a);
glVertex3d(mouse.pos[0],mouse.pos[1],mouse.pos[2]-a);
glEnd();
Form1->Caption=AnsiString().sprintf("%.3lf , %.3lf , %.3lf : %u",mouse.pos[0],mouse.pos[1],mouse.pos[2],mouse.id);
// debug buffer views
if ((Form1->ck_depth->Checked)||(Form1->ck_stencil->Checked))
{
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,txr);
GLfloat *f=new GLfloat[xs*ys],z;
if (Form1->ck_depth ->Checked)
{
glReadPixels(0,0,xs,ys,GL_DEPTH_COMPONENT,GL_FLOAT,f);
for (i=0;i<xs*ys;i++) f[i]=1.0-(2.0*mouse.zNear)/(mouse.zFar+mouse.zNear-(((2.0*f[i])-1.0)*(mouse.zFar-mouse.zNear)));
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, xs, ys, 0, GL_RED, GL_FLOAT, f);
}
if (Form1->ck_stencil->Checked)
{
glReadPixels(0,0,xs,ys,GL_STENCIL_INDEX,GL_FLOAT,f);
for (i=0;i<xs*ys;i++) f[i]/=float(objs);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, xs, ys, 0, GL_GREEN, GL_FLOAT, f);
}
delete[] f;
glColor3f(1.0,1.0,1.0);
glBegin(GL_QUADS);
glTexCoord2f(1.0,0.0); glVertex2f(+1.0,-1.0);
glTexCoord2f(1.0,1.0); glVertex2f(+1.0,+1.0);
glTexCoord2f(0.0,1.0); glVertex2f(-1.0,+1.0);
glTexCoord2f(0.0,0.0); glVertex2f(-1.0,-1.0);
glEnd();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glDisable(GL_TEXTURE_2D);
glEnable(GL_DEPTH_TEST);
}
glFlush();
SwapBuffers(hdc);
}
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner):TForm(Owner)
{
int i;
object *o;
gl_init(Handle);
vao_init();
// init textures
glGenTextures(1,&txr);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,txr);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,GL_NEAREST);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,GL_COPY);
glDisable(GL_TEXTURE_2D);
// init objects
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(-1.5,4.7,-8.0);
for (o=obj,i=0;i<objs;i++,o++)
{
o->id=i+1; // unique non zero ID
glGetDoublev(GL_MODELVIEW_MATRIX,o->m);
glRotatef(360.0/float(objs),0.0,0.0,1.0);
glTranslatef(-3.0,0.0,0.0);
}
for (o=obj,i=0;i<objs;i++,o++)
{
glLoadMatrixd(o->m);
glRotatef(180.0*Random(),Random(),Random(),Random());
glGetDoublev(GL_MODELVIEW_MATRIX,o->m);
}
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormDestroy(TObject *Sender)
{
glDeleteTextures(1,&txr);
gl_exit();
vao_exit();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormResize(TObject *Sender)
{
gl_resize(ClientWidth,ClientHeight);
// obtain/init matrices
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0,0,-15.0);
glGetDoublev(GL_MODELVIEW_MATRIX,ieye);
matrix_inv(eye,ieye);
mouse.resize(0,0,xs,ys,eye);
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormPaint(TObject *Sender)
{
gl_draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::Timer1Timer(TObject *Sender)
{
gl_draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormMouseWheel(TObject *Sender, TShiftState Shift, int WheelDelta, TPoint &MousePos, bool &Handled)
{
GLfloat dz=2.0;
if (WheelDelta<0) dz=-dz;
glMatrixMode(GL_MODELVIEW);
glLoadMatrixd(ieye);
glTranslatef(0,0,dz);
glGetDoublev(GL_MODELVIEW_MATRIX,ieye);
matrix_inv(eye,ieye);
gl_draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormMouseMove(TObject *Sender, TShiftState Shift, int X, int Y)
{
mouse.pick(X,Y);
}
//---------------------------------------------------------------------------
void __fastcall TForm1::ck_depthClick(TObject *Sender)
{
gl_draw();
}
//---------------------------------------------------------------------------
Here preview of from left RGB,Depth,Stencil:
Here captured GIF:
the first 3 numbers are the 3D position of picked pixel in [GCS] and the last number in caption is the picked ID where 0 means no object.
The example is using gl_simple,h from here:
simple complete GL+VAO/VBO+GLSL+shaders example in C++
You can ignore the VCL stuff as its not important just port the events to your environment...
So what to do:
rendering
You need add stencil buffer to your GL window pixel format so in my case I just add:
pfd.cStencilBits = 16;
into gl_init() function from gl_simple.h. Also add its bit into glClear and set each objects stencil to its ID Like I did in gl_draw().
picking
I wrote a small glMouse class that do all the heavy lifting. On each change of perspective, view, or viewport call its glMouse::resize function. That will prepare all the constants needed for the computations later. Beware it needs direct camera/view matrix !!!
Now on each mouse movement (or click or whatever) call the glMouse::pick function and then use the results like id which will return the ID picked object was rendered with or pos which is the 3D coordinate in global world coordinates ([GCS]) of the ray object intersection.
The function just read the depth and stencil buffers. Linearize depth like here:
depth buffer got by glReadPixels is always 1
and compute the ray beg,dir,pos,depth in [GCS].
Normal
You got 2 options either render your normal as another buffer which is the simplest and most precise. Or read depths of 2 or more neighboring pixels around picked one compute their 3D positions. From that using cross product compute you normal(s) and average if needed. But this can lead to artifacts on edges.
As mentioned in the comments to boost accuracy you should use linear depth buffer instead of linearized logarithmic like this:
Linear depth buffer
Btw I used the same technique in here (in GDI based SW isometric render):
Improving performance of click detection on a staggered column isometric grid
[Edit1] 8bit stencil buffer
Well these days the reliable stencil bitwidth is only 8bit which limits the number of ids to 255. That is in most cases not enough. A workaround is to render the indexes as colors then store the frame into CPU memory and then render colors normaly. Then when needed using the stored frame for picking. Rendering to texture or color attachment is also a possibility.
[Edit2] some related links
objects moving with mouse
objects moving and orienting with mouse
Use an Octree. Make sure it fits in whole of your mesh.
Also, it sounds like you are assigning each to poly to just one leaf/bucket, which is not right. Assign polys to all leafs/buckets they appear in.

how to realize z-fail algorithm in opengl?

I code as the NeHe tutors Lesson27 told me,but it's a z-pass algorithm.when i'm in the shadow,the shadow is gone.somebody told me I can use z-fail algorithm to solve this problem.
so I spend two days to research z-fail algorithm.At last ,I can't figure it out.My program never run as what i think.
The z-fail algorithm as the wiki listed:
Depth fail
Around the year 2000, several people discovered that Heidmann's method can be made to work for all camera positions by reversing the depth. Instead of counting the shadow surfaces in front of the object's surface, the surfaces behind it can be counted just as easily, with the same end result. This solves the problem of the eye being in shadow, since shadow volumes between the eye and the object are not counted, but introduces the condition that the rear end of the shadow volume must be capped, or shadows will end up missing where the volume points backward to infinity.
Disable writes to the depth and color buffers.
Use front-face culling.
Set the stencil operation to increment on depth fail (only count shadows behind the object).
Render the shadow volumes.
Use back-face culling.
Set the stencil operation to decrement on depth fail.
Render the shadow volumes.
The Main question I think is the depth test. At step 3 and 6,the stencil operation is based on depth fail.Although it can show out the shadow,but it maybe shadowed on the object before it(i.e:the object which depth buffer value is less than it).so all the shadow effect looks mess.
But in z-pass algorithm,the stencil operation is based on depth pass,that means it not only can show out the shadow,but also shadowed only on the object behind it,that accords with eye system.
so how to solve this problem to make my depth fail algorithm show out the shadow on the right objects.
here is my z-fail algorithm code(somewhere may be where,please help me find out,the shadow effect is awful)
VECTOR vec;
void shadowvolume(SECTOR &sec,float *lp)
{
unsigned int p1, p2;
VECTOR v1, v2;
int i, j, k, jj;
for (i=0; i<sec.numplanes;i++)
{
if (sec.planes[i].visible)
{
for (j=0;j<3;j++)
{
k = sec.planes[i].neigh[j];
if ((!k) || (!sec.planes[k-1].visible))//如果以第k个点开始的邻边没有相邻平面或者相邻平面不可见
{
// here we have an edge, we must draw a polygon
p1 = sec.planes[i].p[j]-1;//邻边的起点
jj = (j+1)%3;
p2 = sec.planes[i].p[jj]-1;//邻边的终点
//calculate the length of the vector
v1.x = (sec.points[p1].vec.x - lp[0])*100;
v1.y = (sec.points[p1].vec.y - lp[1])*100;
v1.z = (sec.points[p1].vec.z - lp[2])*100;
v2.x = (sec.points[p2].vec.x - lp[0])*100;
v2.y = (sec.points[p2].vec.y - lp[1])*100;
v2.z = (sec.points[p2].vec.z - lp[2])*100;
glBegin(GL_TRIANGLE_STRIP);//将光源连到邻边的起点并延长,将光源连到邻边的终点的并延长,最后延长出来的梯形,画了过后模板缓冲区的值加1
glVertex3f(sec.points[p1].vec.x,sec.points[p1].vec.y,sec.points[p1].vec.z);
glVertex3f(sec.points[p1].vec.x + v1.x,sec.points[p1].vec.y + v1.y,sec.points[p1].vec.z + v1.z);
glVertex3f(sec.points[p2].vec.x,sec.points[p2].vec.y,sec.points[p2].vec.z);
glVertex3f(sec.points[p2].vec.x + v2.x,sec.points[p2].vec.y + v2.y,sec.points[p2].vec.z + v2.z);
glEnd();
}
}
// caps
glBegin(GL_TRIANGLES);
for(k=0;k<3;k++)
glVertex3fv((float*)&sec.points[sec.planes[i].p[k]-1].vec);
glEnd();
glBegin(GL_TRIANGLES);
for(k=2;k>=0;k--)
{
vec.x=sec.points[sec.planes[i].p[k]-1].vec.x+(sec.points[sec.planes[i].p[k]-1].vec.x-lp[0])*100;
vec.y=sec.points[sec.planes[i].p[k]-1].vec.y+(sec.points[sec.planes[i].p[k]-1].vec.y-lp[1])*100;
vec.z=sec.points[sec.planes[i].p[k]-1].vec.z+(sec.points[sec.planes[i].p[k]-1].vec.z-lp[2])*100;
glVertex3fv((float*)&vec);
}
glEnd();
}
}
}
void CastShadow(SECTOR &sec, float *lp)
{//lp是光源相对于物体的位置
float side;
glEnable(GL_CULL_FACE);
int i;
for (i=0;i<sec.numplanes;i++)
{
side =sec.planes[i].planeeq.a*lp[0]+sec.planes[i].planeeq.b*lp[1]+sec.planes[i].planeeq.c*lp[2]+sec.planes[i].planeeq.d*lp[3];
if (side>0)
sec.planes[i].visible = TRUE;
else
sec.planes[i].visible = FALSE;
}
glDisable(GL_LIGHTING);
glDepthMask(GL_FALSE);
glDepthFunc(GL_LEQUAL);
glEnable(GL_STENCIL_TEST);
glColorMask(0, 0, 0, 0);
glStencilFunc(GL_ALWAYS, 0, 0xffffffff);
glCullFace(GL_FRONT);
glStencilOp(GL_KEEP, GL_INCR, GL_KEEP);
//glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);
shadowvolume(sec,lp);
glCullFace(GL_BACK);
glStencilOp(GL_KEEP, GL_DECR, GL_KEEP);
//glStencilOp(GL_KEEP,GL_KEEP, GL_INCR);
shadowvolume(sec,lp);
glColorMask(1, 1, 1, 1);
//draw a shadowing rectangle covering the entire screen
glColor4f(0.0f, 0.0f, 0.0f,0.4f);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glStencilFunc(GL_NOTEQUAL, 0, 0xffffffff);
//glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
glPushMatrix();
glLoadIdentity();
glBegin(GL_TRIANGLE_STRIP);
glVertex3f(-0.1f, 0.1f,-0.0010f);
glVertex3f(-0.1f,-0.1f,-0.0010f);
glVertex3f( 0.1f, 0.1f,-0.0010f);
glVertex3f( 0.1f,-0.1f,-0.0010f);
glEnd();
glPopMatrix();
glDisable(GL_BLEND);
glDepthFunc(GL_LEQUAL);
glDepthMask(GL_TRUE);
glEnable(GL_LIGHTING);
glDisable(GL_STENCIL_TEST);
glShadeModel(GL_SMOOTH);
glDisable(GL_CULL_FACE);
}
the VECTOR class is like this:
class VECTOR
{
public:
float x,y,z;
bool operator==(VECTOR vec)
{
if(x==vec.x && y==vec.y && z==vec.z)
return true;
return false;
}
};
the SECTOR class and others is like this:
class PLANEEQ
{
public:
float a,b,c,d;
};
class PLANE
{
public:
unsigned int p[3];//点的序号
VECTOR normal[3];
unsigned int neigh[3];//平面3个相依平面的序号
PLANEEQ planeeq;
bool visible;
PLANE()
{
neigh[0]=0;
neigh[1]=0;
neigh[2]=0;
planeeq.a=0;
planeeq.b=0;
planeeq.c=0;
planeeq.d=0;
visible=false;
}
};
class SECTOR
{
public:
int numpoints;
int numplanes;
vector<VERTEX> points;
vector<PLANE> planes;
MATERIAL material;
bool read();
bool loadtexture();
bool build();
bool plane_calc();
void SetConnectivity();
SECTOR& SECTOR::subdivide(long depth);
SECTOR(string str1,string str2):modelfilename(str1),texturefilename(str2)
{
numpoints=0;
numplanes=0;
}
SECTOR()
{
numpoints=0;
numplanes=0;
}
private:
FILE *modelfilein,*texturefilein;
string modelfilename,texturefilename;
char oneline[255];
UINT texturename;
AUX_RGBImageRec *TextureImage;
};
class POSITION
{
public:
float x,y,z,w;
};
the DrawGLScene function in my main.cpp is like this:
int DrawGLScene(GLvoid)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT |GL_STENCIL_BUFFER_BIT);
glLoadIdentity();
DrawGLRoom();
glLoadIdentity();
GLfloat xtrans = -xpos;
GLfloat ztrans = -zpos;
GLfloat ytrans = -ypos-1.2f;
GLfloat sceneroty = 360.0f - yrot;
glRotatef(lookupdown,1.0f,0,0);
glRotatef(sceneroty,0,1.0f,0);
glTranslatef(xtrans, ytrans, ztrans);
brick_sec.build();
floor_sec.build();
//wall_sec.build();
//CastShadow(wall_sec,(float *)&lightgroup.lights[0].pos);
CastShadow(brick_sec,(float*)&lightgroup.lights[0].pos);
CastShadow(floor_sec,(float*)&lightgroup.lights[0].pos);
lightgroup.build();
glColor4f(0.7f, 0.4f, 0.0f, 1.0f);
glDisable(GL_LIGHTING);
glDepthMask(GL_FALSE);
glTranslatef(lightgroup.lights[0].pos.x, lightgroup.lights[0].pos.y, lightgroup.lights[0].pos.z);
gluSphere(q, 0.2f, 16, 8);
glEnable(GL_LIGHTING);
glDepthMask(GL_TRUE);
if(space_time>0)
{
ypos=sin(space_time*3.1415926/180);
space_time-=4;
}
else
{
sp=false;
}
//glFlush();
return TRUE; // Everything Went OK
}
Since my reputation is under 10,I can't capture the shadow effect to show u how badly it looks like! pls help me,I would thx u for ur attention and ur time!!!
thx Najzero for giving me 5 reputation,now i can capture the screen to show the effect.I will append a detail description follow.
the z-pass algorithm effect:
when i'm not in the effect,it's ok!(the orange pot represent the light)
but when i'm in the wall_shadow,it's not ok!the wall_shadow is gone,although the brick_shadow is still there.
so I need z-fail algorithm to solve this problem.but the last effect my code realized is like this:
the tick represent the shadow effect is right,the cross represent the shadow shouldn't appear on the object.
another screenshot,
a ha,At last,I find the problem in my code.I am so happy ,lol!!!!!!!!!
the problem is gluPerspective(45.0f,(GLfloat)width/(GLfloat)height,0.001f,100.0f);
as the GuentherKrass said in the http://www.opengl.org/discussion_boards/showthread.php/146157-Z-Fail-Stencil-Shadow-Volumes
If you do it this way, be sure to use a perspective projection matrix with an infinite far plane or use GL_DEPTH_CLAMP to avoid the back cap being culled by the far clipping plane.
so I just change the code above to
gluPerspective(45.0f,(GLfloat)width/(GLfloat)height,0.001f,1000000.0f);
alright,It looks like perfect!!!!!!!!!!!!!!!!!111 hahahahaaa
two days, stay up, instant noodles..it's god damn so worth!!
ok,, I will put the last effct picture out.If anyone want my code just email me(nomorefancy#gmail.com)
attention:
the brick shadow is independent of the wall shadow.

Rotating 2D square

I can rotate a 3D object, but it doesn't seem to work for a 2D one.
I'd like to rotate my moveable (via arrows) square for 90 degrees right (rotation center: a center of a square). I've come up with a following code:
class CSquare : public CObject {
SPoint pnta; //left top corner of a square
uint16 len; //length
bool bFill, bRotate; //filled? rotating?
GLubyte color[4]; //filling color
float angle; //rotate for this
public:
CSquare();
CSquare(const CSquare &sqr);
CSquare(SPoint &a, uint16 l, bool fill = false);
CSquare(uint16 x, uint16 y, uint16 l, bool fill = false);
void draw();
void toggleRotate();
void setColor(GLubyte r, GLubyte g, GLubyte b, GLubyte a);
void setPoint(uint16 x, uint16 y);
SPoint getPoint();
uint16 getPosX();
uint16 getPosY();
uint16 getLength();
};
void CSquare::draw() {
glPushMatrix();
if (bRotate)
if (++angle < 360.0f)
{
glTranslatef(pnta.nX + len/2, pnta.nY + len/2, 0);
glRotatef(90, 0, 0, 1);
}
else angle = 0.0f;
if (bFill == true) glBegin(GL_QUADS);
else glBegin(GL_LINE_LOOP);
glColor4ubv(color);
glVertex2i(pnta.nX, pnta.nY);
glColor4ub(255, 255, 0, 0); //temporary to visualise rotation effect
glVertex2i(pnta.nX + len, pnta.nY);
glColor4ub(0, 255, 0, 0);
glVertex2i(pnta.nX + len, pnta.nY + len);
glColor4ub(0, 0, 255, 0);
glVertex2i(pnta.nX, pnta.nY + len);
glEnd();
glPopMatrix();
}
My code works to some extent: it does rotate the object but not with a center in a desired point.
PS. I can upload full application if you need it (Visual Studio 2010 Project, uses FreeGLUT and SDL).
I'm going to assume that you're not actually rotating by a fixed angle: glRotatef(90, 0, 0, 1); If that's not a transcription error, you should fix that first.
That said, rotation always happens around the origin. You draw your shape at (pnta.nX, pnta.nY). It seems that you want to rotate around the shape's center. To do that, you have to first move that point to the origin. Then perform the rotation, then move the point back where you want it:
glPushMatrix();
glTranslatef(pnta.nX + len/2, pnta.nY + len/2, 0);
glRotatef(angle, 0, 0, 1);
glTranslatef(-pnta.nX - len/2, -pnta.nY - len/2, 0);
drawShape();
glPopMatrix();
We often model objects with their geometry centered around the origin by default. That way, we can simply rotate the object and then translate its reference point to where we want it.

Camera rotation in OpenGL not using glRotate glLookAt

I am trying to write a own rotation function for a camera in OpenGL, but I can't get it to run. My camera is mainly from flipcode, with some minor changes:
Camera code:
Camera::Camera(float x, float y, float z) {
memset(Transform, 0, 16*sizeof(float));
Transform[0] = 1.0f;
Transform[5] = 1.0f;
Transform[10] = 1.0f;
Transform[15] = 1.0f;
Transform[12] = x; Transform[13] = y; Transform[14] = z;
Left=&Transform[0];
Up=&Transform[4];
Forward=&Transform[8];
Position=&Transform[12];
old_x = 0;
old_y = 0;
}
The view is set before every rendered frame:
void Camera::setView() {
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
float viewmatrix[16]={//Remove the three - for non-inverted z-axis
Transform[0], Transform[4], -Transform[8], 0,
Transform[1], Transform[5], -Transform[9], 0,
Transform[2], Transform[6], -Transform[10], 0,
-(Transform[0]*Transform[12] +
Transform[1]*Transform[13] +
Transform[2]*Transform[14]),
-(Transform[4]*Transform[12] +
Transform[5]*Transform[13] +
Transform[6]*Transform[14]),
//add a - like above for non-inverted z-axis
(Transform[8]*Transform[12] +
Transform[9]*Transform[13] +
Transform[10]*Transform[14]), 1};
glLoadMatrixf(viewmatrix);
}
Now to my problem, the rotation. Consider for example rotation around the y-axis. This is the rotation matrix stack:
// deg is the angle it is not working in degree or radiant
void Camera::rotateLocal_y(float deg){
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadMatrixf(Transform);
rotateMatrixf_y(Transform, deg);
glGetFloatv(GL_MODELVIEW_MATRIX, Transform);
glPopMatrix();
}
So next I am going to show the rotation function:
//rotate a matrix around y axis
void rotateMatrixf_y(float *aMatrix, float angle){
// x y z t
float rotMatrix[] = {cos(angle),0,-1*sin(angle),0, 0, 1, 0, 0, sin(angle), 0, cos(angle), 0, 0, 0, 0, 1};
multMatrixMatrix(rotMatrix,aMatrix);
}
And finally the matrix multiplication function:
void multMatrixMatrix(float* m_a, float* m_b){
float m_c[16] = {m_a[0]*m_b[0]+m_a[4]*m_b[1]+m_a[8]*m_b[2]+m_a[12]*m_b[3],
m_a[0]*m_b[4]+m_a[4]*m_b[5]+m_a[8]*m_b[6]+m_a[12]*m_b[7],
m_a[0]*m_b[8]+m_a[4]*m_b[9]+m_a[8]*m_b[10]+m_a[12]*m_b[11],
m_a[0]*m_b[12]+m_a[4]*m_b[13]+m_a[8]*m_b[14]+m_a[12]*m_b[15],
m_a[1]*m_b[0]+m_a[5]*m_b[1]+m_a[9]*m_b[2]+m_a[13]*m_b[3],
m_a[1]*m_b[4]+m_a[5]*m_b[5]+m_a[9]*m_b[6]+m_a[13]*m_b[7],
m_a[1]*m_b[8]+m_a[5]*m_b[9]+m_a[9]*m_b[10]+m_a[13]*m_b[11],
m_a[1]*m_b[12]+m_a[5]*m_b[13]+m_a[9]*m_b[14]+m_a[13]*m_b[15],
m_a[2]*m_b[0]+m_a[6]*m_b[1]+m_a[10]*m_b[2]+m_a[14]*m_b[3],
m_a[2]*m_b[4]+m_a[6]*m_b[5]+m_a[10]*m_b[6]+m_a[14]*m_b[7],
m_a[2]*m_b[8]+m_a[6]*m_b[9]+m_a[10]*m_b[10]+m_a[14]*m_b[11],
m_a[2]*m_b[12]+m_a[6]*m_b[13]+m_a[10]*m_b[14]+m_a[14]*m_b[15],
m_a[3]*m_b[0]+m_a[7]*m_b[1]+m_a[11]*m_b[2]+m_a[15]*m_b[3],
m_a[3]*m_b[4]+m_a[7]*m_b[5]+m_a[11]*m_b[6]+m_a[15]*m_b[7],
m_a[3]*m_b[8]+m_a[7]*m_b[9]+m_a[11]*m_b[10]+m_a[15]*m_b[11],
m_a[3]*m_b[12]+m_a[7]*m_b[13]+m_a[11]*m_b[14]+m_a[15]*m_b[15]
};
m_b = m_c;
}
I though this must be it, but it seems as if something is fundamentaly wrong. It is not moving at all. the camera is properly set. The method order is: cam.rotate then cam.setView.
Flipcodes originial rotate function:
void Camera::rotateLoc(float deg, float x, float y, float z) {
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadMatrixf(Transform);
glRotatef(deg, x,y,z);
glGetFloatv(GL_MODELVIEW_MATRIX, Transform);
glPopMatrix();
}
Your code is pretty messy and incomplete.
I think your problem is here :
glPushMatrix();
glLoadMatrixf(Transform); // give the Transform matrix to GL (why?)
rotateMatrixf_y(Transform, deg); // modify the Transform matrix
glGetFloatv(GL_MODELVIEW_MATRIX, Transform); // (3) retrieve the original Tranform matrix
glPopMatrix();
(3) just undoes whatever changes you've been doing in 'Transform' by calling 'rotateMatrixf_y'.
The flipcode code you added is using OpenGL to update the Tranform matrix, by calling glRotatef' and reading back the result, which is fine. In your method code, you should just remove every reference to OpenGL and just keep the call to rotateMatrixf_y, which does all the work in its own.
Do you really understand what's the use of the GL matrix stack ? You should perhaps go back to the basics by either using only GL functions or using your own, but get to know why it works in either way before mixing the uses.