Related
I'm trying to write a image via UART on Beaglebone Black. But when I use the write() function in library .
int write(int handle, void *buffer, int nbyte);
Regardless of the agurment nbyte has int type, I can not transfer 70kB at once. I displayed the number of byte which is transfered, and the result is the number of byte = 4111.
length = write(fd,body.c_str(),strlen(body.c_str())); //
cout<<length<<endl; // result length = 4111;
cout<<strlen(body.c_str())<<endl; // result strlen(body.c_str()) = 72255;
I hope to hear from you!
The write call does not assure that you can write the amount of data supplied, that's why it as an integer as its return, not a Boolean. The behavior you see is actually common among different operating systems, it may be due to the underline device might does not have sufficient buffer or storage for you to write 70kb. What you need is to write in a loop, each write will write the amount that is left unwritten:
int total = body.length(); // or strlen(body.c_str())
char *buffer = body.c_str();
int written = 0;
int ret;
while (written < total) {
ret = write(fd, buffer + written, total - written);
if (ret < 0) {
// error
break;
}
written += ret;
}
I am trying to send (ideally) a 2d buffer from one process to another, over a Message Queue, but i am attempting to do it first with a 1d buffer.
The functions called to initialization the queue are the following:
HANDLE MsgQueueCommunicator::InitMessageQueue_data(bool IsRead,wchar16_t* wQueueName)
{
MSGQUEUEOPTIONS msgopts;
msgopts.dwSize = sizeof(MSGQUEUEOPTIONS);
msgopts.dwFlags = MSGQUEUE_ALLOW_BROKEN;//0;
msgopts.dwMaxMessages = 0;
msgopts.cbMaxMessage = sizeof(data[20]);
msgopts.bReadAccess = IsRead;
HANDLE hq = CreateMsgQueue(wQueueName, &msgopts);
if ( hq == NULL )
{
return NULL;
}
return hq;
}
Queue initialization in process 1:
HANDLE hMsgQueueR = MsgQueueCommunicator::getInstance()->InitMessageQueue_data(true, L"CommDataStreaming");
Queue initialization in process 2:
HANDLE s_hMsgQueue_Communication = MsgQueueCommunicator::getInstance()->InitMessageQueue_data(false,L"CommDataStreaming");
To write to the queue, i call the following functions:
BOOL MsgQueueCommunicator::Write_Array_To_Queue(HANDLE hq,double data[20])
{
return WriteMsgQueue(hq,(LPVOID)&data, sizeof(data),INFINITE,0);
}
MsgQueueCommunicator::getInstance()->Write_Array_To_Queue(s_hMsgQueue_Communication, usb_data);
Where usb_data is a 1d double array.
To read from the queue, i call the following functions:
BOOL MsgQueueCommunicator::Read_Array_From_Msg_Queue(HANDLE hq,double data[20])
{
DWORD dwBytesRead;
DWORD dwFlags;
return ReadMsgQueue(hq, (LPVOID)&data, sizeof(data), &dwBytesRead, INFINITE, &dwFlags);
}
MsgQueueCommunicator::getInstance()->Read_Array_From_Msg_Queue(hMsgQueueR, usb_data);
Where usb_data is again a 1d double array.
Now, when i check the values that are placed into usb_data[20] before it is written to the queue, i can see that they are non-zero integers. However, when i read the array from the queue and check its values, they are zero. Im not sure what is causing this issue. I've used message queues to send single values, strings, and structs, so i figured i would be able to follow the same procedure to send over an array, but this does not seem to be the case, unless i am overlooking something.
My question is, can i send arrays/buffers over a message queue, and if yes, have I set it up properly?
Note:This is being developed in a windows embedded compact 7 environment and VS2008.
There are several problems with the code provided.
1) Wrong parameter values - you do not need to take an address of the data buffer since the variable is already a pointer to the beginning of the memory that contains the elements. So change (LPVOID)&data to (LPVOID)data.
2) Wrong size - the sizeof operator will return 4 since that is the size of the pointer. In your case you would need to pass 160 as the size (20 * sizeof(double)).
As for variable size writes - this gets a bit more complicated since you need to know how much data to read at the other end. What you can do is use lets say first/first two/first four bytes of the buffer to contain size and then proceed with the data. Then you can have a function that accepts a double array of variable length and writes it. For example:
BOOL Write_Array_To_Queue(HANDLE hq,double data[], unsigned int count)
{
size_t buffer_size = sizeof(count) + count * sizeof(double);
BYTE* buffer = new BYTE[buffer_size];
memcpy(buffer, &count, sizeof(count));
memcpy(buffer + sizeof(count), &data, sizeof(double) * count);
return WriteMsgQueue(hq,(LPVOID)buffer, buffer_size,INFINITE,0);
}
or
BOOL Write_Array_To_Queue(HANDLE hq,double data[], unsigned int count)
{
return WriteMsgQueue(hq,(LPVOID)&count, sizeof(count),INFINITE,0) && WriteMsgQueue(hq,(LPVOID)data, sizeof(double) * count,INFINITE,0);
}
and then in the receiving side you would first read out an unsigned int and then read as much data as denoted by the read value.
I wonder why this code doesn't work:
#include <iostream>
using namespace std;
int main()
{
int *pointer = (int*)0x02F70BCC;
cout<<*pointer;
return 0;
}
In my opinion it should write on the screen value of 0x02F70BCC,
instead of this my programm crashes.
I know that memory with adress 0x02F70BCC stores value of 20.
But like I said no matter what it just doesn't want to show correct number.
Please help me guys, detailed explanation would be very nice of you.
It doesn't work, because you won't get access to every location in memory you want. Not every location in memory is valid, you may want to read about Virtual Address Space.
Some addresses are reserved for device drivers and kernel mode operations. Another range of addresses (for example 0xCCCCCCCC and higher) may be reserved for uninitialized pointers.
Even if some location is valid, operating system may still deny access to write to/read from certain location, if that would cause undefined behaviour or violate system safety.
EDIT
I think you might be interested in creating some kind of "GameHack", that allows you to modify amount of resources, number of units, experience level, attributes or anything.
Memory access is not a simple topic. Different OSes use different strategies to prevent security violations. But many thing can be done here, after all there is a lot software for doing such things.
First of all, do you really need to write your own tool? If you just want some cheating, use ArtMoney - it is a great memory editor, that I have been using for years.
But if you really have to write it manually, you need to do some research first.
On Windows, for example, I would start from these:
ReadProcessMemory
WriteProcessMemory
Also, I am quite certain, that one of possible techniques is to pretend, that you are a debugger:
DebugActiveProcess.
EDIT 2
I have done some research and it looks, that on Windows (I assume this is your platform, since you mentioned gaming; can't imagine playing anything on crappy Linux), steps required to write another process' memory are:
1. Enumerate processes: (EnumProcesses)
const size_t MAX_PROC_NUM = 512;
DWORD procIDs[MAX_PROC_NUM] = { 0 };
DWORD idsNum = 0;
if(!EnumProcesses(procIDs, sizeof(DWORD) * MAX_PROC_NUM, &idsNum))
//handle error here
idsNum /= sizeof(DWORD); //After EnumProcesses(), idsNum contains number of BYTES!
2. Open required process. (OpenProcess,GetModuleFileNameEx)
const char* game_exe_path = "E:\\Games\\Spellforce\\Spellforce.exe"; //Example
HANDLE game_proc_handle = nullptr;
DWORD proc_access = PROCESS_QUERY_INFORMATION | PROCESS_VM_READ | PROCESS_VM_WRITE; //read & write memory, query info needed to get .exe name
const DWORD MAX_EXE_PATH_LEN = 1024;
for(DWORD n = 0 ; n < idsNum ; ++idsNum)
{
DWORD current_id = procIDs[n];
HANDLE current_handle = OpenProcess(proc_access, false, current_id);
if(!current_handle)
{
//handle error here
continue;
}
char current_path[MAX_EXE_PATH_LEN];
DWORD length = GetModuleFileNameEx(current_handle, nullptr, current_path, MAX_EXE_PATH_LEN);
if(length > 0)
{
if(strcmp(current_path, game_exe_path) == 0) //that's our game!
{
game_proc_handle = current_handle;
break;
}
}
CloseHandle(current_handle); //don't forget this!
}
if(!game_proc_handle)
//sorry, game not found
3. Write memory (WriteProcessMemory)
void* pointer = reinterpret_cast<void*>(0x02F70BCC);
int new_value = 5000; //value to be written
BOOL success = WriteProcessMemory(game_proc_handle, pointer, &new_value, sizeof(int), nullptr);
if(success)
//data successfully written!
else
//well, that's... em...
This code is written just 'as is', but I see no errors, so you can use it as your starting point. I also provided links for all functions I used, so with some additional research (if necessary), you can achieve what you are trying to.
Cheers.
When you use,
cout<<*pointer;
the program tries to dereference the value of the pointer and writes the value at the address.
If you want to print just the pointer, use:
cout << pointer;
Example:
int main()
{
int i = 20;
int* p = &i;
std::cout << *p << std::endl; // print the value stored at the address
// pointed to by p. In this case, it will
// print the value of i, which is 20
std::cout << p << std::endl; // print the address that p points to
// It will print the address of i.
}
I'm writing an algorithm in C++ that scans a file with a "sliding window," meaning it will scan bytes 0 to n, do something, then scan bytes 1 to n+1, do something, and so forth, until the end is reached.
My first algorithm was to read the first n bytes, do something, dump one byte, read a new byte, and repeat. This was very slow because to "ReadFile" from HDD one byte at a time was inefficient. (About 100kB/s)
My second algorithm involves reading a chunk of the file (perhaps n*1000 bytes, meaning the whole file if it's not too large) into a buffer and reading individual bytes off the buffer. Now I get about 10MB/s (decent SSD + Core i5, 1.6GHz laptop).
My question: Do you have suggestions for even faster models?
edit: My big buffer (relative to the window size) is implemented as follows:
- for a rolling window of 5kB, the buffer is initialized to 5MB
- read the first 5MB of the file into the buffer
- the window pointer starts at the beginning of the buffer
- upon shifting, the window pointer is incremented
- when the window pointer nears the end of the 5MB buffer, (say at 4.99MB), copy the remaining 0.01MB to the beginning of the buffer, reset the window pointer to the beginning, and read an additional 4.99MB into the buffer.
- repeat
edit 2 - the actual implementation (removed)
Thank you all for many insightful response. It was hard to select a "best answer"; they were all excellent and helped with my coding.
I use a sliding window in one of my apps (actually, several layers of sliding windows working on top of each other, but that is outside the scope of this discussion). The window uses a memory-mapped file view via CreateFileMapping() and MapViewOfFile(), then I have an an abstraction layer on top of that. I ask the abstraction layer for any range of bytes I need, and it ensures that the file mapping and file view are adjusted accordingly so those bytes are in memory. Every time a new range of bytes is requested, the file view is adjusted only if needed.
The file view is positioned and sized on page boundaries that are even multiples of the system granularity as reported by GetSystemInfo(). Just because a scan reaches the end of a given byte range does not necessarily mean it has reached the end of a page boundary yet, so the next scan may not need to alter the file view at all, the next bytes are already in memory. If the first requested byte of a range exceeds the right-hand boundary of a mapped page, the left edge of the file view is adjusted to the left-hand boundary of the requested page and any pages to the left are unmapped. If the last requested byte in the range exceeds the right-hand boundary of the right-most mapped page, a new page is mapped and added to the file view.
It sounds more complex than it really is to implement once you get into the coding of it:
Creating a View Within a File
It sounds like you are scanning bytes in fixed-sized blocks, so this approach is very fast and very efficient for that. Based on this technique, I can sequentially scan multi-GIGBYTE files from start to end fairly quickly, usually a minute or less on my slowest machine. If your files are smaller then the system granularity, or even just a few megabytes, you will hardly notice any time elapsed at all (unless your scans themselves are slow).
Update: here is a simplified variation of what I use:
class FileView
{
private:
DWORD m_AllocGran;
DWORD m_PageSize;
HANDLE m_File;
unsigned __int64 m_FileSize;
HANDLE m_Map;
unsigned __int64 m_MapSize;
LPBYTE m_View;
unsigned __int64 m_ViewOffset;
DWORD m_ViewSize;
void CloseMap()
{
CloseView();
if (m_Map != NULL)
{
CloseHandle(m_Map);
m_Map = NULL;
}
m_MapSize = 0;
}
void CloseView()
{
if (m_View != NULL)
{
UnmapViewOfFile(m_View);
m_View = NULL;
}
m_ViewOffset = 0;
m_ViewSize = 0;
}
bool EnsureMap(unsigned __int64 Size)
{
// do not exceed EOF or else the file on disk will grow!
Size = min(Size, m_FileSize);
if ((m_Map == NULL) ||
(m_MapSize != Size))
{
// a new map is needed...
CloseMap();
ULARGE_INTEGER ul;
ul.QuadPart = Size;
m_Map = CreateFileMapping(m_File, NULL, PAGE_READONLY, ul.HighPart, ul.LowPart, NULL);
if (m_Map == NULL)
return false;
m_MapSize = Size;
}
return true;
}
bool EnsureView(unsigned __int64 Offset, DWORD Size)
{
if ((m_View == NULL) ||
(Offset < m_ViewOffset) ||
((Offset + Size) > (m_ViewOffset + m_ViewSize)))
{
// the requested range is not already in view...
// round down the offset to the nearest allocation boundary
unsigned __int64 ulNewOffset = ((Offset / m_AllocGran) * m_AllocGran);
// round up the size to the next page boundary
DWORD dwNewSize = ((((Offset - ulNewOffset) + Size) + (m_PageSize-1)) & ~(m_PageSize-1));
// if the new view will exceed EOF, truncate it
unsigned __int64 ulOffsetInFile = (ulNewOffset + dwNewSize);
if (ulOffsetInFile > m_FileSize)
dwNewViewSize -= (ulOffsetInFile - m_FileSize);
if ((m_View == NULL) ||
(m_ViewOffset != ulNewOffset) ||
(m_ViewSize != ulNewSize))
{
// a new view is needed...
CloseView();
// make sure the memory map is large enough to contain the entire view
if (!EnsureMap(ulNewOffset + dwNewSize))
return false;
ULARGE_INTEGER ul;
ul.QuadPart = ulNewOffset;
m_View = (LPBYTE) MapViewOfFile(m_Map, FILE_MAP_READ, ul.HighPart, ul.LowPart, dwNewSize);
if (m_View == NULL)
return false;
m_ViewOffset = ulNewOffset;
m_ViewSize = dwNewSize;
}
}
return true;
}
public:
FileView() :
m_AllocGran(0),
m_PageSize(0),
m_File(INVALID_HANDLE_VALUE),
m_FileSize(0),
m_Map(NULL),
m_MapSize(0),
m_View(NULL),
m_ViewOffset(0),
m_ViewSize(0)
{
// map views need to be positioned on even multiples
// of the system allocation granularity. let's size
// them on even multiples of the system page size...
SYSTEM_INFO si = {0};
if (GetSystemInfo(&si))
{
m_AllocGran = si.dwAllocationGranularity;
m_PageSize = si.dwPageSize;
}
}
~FileView()
{
CloseFile();
}
bool OpenFile(LPTSTR FileName)
{
CloseFile();
if ((m_AllocGran == 0) || (m_PageSize == 0))
return false;
HANDLE hFile = CreateFile(FileName, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL);
if (hFile == INVALID_HANDLE_VALUE)
return false;
ULARGE_INTEGER ul;
ul.LowPart = GetFileSize(hFile, &ul.HighPart);
if ((ul.LowPart == INVALID_FILE_SIZE) && (GetLastError() != 0))
{
CloseHandle(hFile);
return false;
}
m_File = hFile;
m_FileSize = ul.QuadPart;
return true;
}
void CloseFile()
{
CloseMap();
if (m_File != INVALID_HANDLE_VALUE)
{
CloseHandle(m_File);
m_File = INVALID_HANDLE_VALUE;
}
m_FileSize = 0;
}
bool AccessBytes(unsigned __int64 Offset, DWORD Size, LPBYTE *Bytes, DWORD *Available)
{
if (Bytes) *Bytes = NULL;
if (Available) *Available = 0;
if ((m_FileSize != 0) && (offset < m_FileSize))
{
// make sure the requested range is in view
if (!EnsureView(Offset, Size))
return false;
// near EOF, the available bytes may be less than requested
DWORD dwOffsetInView = (Offset - m_ViewOffset);
if (Bytes) *Bytes = &m_View[dwOffsetInView];
if (Available) *Available = min(m_ViewSize - dwOffsetInView, Size);
}
return true;
}
};
.
FileView fv;
if (fv.OpenFile(TEXT("C:\\path\\file.ext")))
{
LPBYTE data;
DWORD len;
unsigned __int64 offset = 0, filesize = fv.FileSize();
while (offset < filesize)
{
if (!fv.AccessBytes(offset, some size here, &data, &len))
break; // error
if (len == 0)
break; // unexpected EOF
// use data up to len bytes as needed...
offset += len;
}
fv.CloseFile();
}
This code is designed to allow random jumping anywhere in the file at any data size. Since you are reading bytes sequentially, some of the logic can be simplified as needed.
Your new algorithm only pays 0.1% of the I/O inefficiencies... not worth worrying about.
To get further throughput improvement, you should take a closer look at the "do something" step. See whether you can reuse part of the result from an overlapping window. Check cache behavior. Check if there's a better algorithm for the same computation.
You have the basic I/O technique down. The easiest improvement you can make now is to pick a good buffer size. With some experimentation, you'll find that read performance increases quickly with buffer size until you hit about 16k, then performance begins to level out.
Your next task is probably to profile your code, and see where it is spending its time. When dealing with performance, it is always best to measure rather than guess. You don't mention what OS you're using, so I won't make any profiler recommendations.
You can also try to reduce the amount of copying/moving of data between your buffer and your workspace. Less copying is generally better. If you can process your data in-place instead of moving it to a new location, that's a win. (I see from your edits you're already doing this.)
Finally, if you're processing many gigabytes of archived information then you should consider keeping your data compressed. It will come as a surprise to many people that it is faster to read compressed data and then decompress it than it is to just read decompressed data. My favorite algorithm for this purpose is LZO which doesn't compress as well as some other algorithms, but decompresses impressively fast. This kind of setup is only worth the engineering effort if:
Your job is I/O bound.
You are reading many G of data.
You're running the program frequently, so it saves you a lot of time to make it run
faster.
I have a very large file and I need to read it in small pieces and then process each piece. I'm using MapViewOfFile function to map a piece in memory, but after reading first part I can't read the second. It throws when I'm trying to map it.
char *tmp_buffer = new char[bufferSize];
LPCWSTR input = L"input";
OFSTRUCT tOfStr;
tOfStr.cBytes = sizeof tOfStr;
HANDLE inputFile = (HANDLE)OpenFile(inputFileName, &tOfStr, OF_READ);
HANDLE fileMap = CreateFileMapping(inputFile, NULL, PAGE_READONLY, 0, 0, input);
while (offset < fileSize)
{
long k = 0;
bool cutted = false;
offset -= tempBufferSize;
if (fileSize - offset <= bufferSize)
{
bufferSize = fileSize - offset;
}
char *buffer = new char[bufferSize + tempBufferSize];
for(int i = 0; i < tempBufferSize; i++)
{
buffer[i] = tempBuffer[i];
}
char *tmp_buffer = new char[bufferSize];
LPCWSTR input = L"input";
HANDLE inputFile;
OFSTRUCT tOfStr;
tOfStr.cBytes = sizeof tOfStr;
long long offsetHigh = ((offset >> 32) & 0xFFFFFFFF);
long long offsetLow = (offset & 0xFFFFFFFF);
tmp_buffer = (char *)MapViewOfFile(fileMap, FILE_MAP_READ, (int)offsetHigh, (int)offsetLow, bufferSize);
memcpy(&buffer[tempBufferSize], &tmp_buffer[0], bufferSize);
UnmapViewOfFile(tmp_buffer);
offset += bufferSize;
offsetHigh = ((offset >> 32) & 0xFFFFFFFF);
offsetLow = (offset & 0xFFFFFFFF);
if (offset < fileSize)
{
char *next;
next = (char *)MapViewOfFile(fileMap, FILE_MAP_READ, (int)offsetHigh, (int)offsetLow, 1);
if (next[0] >= '0' && next[0] <= '9')
{
cutted = true;
}
UnmapViewOfFile(next);
}
ostringstream path_stream;
path_stream << tempPath << splitNum;
ProcessChunk(buffer, path_stream.str(), cutted, bufferSize);
delete buffer;
cout << (splitNum + 1) << " file(s) sorted" << endl;
splitNum++;
}
One possibility is that you're not using an offset that's a multiple of the allocation granularity. From MSDN:
The combination of the high and low offsets must specify an offset within the file mapping. They must also match the memory allocation granularity of the system. That is, the offset must be a multiple of the allocation granularity. To obtain the memory allocation granularity of the system, use the GetSystemInfo function, which fills in the members of a SYSTEM_INFO structure.
If you try to map at something other than a multiple of the allocation granularity, the mapping will fail and GetLastError will return ERROR_MAPPED_ALIGNMENT.
Other than that, there are many problems in the code sample that make it very difficult to see what you're trying to do and where it's going wrong. At a minimum, you need to solve the memory leaks. You seem to be allocating and then leaking completely unnecessary buffers. Giving them better names can make it clear what they are actually used for.
Then I suggest putting a breakpoint on the calls to MapViewOfFile, and then checking all of the parameter values you're passing in to make sure they look right. As a start, on the second call, you'd expect offsetHigh to be 0 and offsetLow to be bufferSize.
A few suspicious things off the bat:
HANDLE inputFile = (HANDLE)OpenFile(inputFileName, &tOfStr, OF_READ);
Every cast should make you suspicious. Sometimes they are necessary, but make sure you understand why. At this point you should ask yourself why every other file API you're using requires a HANDLE and this function returns an HFILE. If you check OpenFile documentation, you'll see, "This function has limited capabilities and is not recommended. For new application development, use the CreateFile function." I know that sounds confusing because you want to open an existing file, but CreateFile can do exactly that, and it returns the right type.
long long offsetHigh = ((offset >> 32) & 0xFFFFFFFF);
What type is offset? You probably want to make sure it's an unsigned long long or equivalent. When bitshifting, especially to the right, you almost always want an unsigned type to avoid sign-extension. You also have to make sure that it's a type that has more bits than the amount you're shifting by--shifting a 32-bit value by 32 (or more) bits is actually undefined in C and C++, which allows the compilers to do certain types of optimizations.
long long offsetLow = (offset & 0xFFFFFFFF);
In both of these statements, you have to be careful about the 0xFFFFFFFF value. Since you didn't cast it or give it a suffix, it can be hard to predict whether the compiler will treat it as an int or unsigned int. In this case,
it'll be an unsigned int, but that won't be obvious to many people. In fact,
I got this wrong when I first wrote this answer. [This paragraph corrected 16-MAY-2017] With bitwise operations, you almost always want to make sure you're using unsigned values.
tmp_buffer = (char *)MapViewOfFile(fileMap, FILE_MAP_READ, (int)offsetHigh, (int)offsetLow, bufferSize);
You're casting offsetHigh and offsetLow to ints, which are signed values. The API actually wants DWORDs, which are unsigned values. Rather than casting in the call, I would declare offsetHigh and offsetLow as DWORDs and do the casting in the initialization, like this:
DWORD offsetHigh = static_cast<DWORD>((offset >> 32) & 0xFFFFFFFFul);
DWORD offsetLow = static_cast<DWORD>( offset & 0xFFFFFFFFul);
tmp_buffer = reinterpret_cast<const char *>(MapViewOfFile(fileMap, FILE_MAP_READ, offsetHigh, offsetLow, bufferSize));
Those fixes may or may not resolve your problem. It's hard to tell what's going on from the incomplete code sample.
Here's a working sample you can compare to:
// Calls ProcessChunk with each chunk of the file.
void ReadInChunks(const WCHAR *pszFileName) {
// Offsets must be a multiple of the system's allocation granularity. We
// guarantee this by making our view size equal to the allocation granularity.
SYSTEM_INFO sysinfo = {0};
::GetSystemInfo(&sysinfo);
DWORD cbView = sysinfo.dwAllocationGranularity;
HANDLE hfile = ::CreateFileW(pszFileName, GENERIC_READ, FILE_SHARE_READ,
NULL, OPEN_EXISTING, 0, NULL);
if (hfile != INVALID_HANDLE_VALUE) {
LARGE_INTEGER file_size = {0};
::GetFileSizeEx(hfile, &file_size);
const unsigned long long cbFile =
static_cast<unsigned long long>(file_size.QuadPart);
HANDLE hmap = ::CreateFileMappingW(hfile, NULL, PAGE_READONLY, 0, 0, NULL);
if (hmap != NULL) {
for (unsigned long long offset = 0; offset < cbFile; offset += cbView) {
DWORD high = static_cast<DWORD>((offset >> 32) & 0xFFFFFFFFul);
DWORD low = static_cast<DWORD>( offset & 0xFFFFFFFFul);
// The last view may be shorter.
if (offset + cbView > cbFile) {
cbView = static_cast<int>(cbFile - offset);
}
const char *pView = static_cast<const char *>(
::MapViewOfFile(hmap, FILE_MAP_READ, high, low, cbView));
if (pView != NULL) {
ProcessChunk(pView, cbView);
}
}
::CloseHandle(hmap);
}
::CloseHandle(hfile);
}
}
You have a memory leak in your code:
char *tmp_buffer = new char[bufferSize];
[ ... ]
while (offset < fileSize)
{
[ ... ]
char *tmp_buffer = new char[bufferSize];
[ ... ]
tmp_buffer = (char *)MapViewOfFile(fileMap, FILE_MAP_READ, (int)offsetHigh, (int)offsetLow, bufferSize);
[ ... ]
}
You're never delete what you allocate via new char[] during every iteration there. If your file is large enough / you do enough iterations of this loop, the memory allocation will eventually fail - that's then you'll see a throw() done by the allocator.
Win32 API calls like MapViewOfFile() are not C++ and never throw, they return error codes (the latter NULL on failure). Therefore, if you see exceptions, something's wrong in you C++ code. Likely the above.
I also had some troubles with memory mapped files.
Basically I just wanted to share memory (1Mo) between 2 apps on the same Pc.
- Both apps where written in Delphi
- Using Windows8 Pro
At first one application (the first one launched) could read and write the memoryMappedFile, but the second one could only read it (error 5 : AccessDenied)
Finally after a lot of testing It suddenly worked when both application where using CreateFileMapping. I even tried to create my on security descriptor, nothing helped.
Just before my applications where first calling OpenFileMapping and then CreateFileMapping if the first one failed
Another thing that misleaded me is that the handles , although visibly referencing the same MemoryMappedFile where different in both applications.
One last thing, after this correction my application seemed to work all right, but after a while I had error_NotEnough_Memory. when calling MapViewOfFile.
It was just a beginner's mistake of my part, I was not always calling UnmapViewOfFile.