Access Member Variables using templates - c++

I need a template function that can serve generic purpose of accessing a member variable and operating functions present in that member variable. I have a set of functions to be called and this will solve my purpose.
I have tried the following
class Utilities {
public:
template<typename Container, typename MemberVar, typename Operator>
static void for_all(Container& C, MemberVar memvar, Operator Op) {
for (auto& element : C) {
(element.memvar->Op)();
}
}
};
I have the following test code where there is class Test that has PrivateImpl and DataStructure holding that privatimpl.
Below is the print function that calls the Utilities::for_all function with privateimpl's print function
void Test::print() {
::Utilities::for_all(m_vec_struct_privateimpl,&Test::Struct_PrivateImpl::m_privateimpl,&Test::CPrivateImpl::print);
}
Below is the details about all the classes
// Main Class
class Test {
public:
Test();
~Test();
void print();
private:
class CPrivateImpl;
struct Struct_PrivateImpl;
std::vector<Struct_PrivateImpl> m_vec_struct_privateimpl;
}; //class Utilities
// Class PrivateImpl
class Test::CPrivateImpl {
public:
CPrivateImpl(std::initializer_list<int>& lst) {
for (auto& i : lst) {
m_vec_int.push_back(i);
}
}
void print(int i) {
cout << i << " ";
}
private:
std::vector<int> m_vec_int;
}; //class Test::CPrivateImpl
// Data Structure having PrivateImpl
struct Test::Struct_PrivateImpl {
public:
Struct_PrivateImpl(int i) {
m_privateimpl = std::make_shared<Test::CPrivateImpl>(std::initializer_list<int>{100+i,200+i,300+i});
};
~Struct_PrivateImpl() {
}
//private:
std::shared_ptr<CPrivateImpl> m_privateimpl;
}; // class WiperSkeletonSomeIP::Struct_PrivateImpl
Test::Test(){
for(auto i = 0u; i != 3; ++i) {
Struct_PrivateImpl a_struct_pvtimpl(i);
m_vec_struct_privateimpl.push_back(a_struct_pvtimpl);
}
}
void Test::print() {
::Utilities::for_all(m_vec_struct_privateimpl,&Test::Struct_PrivateImpl::m_privateimpl,&Test::CPrivateImpl::print);
}
// This is the main function
int main() {
Test t;
t.print();
}
I am getting error message saying memvar has function Op.
This is an example code I have a lot of functions to be called within PrivateImpl class.
Please help me how to solve this.

Syntax to acces via member pointer is .* or ->*:
class Utilities {
public:
template <typename Container, typename MemberVar, typename Operator>
static void for_all(Container& C, MemberVar memvar, Operator Op)
{
for (auto& element : C) {
((*(element.*memvar)).*Op)();
}
}
};
Demo

Related

What is an easy way to assign member variables of base class templates

I have a class called interface that takes a file provided by user input and then depending on that file type it will initialize a member variable of type BaseDefinitions that is used to map out the specific bytes of the file.
Base
template<class T, class U>
class BaseDefinition
{
public:
T getHeaderBlock() { T new_header_block = {}; return new_header_block; };
U getDataBlock() { U new_data_block = {}; return new_data_block; };
virtual bool validateBytes(T& definition) = 0;
virtual float getDataPoint(U& data) = 0;
};
Derived
struct FileAHeaderBlock {
...
};
struct FileADataBlock {
...
};
class FileADefinition : public BaseDefinition<FileAHeaderBlock, FileADataBlock >
{
public:
bool validateBytes(FileAHeaderBlock& definition) override;
float getDataPoint(FileADataBlock & data) override;
}
Interface header file
class FileInterface
{
public:
FileInterface();
~FileInterface();
void loadDefinition(std::string &file_type);
private:
void extract_header();
BaseDefinition* definition_; //Here is the member variable I am trying to set
std::vector<int> values_;
};
Interface.cpp
void FileInterface::load_defintion(const std::string& filepath)
{
//Psuedo code
if (file_type == std::string(".fileA"))
definition_ = FileADefinition;
else if (file_type == std::string(".fileB"))
definition = FileBDefinition;
}
void FileInterface::extract_header()
{
auto header_buffer = definition_.getHeaderBlock();
//read bits into header buffer
if (!file_.read((char*)(&header_buffer), sizeof(header_buffer)))
{
throw std::runtime_error("File could not be read: ");
}
if (!definition_.validateBytes(header_buffer))
{
std::cout << "got: " << std::string(std::begin(header_buffer.MAGIC), std::end(header_buffer.MAGIC)) << std::endl;
}
values_ = header_buffer.DATA;
}
When I try to build this I get a compiler error from Visual studio saying that the argument list for class template BaseDefinition is missing.
I thought I could set the member variable to a base class then cast to a derived class when I know what file the user wants.
The classes FileADefinition and FileBDefinition both have the same functions just different implementation so I would really like to take advantage of the Object Oriented nature. It seems the structure I use to initialize them is the sticking point. What am I missing that could be done here?
Something along these lines, perhaps. This should be functionally equivalent to your current example.
class BaseDefinition {
public:
virtual std::vector<int> extract_header(std::istream& input) = 0;
};
template <typename T, typename U>
class BaseDefinitionImpl : public BaseDefinition {
protected:
virtual bool validateBytes(T& definition) = 0;
public:
std::vector<int> extract_header(std::istream& input) override {
T header_buffer;
if (!file_.read((char*)(&header_buffer), sizeof(header_buffer)))
{
throw std::runtime_error("File could not be read: ");
}
if (!validateBytes(header_buffer)) {
std::cout << "Bad things happened";
}
return header_buffer.DATA;
}
};
class FileADefinition : public BaseDefinitionImpl<FileAHeaderBlock, FileADataBlock >
{
public:
bool validateBytes(FileAHeaderBlock& definition) override;
}
class FileInterface {
public:
void loadDefinition(std::string &file_type) {
if (file_type == std::string(".fileA"))
definition_ = std::make_unique<FileADefinition>();
}
private:
void extract_header() {
values_ = definition_->extract_header(file_);
}
std::unique_ptr<BaseDefinition> definition_;
std::vector<int> values_;
};

how to add member-variable for a specialized version of a template class?

I have a template class, and at least 95% codes of it is same for all types of the template-parameter, unless a member-variable and a function should be added for one specialization.
The sample I want to get is following:
template <typename T>
class AClass {
private:
T payLoad;
public:
AClass( const T& crp_payload ) : payLoad( crp_payload ) {};
void showMe() {
cout << "Common showMe:" << payLoad << endl;
};
/*
* A lot of functions same for all specializations go here.
* I absolutely don't want to implement respectively them for
* every specializations!
*/
// specializing for int ----------------------------
// dedicated function
template <int>
void showPayload() {
cout << "AClass<int>::showPayload:" << payLoad << endl;
};
// dedicated variable, but following code can not be compiled!
template <int>
int otherPayload;
};
int main() {
AClass<int> iac( 123 );
iac.showMe();
iac.showPayload();//can not pass the compiling!
AClass<float> fac(456);
fac.showMe();
return 0;
};
My questions:
How to add merely "otherPayload" variable without re-coding entire
AClass<int>?
How to call showPayload() sinc I get a error msg when I
do it in main() as above.
Is there no way only by specializing to "revise/supplement" some
members to a class without totally re-implement it?
One possible way would be the good old inheritance:
template<class T> struct Extra {};
template<> struct Extra<int> {
int extraPayload;
void showPayload();
};
template<class T> class Class: public Extra<T> {
void showMe();
};
template<> void Class<int>::showMe() { showPayload(); }
All the specialization-specific parts are extracted in a separate class, and common methods are specialized as needed.
I think you can simply do normal specialization of the template-class:
#include <iostream>
#include <iomanip>
template <typename T>
class BaseClass
{
protected:
T payLoad;
public:
BaseClass(const T& crp_payload)
: payLoad( crp_payload )
{ }
void showMe() {
std::cout << "Common showMe:" << payLoad << std::endl;
}
/*
* A lot of functions same for all specializations go here.
* I absolutely don't want to implement respectively them for
* every specializations!
*/
};
template <typename T>
class AClass
: public BaseClass<T>
{
public:
AClass( const T& crp_payload )
: BaseClass<T>(crp_payload)
{ }
};
// specializing for int ----------------------------
template<>
class AClass<int>
: public BaseClass<int>
{
public:
AClass( int crp_payload )
: BaseClass(crp_payload)
{ }
// dedicated function
void showPayload() {
std::cout << "AClass<int>::showPayload:" << payLoad << std::endl;
}
private:
int otherPayload;
};
int main() {
AClass<int> iac( 123 );
iac.showMe();
iac.showPayload();//can not pass the compiling!
AClass<float> fac(456);
fac.showMe();
return 0;
}

Calling parametrised method on list items with different template parameters

I'm trying to store and manipulate a list of template class objects with different parameter types; the template class has two parametrised methods, one returning the parameter type and a void one accepting it as input.
More specifically, I have a template class defined as follows:
template<typename T>
class Test
{
public:
virtual T a() = 0;
virtual void b(T t) = 0;
};
And different specifications of it, such as:
class TestInt : public Test<int>
{
public:
int a() {
return 1;
}
void b(int t) {
std::cout << t << std::endl;
}
};
class TestString : public Test<std::string>
{
public:
std::string a() {
return "test";
}
void b(std::string t) {
std::cout << t << std::endl;
}
};
I'd like to be able to store in one single list different objects of both TestInt and TestString type and loop through it calling one method as input for the other, as in:
for (auto it = list.begin(); it != list.end(); ++it)
(*it)->b((*it)->a());
I've looked into boost::any but I'm unable to cast the iterator to the specific class, because I don't know the specific parameter type of each stored object. Maybe this cannot be done in a statically typed language as C++, but I was wondering whether there could be a way around it.
Just for the sake of completeness, I'll add that my overall aim is to develop a "parametrised observer", namely being able to define an observer (as with the Observer Pattern) with different parameters: the Test class is the observer class, while the list of different types of observers that I'm trying to properly define is stored within the subject class, which notifies them all through the two methods a() and b().
The virtuals have actually no meaning here, since for each T the signatures are distinct.
So it seems you have Yet Another version of the eternal "how can we emulate virtual functions templates" or "how to create an interface without virtual functions":
Generating an interface without virtual functions?
How to achieve "virtual template function" in C++
The first one basically contains an idea that you could employ here.
Here's an idea of what I'd do:
Live On Coliru
#include <algorithm>
#include <iostream>
namespace mytypes {
template <typename T>
struct Test {
T a() const;
void b(T t) { std::cout << t << std::endl; }
};
template <> int Test<int>::a() const { return 1; }
template <> std::string Test<std::string>::a() const { return "test"; }
using TestInt = Test<int>;
using TestString = Test<std::string>;
}
#include <boost/variant.hpp>
namespace mytypes {
using Value = boost::variant<int, std::string>;
namespace detail {
struct a_f : boost::static_visitor<Value> {
template <typename T>
Value operator()(Test<T> const& o) const { return o.a(); }
};
struct b_f : boost::static_visitor<> {
template <typename T>
void operator()(Test<T>& o, T const& v) const { o.b(v); }
template <typename T, typename V>
void operator()(Test<T>&, V const&) const {
throw std::runtime_error(std::string("type mismatch: ") + __PRETTY_FUNCTION__);
}
};
}
template <typename O>
Value a(O const& obj) {
return boost::apply_visitor(detail::a_f{}, obj);
}
template <typename O, typename V>
void b(O& obj, V const& v) {
boost::apply_visitor(detail::b_f{}, obj, v);
}
}
#include <vector>
int main()
{
using namespace mytypes;
using AnyTest = boost::variant<TestInt, TestString>;
std::vector<AnyTest> list{TestInt(), TestString(), TestInt(), TestString()};
for (auto it = list.begin(); it != list.end(); ++it)
b(*it, a(*it));
}
This prints
1
test
1
test
Bonus Points
If you insist, you can wrap the AnyTest variant into a proper class and have a() and b(...) member functions on that:
Live On Coliru
int main()
{
using namespace mytypes;
std::vector<AnyTest> list{AnyTest(TestInt()), AnyTest(TestString()), AnyTest(TestInt()), AnyTest(TestString())};
for (auto it = list.begin(); it != list.end(); ++it)
it->b(it->a());
}
Expanding on my comment above, the simplest what I can currently think of to achieve what you are trying to do - at least as I understood it from your example code - is the following:
/* Interface for your container, better not forget the destructor! */
struct Test {
virtual void operate(void) = 0;
virtual ~Test() {}
};
/* Implementation hiding actual type */
template<typename T>
struct TestImpl : public T, public Test {
void operate(void) {
T::b(T::a());
}
};
/* Actual code as template policies */
struct IntTest {
int a(void) {
return 42;
}
void b(int value) {
std::cout << value << std::endl;
}
};
struct StringTest {
std::string a(void) {
return "Life? Don't talk to me about life.";
}
void b(std::string value) {
std::cout << value << std::endl;
}
};
You would then need to create a container for objects of class Test and fill it with objects of the respective TestImpl<IntTest>, TestImpl<StringTest>, and so on. To avoid object slicing you need reference or pointer semantics, that is std::vector<std::unique_ptr<Test> > for example.
for (auto it = list.begin(); it != list.end(); ++it) {
(*it)->operate();
}

How to use different functoids within an array or vector

I have written a small piece of code where I am able to call setter and getter functions packed within a functoid using mem_fun templates.
I now would like to use this approach on top of a class hierarchy where every class might have getter and setter which can be registered as pair within a vector or array to be able to call the getter and setter if needed. GUIObject and GUICompositeObject are example classes out of the described class hierarchy.
The bound_mem_fun_t for the objects have unfortunately different types and thats the reason I don't know how to integrate them into an array/vector of pointers to the functors.
In c++11 I would use std::function. Is there a way to emulate this in c++98?
Because our compiler support only c++98 I cannot use the new features of c++11 or c++14. Also boost is not allowed.
#include <functional>
class GUIObject
{
int m_Alpha;
public:
void SetAlpha(int a) { m_Alpha = a;};
int GetAlpha() {return m_Alpha;};
};
class GUICompositeObject: public GUIObject
{
int m_NumOfChilds;
public:
void SetNumOfChilds(int NumOfChilds) { m_NumOfChilds = NumOfChilds;};
int GetNumOfChilds() {return m_NumOfChilds;};
};
template<typename T>
struct bound_mem_fun_t
{
bound_mem_fun_t(std::mem_fun_t<int, T> GetFunc, std::mem_fun1_t<void, T, int> SetFunc, T* o) :
m_GetFunc(GetFunc), m_SetFunc(SetFunc), obj(o) { } ;
int operator()() { return m_GetFunc(obj); } ;
void operator()(int i) { m_SetFunc(obj, i); } ;
std::mem_fun_t<int, T> m_GetFunc;
std::mem_fun1_t<void, T, int> m_SetFunc;
T* obj;
};
int main()
{
GUIObject kGUIObject;
GUICompositeObject kCompObj;
bound_mem_fun_t<GUIObject> GUIObjectFunc(std::mem_fun(&GUIObject::GetAlpha), std::mem_fun(&GUIObject::SetAlpha), &kGUIObject);
GUIObjectFunc(17);
int ii = GUIObjectFunc();
bound_mem_fun_t<GUICompositeObject> GUICompObjectFunc(std::mem_fun(&GUICompositeObject::GetNumOfChilds), std::mem_fun(&GUICompositeObject::SetNumOfChilds), &kCompObj);
GUICompObjectFunc(17);
int iChilds = GUICompObjectFunc();
return 0;
}
Here is the complete solution after #filmors answer:
#include <functional>
#include <vector>
#include <iostream>
class GUIObject
{
int m_Alpha;
public:
void SetAlpha(int a) { m_Alpha = a;};
int GetAlpha() {return m_Alpha;};
};
class GUICompositeObject: public GUIObject
{
int m_NumOfChilds;
public:
void SetNumOfChilds(int NumOfChilds) { m_NumOfChilds = NumOfChilds;};
int GetNumOfChilds() {return m_NumOfChilds;};
};
struct bound_mem_fun_base
{
virtual int operator()() =0;
virtual void operator()(int) =0;
};
template<typename T>
struct bound_mem_fun_t : public bound_mem_fun_base
{
bound_mem_fun_t(std::mem_fun_t<int, T> GetFunc, std::mem_fun1_t<void, T, int> SetFunc, T* o) :
m_GetFunc(GetFunc), m_SetFunc(SetFunc), obj(o) { } ;
virtual int operator()() { return m_GetFunc(obj); } ;
virtual void operator()(int i) { m_SetFunc(obj, i); } ;
std::mem_fun_t<int, T> m_GetFunc;
std::mem_fun1_t<void, T, int> m_SetFunc;
T* obj;
};
template<typename T> bound_mem_fun_t<T>* make_setter(std::mem_fun_t<int, T> GetFunc, std::mem_fun1_t<void, T, int> SetFunc, T* o)
{
return new bound_mem_fun_t<T> (GetFunc, SetFunc, o);
}
int main()
{
GUIObject kGUIObject;
GUICompositeObject kCompObj;
std::vector<bound_mem_fun_base*> kBoundVector;
kBoundVector.push_back(new bound_mem_fun_t<GUIObject> (std::mem_fun(&GUIObject::GetAlpha), std::mem_fun(&GUIObject::SetAlpha), &kGUIObject));
kBoundVector.push_back(new bound_mem_fun_t<GUICompositeObject> (std::mem_fun(&GUICompositeObject::GetNumOfChilds), std::mem_fun(&GUICompositeObject::SetNumOfChilds), &kCompObj));
kBoundVector.push_back(make_setter<GUIObject> (std::mem_fun(&GUIObject::GetAlpha), std::mem_fun(&GUIObject::SetAlpha), &kGUIObject));
kBoundVector.push_back(make_setter<GUICompositeObject> (std::mem_fun(&GUICompositeObject::GetNumOfChilds), std::mem_fun(&GUICompositeObject::SetNumOfChilds), &kCompObj));
for (int i = 0; i < 4 ; i++)
{
(*kBoundVector[i])(i*10);
int res = (*kBoundVector[i])();
std::cout << "Getter result " << res << "\n";
}
return 0;
}
Unfortunately the make_setter function does not really shorten the creation of the functor. Any ideas will be welcome.
Just give your bound_mem_fun_t<T> a common base class and use dynamic dispatch to solve your problem:
struct bound_mem_fun_base {
virtual int operator()() = 0;
virtual void operator()(int) = 0;
};
template <typename T>
struct bound_mem_fun_t : bound_mem_fun_t ...
Then you can keep pointers to bound_mem_fun_base in your vector and call the elements as (*v[0])().
Also, TR1 does contain std::tr1::function, is that available?
First a remark on std::function from c++11: That will not solve your problem, because you need an already bounded function pointer. This pointer must be bound to your object. I believe what you need is an own implementation to std::bind.
I started only a very! small Binder class which is hopefully a starting point for your needs. If you need to have template parameter lists in older c++ versions, take a look for loki. http://loki-lib.sourceforge.net/
As a hint I can give you a short example of what i did:
class A
{
private:
int val;
public:
A(int i): val(i) {}
void Do(int i) { std::cout << "A " << val<< " " << i << std::endl; }
};
class B
{
private:
int val;
public:
B(int i): val(i){}
void Go(int i) { std::cout << "B " << val << " " << i << std::endl; }
};
class Base
{
public:
virtual void operator()(int i)=0;
};
template <typename T>
class Binder: public Base
{
void (T::*fnct)(int);
T* obj;
public:
Binder( void(T::*_fnct)(int), T*_obj):fnct(_fnct),obj(_obj){}
void operator()(int i)
{
(obj->*fnct)(i);
}
};
int main()
{
A a(100);
B b(200);
// c++11 usage for this example
//std::function<void(int)> af= std::bind( &A::Do, &a, std::placeholders::_1);
//af(1);
// hand crafted solution
Base* actions[2];
actions[0]= new Binder<A>( &A::Do, &a);
actions[1]= new Binder<B>( &B::Go, &b);
actions[0]->operator()(55);
actions[1]->operator()(77);
}

Callback in C++, template member?

Following code does NOT work, but it expresses well what I wish to do. There is a problem with the template struct container, which I think SHOULD work because it's size is known for any template argument.
class callback {
public:
// constructs a callback to a method in the context of a given object
template<class C>
callback(C& object, void (C::*method)())
: ptr.o(object), ptr.m(method) {}
// calls the method
void operator()() {
(&ptr.o ->* ptr.m) ();
}
private:
// container for the pointer to method
template<class C>
struct {
C& o;
void (C::*m)();
} ptr;
};
Is there any way to do such a thing? I mean have a non-template class callback which wraps any pointer to method?
Thanks C++ gurus!
Edit:
Please see this:
Callback in C++, template member? (2)
This is a complete working example that does what I think you're trying to do:
#include <iostream>
#include <memory>
// INTERNAL CLASSES
class CallbackSpecBase
{
public:
virtual ~CallbackSpecBase() {}
virtual void operator()() const = 0;
};
template<class C>
class CallbackSpec : public CallbackSpecBase
{
public:
CallbackSpec(C& o, void (C::*m)()) : obj(o), method(m) {}
void operator()() const { (&obj->*method)(); }
private:
C& obj;
void (C::*method)();
};
// PUBLIC API
class Callback
{
public:
Callback() {}
void operator()() { (*spec)(); }
template<class C>
void set(C& o, void (C::*m)()) { spec.reset(new CallbackSpec<C>(o, m)); }
private:
std::auto_ptr<CallbackSpecBase> spec;
};
// TEST CODE
class Test
{
public:
void foo() { std::cout << "Working" << std::endl; }
void bar() { std::cout << "Like a charm" << std::endl; }
};
int main()
{
Test t;
Callback c;
c.set(t, &Test::foo);
c();
c.set(t, &Test::bar);
c();
}
I recently implemented this:
#define UNKOWN_ITEM 0xFFFFFFFF
template <typename TArg>
class DelegateI
{
public:
virtual void operator()(TArg& a)=0;
virtual bool equals(DelegateI<TArg>* d)=0;
};
template <class TArg>
class Event
{
public:
Event()
{
}
~Event()
{
for (size_t x=0; x<m_vDelegates.size(); x++)
delete m_vDelegates[x];
}
void operator()(TArg& a)
{
for (size_t x=0; x<m_vDelegates.size(); x++)
{
m_vDelegates[x]->operator()(a);
}
}
void operator+=(DelegateI<TArg>* d)
{
if (findInfo(d) != UNKOWN_ITEM)
{
delete d;
return;
}
m_vDelegates.push_back(d);
}
void operator-=(DelegateI<TArg>* d)
{
uint32 index = findInfo(d);
delete d;
if (index == UNKOWN_ITEM)
return;
m_vDelegates.erase(m_vDelegates.begin()+index);
}
protected:
int findInfo(DelegateI<TArg>* d)
{
for (size_t x=0; x<m_vDelegates.size(); x++)
{
if (m_vDelegates[x]->equals(d))
return (int)x;
}
return UNKOWN_ITEM;
}
private:
std::vector<DelegateI<TArg>*> m_vDelegates;
};
template <class TObj, typename TArg>
class ObjDelegate : public DelegateI<TArg>
{
public:
typedef void (TObj::*TFunct)(TArg&);
ObjDelegate(TObj* t, TFunct f)
{
m_pObj = t;
m_pFunct = f;
}
virtual bool equals(DelegateI<TArg>* di)
{
ObjDelegate<TObj,TArg> *d = dynamic_cast<ObjDelegate<TObj,TArg>*>(di);
if (!d)
return false;
return ((m_pObj == d->m_pObj) && (m_pFunct == d->m_pFunct));
}
virtual void operator()(TArg& a)
{
if (m_pObj && m_pFunct)
{
(*m_pObj.*m_pFunct)(a);
}
}
TFunct m_pFunct; // pointer to member function
TObj* m_pObj; // pointer to object
};
template <typename TArg>
class FunctDelegate : public DelegateI<TArg>
{
public:
typedef void (*TFunct)(TArg&);
FunctDelegate(TFunct f)
{
m_pFunct = f;
}
virtual bool equals(DelegateI<TArg>* di)
{
FunctDelegate<TArg> *d = dynamic_cast<FunctDelegate<TArg>*>(di);
if (!d)
return false;
return (m_pFunct == d->m_pFunct);
}
virtual void operator()(TArg& a)
{
if (m_pFunct)
{
(*m_pFunct)(a);
}
}
TFunct m_pFunct; // pointer to member function
};
template <typename TArg>
class ProxieDelegate : public DelegateI<TArg>
{
public:
ProxieDelegate(Event<TArg>* e)
{
m_pEvent = e;
}
virtual bool equals(DelegateI<TArg>* di)
{
ProxieDelegate<TArg> *d = dynamic_cast<ProxieDelegate<TArg>*>(di);
if (!d)
return false;
return (m_pEvent == d->m_pEvent);
}
virtual void operator()(TArg& a)
{
if (m_pEvent)
{
(*m_pEvent)(a);
}
}
Event<TArg>* m_pEvent; // pointer to member function
};
template <class TObj, class TArg>
DelegateI<TArg>* delegate(TObj* pObj, void (TObj::*NotifyMethod)(TArg&))
{
return new ObjDelegate<TObj, TArg>(pObj, NotifyMethod);
}
template <class TArg>
DelegateI<TArg>* delegate(void (*NotifyMethod)(TArg&))
{
return new FunctDelegate<TArg>(NotifyMethod);
}
template <class TArg>
DelegateI<TArg>* delegate(Event<TArg>* e)
{
return new ProxieDelegate<TArg>(e);
}
use it like so:
define:
Event<SomeClass> someEvent;
enlist callbacks:
someEvent += delegate(&someFunction);
someEvent += delegate(classPtr, &class::classFunction);
someEvent += delegate(&someOtherEvent);
trigger:
someEvent(someClassObj);
You can also make your own delegates and overide what they do. I made a couple of others with one being able to make sure the event triggers the function in the gui thread instead of the thread it was called.
You need to use polymorphism. Use an abstract base class with a virtual invocation method (operator() if you please), with a templated descendant that implements the virtual method using the correct type signature.
The way you have it now, the data holding the type is templated, but the code meant to invoke the method and pass the object isn't. That won't work; the template type parameters need to flow through both construction and invocation.
#Barry Kelly
#include <iostream>
class callback {
public:
virtual void operator()() {};
};
template<class C>
class callback_specialization : public callback {
public:
callback_specialization(C& object, void (C::*method)())
: o(object), m(method) {}
void operator()() {
(&o ->* m) ();
}
private:
C& o;
void (C::*m)();
};
class X {
public:
void y() { std::cout << "ok\n"; }
};
int main() {
X x;
callback c(callback_specialization<X>(x, &X::y));
c();
return 0;
}
I tried this, but it does not work (print "ok")... why?
Edit:
As Neil Butterworth mentioned, polymorphism works through pointers and references,
X x;
callback& c = callback_specialization<X>(x, &X::y);
c();
Edit:
With this code, I get an error:
invalid initialization of non-const reference of type ‘callback&’
from a temporary of type ‘callback_specialization<X>’
Now, I don't understand that error, but if I replace callback& c with const callback& c and virtual void operator()() with virtual void operator()() const, it works.
You didn't say what errors you found, but I found that this worked:
template<typename C>
class callback {
public:
// constructs a callback to a method in the context of a given object
callback(C& object, void (C::*method)())
: ptr(object,method) {}
// calls the method
void operator()() {
(&ptr.o ->* ptr.m) ();
}
private:
// container for the pointer to method
// template<class C>
struct Ptr{
Ptr(C& object, void (C::*method)()): o(object), m(method) {}
C& o;
void (C::*m)();
} ptr;
};
Note that Ptr needs a constructor as it has a reference member.
You could do without struct Ptr and have the raw members.
Tested with VS2008 express.
Improving the OP's answer:
int main() {
X x;
callback_specialization<X> c(x, &X::y);
callback& ref(c);
c();
return 0;
}
This prints "ok".
Tested on VS2008 express.
Please see this
Callback in C++, template member? (2)