Accessing an object in a moved-from state - c++

Let's say I have a class that manages a resource. Every method has a precondition that must be satisfied: the managed resource must be in a valid state (same way as unique_ptr with its operator* and operator->), and if the object is in a moved-from state, that precondition is not satisfied. For cases where I'm accessing a moved-from object (either accidentally or deliberately for whatever reason), this raises the following questions:
Is it good design to check (assert) if the precondition is satisfied at the beginning of every method?
If yes, how exactly would it be good design to address the issue in case it is not? Perhaps throw an exception or something? (I understand this is an opinion-based question)

Is it good design to check (assert) if the precondition is satisfied at the beginning of every method?
If you can statically assert on it then yes. During runtime no. Consider a caller that has code like this
for (int i=0; i<100000;++i) {
foo.bar();
}
Checking the precondition on every iteration is a waste of resources when the condition does not change.
If yes, how exactly would it be good design to address the issue in case it is not? Perhaps throw an exception or something? (I understand this is an opinion-based question)
That depends on how nice you want to be to the caller. One valid choice is to clearly state the preconditions and if a caller violates them then they are on their own. Compare to eg std::vector::operator[]: You want to pass an out-of-bounds index? No problem (from point of view of the operator), undefined behaviour is what you get (a real problem from your point of view). You cannot guarantee well defined behaviour in all situations, especially when the caller didn't care about your preconditions. In some cases you might be able to throw an exception, but that depends on details.

In C++, it is usually a good idea to use assert from <cassert> header to make sure some condition is met, and it has zero overhead in release builds. I don't think throwing is a particularly good idea here, but it is nevertheless an option with its own trade-offs. Throwing makes it harder to write exception-safe code and it makes the condition-check mandatory. I'd say, assert it, and also document it that those preconditions shall be met. std::vector::operator[] does that on many implementations to check for out-of-bound access in debug mode, for instance.
I just want to make clear that, "moved from" objects, generally, should have a valid state. Users can't make any assumptions about its state or value, but they should be able to reassign or reuse that object.

Is it good design to check (assert) if the precondition is satisfied at the beginning of every method?
Like most things in programming, it is a tradeoff. What is good depends on whether you value more what you gain compared to what you lose.
What you lose in the trade is performance: Not performing a check is at least as fast, and usually faster than performing it. Whether this loss of efficiency is significant depends on the use case. Within the hot path of a CPU bound algorithm: It may be. In a code dealing with network communication: Probably not. To find out whether the difference is significant, you need to measure.
how exactly would it be good design to address the issue in case it is not?
There are several ways of communicating an error in C++:
Simplest form is to abort the program. The advantage is that there won't be unknown side effects such as security holes due to undefined behaviour. This is a decent choice when the program would have no way of recovering... but how would you as the implementer of the class know whether the user of the class can recover?
The standard assert macro falls into the same category of terminating the program, but the check is typically enabled only in testing and disabled in release mode which may leave the program vulnerable to exploits.
Exceptions are a convenient way to either let the client code choose whether they would like to recover from it (try - catch) or let the program terminate safely. Pre / Post condition violations are typically exceptional cases where an exception is appropriate.
Use a traditional C style error code. This will force the client to write their own error handling code to avoid potential UB.
Each way has their own advantages and disadvantages. You should choose according to your needs.

I will also use assertion-like solution to check preconditions in that code. But instead using bare assert, I will use some compiler-specific magick to optimize likely/unlikely cases, like it is done in Microsoft's GSL library.
You have there GSL_LIKELY, GSL_UNLIKELY and GSL_ASSUME macros and Expects, Ensures constructs. They are better than normal assert because based on them compiler may perform better code optimization and profile assembly against likely/unlikely branches.
Also, what is very cool, you can tune config of GSL and decide, what to do on failed condition: throw, terminate or just nothing. This way you can easily test different behaviors without modifying whole codebase. All you need is to just change some compile definitions.
And another useful thing: using them is more concise. In my opinion Expects(m_data != nullptr) is more readable than assert(m_data != nullptr).

Related

Not sure when to use exceptions in C++

After many years of coding scientific software in C++, I still can't seem to get used to exceptions and I've no idea when I should use them. I know that using them for controlling program flow is a big no-no, but otherwise than that... consider the following example (excerpt from a class that represents an image mask and lets the user add areas to it as polygons):
class ImageMask
{
public:
ImageMask() {}
ImageMask(const Size2DI &imgSize);
void addPolygon(const PolygonI &polygon);
protected:
Size2DI imgSize_;
std::vector<PolygonI> polygons_;
};
The default constructor for this class creates a useless instance, with an undefined image size. I don't want the user to be able to add polygons to such an object. But I'm not sure how to handle that situation. When the size is undefined, and addPolygon() is called, should I:
Silently return,
assert(imgSize_.valid) to detect violations in code using this class and fix them before a release,
throw an exception?
Most of the time I go either with 1) or 2) (depending on my mood), because it seems to me exceptions are costly, messy and simply overkill for such a simple scenario. Some insight please?
The general rule is that you throw an exception when you cannot perform the desired operation. So in your case, yes, it does make sense to throw an exception when addPolygon is called and the size is undefined or inconsistent.
Silently returning is almost always the wrong thing to do. assert is not a good error-handling technique (it is more of a design/documentation technique).
However, in your case a redesign of the interface to make an error condition impossible or unlikely may be better. For example, something like this:
class ImageMask
{
public:
// Constructor requires collection of polygons and size.
// Neither can be changed after construction.
ImageMask(std::vector<PolygonI>& polygons, size_t size);
}
or like this
class ImageMask
{
public:
class Builder
{
public:
Builder();
void addPolygon();
};
ImageMask(const Builder& builder);
}
// used like this
ImageMask::Builder builder;
builder.addPolygon(polyA);
builder.addPolygon(polyB);
ImageMask mask(builder);
I would try to avoid any situation where it's possible to create data that is in some kind of useless state. If you need a polygon that is not empty, than don't let empty polygons be created and you save yourself much trouble because the compiler will enforce that there are no empty polygons.
I never use silent returns, because they hide bugs and this makes finding bugs much more complicated than it have to be.
I use asserts when I detect that the program is in a state that it only can be in, if there is a bug in the software. In your example, if you check in the c'tor that takes a Size2DI, that this size is not empty, than asserting if the size stored is not empty, is useful to detect bugs. Asserts should not have side effect and it must be possible to remove them, without changing the behavior of the software. I find them very useful, to find my own bugs and to document, the current state of the object / function etc.
If it's very likely, that a runtime error will be handled directly by a caller of a function, I would use conventional return values. If it's very likely, that this error situation have to be communicated over several function calls at the call stack, I prefer exceptions. In doubt I offer two function.
kind regards
Torsten
To me, 1 is a no option. Whether it is 2 or 3 depends on the design of your program/library, whether you consider (and document) default-constructing image mask and then adding polygons a valid or invalid usage of your component. This is an important design decision. I recommend reading this article by Matthew Wilson.
Note that you have more options:
Invent your own assert that always calls std::terminate and does additional logging
Disable the default constructor (as others already pointed out) -- this is my favourite
"Silently return" - that's real 'the big no-no'. The program should know what's wrong.
"assert" - the second rule is that asserts using only if normal program's flow couldn't be restored.
"throw exception" - yes, this right and good technique. Just take care about exception-safety. There are many articles about exception-safe coding on GotW.
Don't afraid exceptions. They don't bite. :) If you'll take this technique enough, you'll be a strong coder. ;)

In either C or C++, should I check pointer parameters against NULL/nullptr?

This question was inspired by this answer.
I've always been of the philosophy that the callee is never responsible when the caller does something stupid, like passing of invalid parameters. I have arrived at this conclusion for several reasons, but perhaps the most important one comes from this article:
Everything not defined is undefined.
If a function doesn't say in it's docs that it's valid to pass nullptr, then you damn well better not be passing nullptr to that function. I don't think it's the responsibility of the callee to deal with such things.
However, I know there are going to be some who disagree with me. I'm curious whether or not I should be checking for these things, and why.
If you're going to check for NULL pointer arguments where you have not entered into a contract to accept and interpret them, do it with an assert, not a conditional error return. This way the bugs in the caller will be immediately detected and can be fixed, and it makes it easy to disable the overhead in production builds. I question the value of the assert except as documentation however; a segfault from dereferencing the NULL pointer is just as effective for debugging.
If you return an error code to a caller which has already proven itself buggy, the most likely result is that the caller will ignore the error, and bad things will happen much later down the line when the original cause of the error has become difficult or impossible to track down. Why is it reasonable to assume the caller will ignore the error you return? Because the caller already ignored the error return of malloc or fopen or some other library-specific allocation function which returned NULL to indicate an error!
In C++, if you don't want to accept NULL pointers, then don't take the chance: accept a reference instead.
While in general I don't see the value in detecting NULL (why NULL and not some other invalid address?) for a public API I'd probably still do it simply because many C and C++ programmers expect such behavior.
Defense in Depth principle says yes. If this is an external API then totally essential. Otherwise, at least an assert to assist in debugging misuse of your API.
You can document the contract until you are blue in the face, but you cannot in callee code prevent ill-advised or malicious misuse of your function. The decision you have to make is what's the likely cost of misuse.
In my view, it's not a question of responsibility. It's a question of robustness.
Unless I have full control on the caller and I must optimize for even the minute speed improvement, I always check for NULL.
I lean heavily on the side of 'don't trust your user's input to not blow up your system' and in defensive programming in general. Since I have made APIs in a past life, I have seen users of the libraries pass in null pointers and then application crashes result.
If it is truly an internal library and I'm the only person (or only a select few) have the ability to use it, then I might ease up on null pointer checks as long as everyone agrees to abide by general contracts. I can't trust the user base at large to adhere to that.
The answer is going to be different for C and C++.
C++ has references. The only difference between passing a pointer and passing a reference is that the pointer can be null. So, if the writer of the called function expects a pointer argument and forgets to do something sane when it's null, he's silly, crazy or writing C-with-classes.
Either way, this is not a matter of who wears the responsibility hat. In order to write good software, the two programmers must co-operate, and it is the responsibility of all programmers to 1° avoid special cases that would require this kind of decision and 2° when that fails, write code that blows up in a non-ambiguous and documented way in order to help with debugging.
So, sure, you can point and laugh at the caller because he messed up and "everything not defined is undefined" and had to spend one hour debugging a simple null pointer bug, but your team wasted some precious time on that.
My philosophy is: Your users should be allowed to make mistakes, your programming team should not.
What this means is that the only place you should check for invalid parameters including NULL, is in the top-level user interface. Everywhere the user can provide input to your code, you should check for errors, and handle them as gracefully as possible.
Everywhere else, you should use ASSERTS to ensure the programmers are using the functions correctly.
If you are writing an API, then only the top-level functions should catch and handle bad input. It is pointless to keep checking for a NULL pointer three or four levels deep into your call stack.
I am pro defensive programming.
Unless you can profile that these nullptr checkings happen in a bottleneck of your application... (in such cases it is conceivable one should not do those pointers value tests at those points)
but all in all comparing an int with 0 is really cheap an operation.
I think it is a shame to let potential crash bugs instead of consuming so little CPU.
so: Test your pointers against NULL!
I think that you should strive to write code that is robust for every conceivable situation. Passing a NULL pointer to a function is very common; therefore, your code should check for it and deal with it, usually by returning an error value. Library functions should NOT crash an application.
For C++, if your function doesn't accept nullpointer, then use a reference argument. In general.
There are some exceptions. For example, many people, including myself, think it's better with pointer argument when the actual argument will most naturally be a pointer, especially when the function stores away of a copy of the pointer. Even when the function doesn't support nullpointer argument.
How much to defend against invalid argument depends, including that it depends on subjective opinion and gut-feeling.
Cheers & hth.,
One thing you have to consider is what happens if some caller DOES misuse your API. In the case of passing NULL pointers, the result is an obvious crash, so it's OK not to check. Any misuse will be readily apparent to the calling code's developer.
The infamous glibc debacle is another thing entirely. The misuse resulted in actually useful behavior for the caller, and the API stayed that way for decades. Then they changed it.
In this case, the API developers' should have checked values with an assert or some similar mechanism. But you can't go back in time to correct an error. The wailing and gnashing of teeth were inevitable. Read all about it here.
If you don't want a NULL then don't make the parameter a pointer.
By using a reference you guarantee that the object will not be NULL.
He who performas invalid operations on invalid or nonexisting data, only deserves his system-state to become invalid.
I consider it complete nonsense that functions which expect input should check for NULL. Or whatever other value for that matter. The sole job of a function is to do a task based on its input or scope-state, nothing else. If you have no valid input, or no input at all, then don't even call the function. Besides, a NULL-check doesn't detect the other millions and millions of possible invalid values. You know on forehand you would be passing NULL, so why would you still pass it, waste valuable cycles on yet another function call with parameter passing, an in-function comparison of some pointer, and then check the function output again for success or not. Sure, I might have done so when I was 6 years old back in 1982, but those days have long since gone.
There is ofcourse the argument to be made for public API's. Like some DLL offering idiot-proof checking. You know, those arguments: "If the user supplies NULL you don't want your application to crash." What a non-argument. It is the user which passes bogus data in the first place; it's an explicit choice and nothing else than that. If one feels that is quality, well... I prefer solid logic and performance over such things. Besides, a programmer is supposed to know what he's doing. If he's operating on invalid data for the particular scope, then he has no business calling himself a programmer. I see no reason to downgrade the performance, increase power consumption, while increasing binary size which in turn affects instruction caching and branch-prediction, of my products in order to support such users.
I don't think it's the responsibility of the callee to deal with such things
If it doesn't take this responsibility it might create bad results, like dereferencing NULL pointers. Problem is that it always implicitly takes this responsibility. That's why i prefer graceful handling.
In my opinion, it's the callee's responsibility to enforce its contract.
If the callee shouldn't accept NULL, then it should assert that.
Otherwise, the callee should be well behaved when it's handed a NULL. That is, either it should functionally be a no-op, return an error code, or allocate its own memory, depending on the contract that you specified for it. It should do whatever seems to be the most sensible from the caller's perspective.
As the user of the API, I want to be able to continue using it without having the program crash; I want to be able to recover at the least or shut down gracefully at worst.
One side effect of that approach is that when your library crashes in response to being passed an invalid argument, you will tend to get the blame.
There is no better example of this than the Windows operating system. Initially, Microsoft's approach was to eliminate many tests for bogus arguments. The result was an operating system that was more efficient.
However, the reality is that invalid arguments are passed all time. From programmers that aren't up to snuff, or just using values returned by other functions there weren't expected to be NULL. Now, Windows performs more validation and is less efficient as a result.
If you want to allow your routines to crash, then don't test for invalid parameters.
Yes, you should check for null pointers. You don't want to crash an application because the developer messed something up.
Overhead of development time + runtime performance has a trade-off with the robustness of the API you are designing.
If the API you are publishing has to run inside the process of the calling routine, you SHOULD NOT check for NULL or invalid arguments. In this scenario, if you crash, the client program crashes and the developer using your API should mend his ways.
However, if you are providing a runtime/ framework which will run the client program inside it (e.g., you are writing a virtual machine or a middleware which can host the code or an operating system), you should definitely check of the correctness of the arguments passed. You don't want your program to be blamed for the mistakes of a plugin.
There is a distinction between what I would call legal and moral responsibility in this case. As an analogy, suppose you see a man with poor eyesight walking towards a cliff edge, blithely unaware of its existence. As far as your legal responsibility goes, it would in general not be possible to successfully prosecute you if you fail to warn him and he carries on walking, falls off the cliff and dies. On the other hand, you had an opportunity to warn him -- you were in a position to save his life, and you deliberately chose not to do so. The average person tends to regard such behaviour with contempt, judging that you had a moral responsibility to do the right thing.
How does this apply to the question at hand? Simple -- the callee is not "legally" responsible for the actions of the caller, stupid or otherwise, such as passing in invalid input. On the other hand, when things go belly up and it is observed that a simple check within your function could have saved the caller from his own stupidity, you will end up sharing some of the moral responsibility for what has happened.
There is of course a trade-off going on here, dependent on how much the check actually costs you. Returning to the analogy, suppose that you found out that the same stranger was inching slowly towards a cliff on the other side of the world, and that by spending your life savings to fly there and warn him, you could save him. Very few people would judge you entirely harshly if, in this particular situation, you neglected to do so (let's assume that the telephone has not been invented, for the purposes of this analogy). In coding terms, however, if the check is as simple as checking for NULL, you are remiss if you fail to do so, even if the "real" blame in the situation lies with the caller.

Should a class perform bounds checking when you are after performance

Say I have a triangle class, defined something like
class Triangle{
vertex3D vertexs[3];
public:
vertex* GetVertex(int vertexNumber);
}
now for most normal applications its fairly obvious that GetVertex should ensure that vertexNumber is a valid index before trying to return the vertex pointer. I would say that normally it can return NULL if vertexNumber is not valid, but that's not really what I am asking about.
In a game situation, checking if vertexNumber is valid all the time could take up a fair bit of time, it would be quicker for GetVertex to assume that only valid values will be passed in.
So would it be acceptable for triangle to basically throw caution to the wind in the name of a slight performance boost?
If I do go for a bounds checking in debug but not release, how can I automate this so that I don't have to edit the code? Some sort of compile time switch or something? would using #ifdef debug sort of stuff work? where can I find more about this?
You should definitely check the bounds in a debug build.
If you're sure that your code is correct (so, you've had a code review and you've tested it extensively) then it is fine to leave out bounds checks in a release build for the sake of performance.
If you are going to test the bounds in a debug build but not in a release build then you should probably use an assert in the debug build. asserts should be used to verify things that are always true. If you are not checking bounds inside of the function and your code is correct, then the value should never be out of bounds.
Code it with the check in place. When you have a running program, you can profile it and find out what places you might make changes that are actually going to help performance. Those places may not be where you expected at all.
If vertexNumber is never a value which comes directly from external input, then I believe that you can assume that it is always valid - i.e. you acknowledge the existence of a contract saying that "this function will behave correctly when vertexNumber is either 0, 1 or 2". Then the class itself can be understood as "correct and safe" in terms of code correctness and you only need to worry about the clients (users of this class) using it in the correct way - i.e. not breaking the contract.
Usually perfect tool for that is using assert() inside the class methods to check if the contract is satisfied. Then, you'll have a runtime check in the debug build and no checks at all in the release build.
If that class is in application code (code that is only used in one application), measure whether the performance gain is relevant and then decide whether to remove he checks in Release mode. (Leave them in for Debug mode.)
If that class is in library code, it's a design decision. Do you want your class to be as safe as possible or as fast as possible? Seeing that this is graphics code, you probably want the latter. (This also became popular with the STL, which aims for speed.)
I don't think not doing bounds checking at all is a good approach.
If you care about performance in this case at least use assert which can be disabled in release configuration.
..fair bit of time
..slight performance boost
You have to decide which is true first. I'd say write both versions, and measure the perf differences first. Or even better, write the version with the checks, measure, and decide if the perf is below your expectations/needs. If it is, then start optimizing. I suppose at this point, removing bounds-check for the sake of performance (if it's provably more performant, enough to contribute significantly) might become an easier, more informed choice.
And if you decide to remove bounds check, then design by contract :-)
Why are you making Triangle an object? It looks like a simple data holder. It is not used polymorphically. It does not have any behavior. It is not an object. Let it be a simple POD struct with public data, especially if you are worried about performance.
This has the added bonus that when a caller tries to use vertexNumber := 0xdeadbeef, the access violation happens in the faulty caller trying to use the array publicly, not in a bug-free helper shim. This may not mean much in the debug environment, but when you get a crashdump report that doesn't include a complete backtrace, it's an issue.
Props to jalf for an in-depth rant discussion I can link.
Design by contract , Eiffel and the book "Object Oriented software construction, Myer" would say that you should define checks for out of bound issues like this as assertions that you can compile out of the final product. The assertions define the mathematical certainty of the complete system.

Do you (really) write exception safe code? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 9 years ago.
Exception handling (EH) seems to be the current standard, and by searching the web, I can not find any novel ideas or methods that try to improve or replace it (well, some variations exist, but nothing novel).
Though most people seem to ignore it or just accept it, EH has some huge drawbacks: exceptions are invisible to the code and it creates many, many possible exit points. Joel on software wrote an article about it. The comparison to goto fits perfect, it made me think again about EH.
I try to avoid EH and just use return values, callbacks or whatever fits the purpose. But when you have to write reliable code, you just can't ignore EH these days: It starts with the new, which may throw an exception, instead of just returning 0 (like in the old days). This makes about any line of C++ code vulnerable to an exception. And then more places in the C++ foundational code throw exceptions... std lib does it, and so on.
This feels like walking on shaky grounds.. So, now we are forced to take care about exceptions!
But its hard, its really hard. You have to learn to write exception safe code, and even if you have some experience with it, it will still be required to double check any single line of code to be safe! Or you start to put try/catch blocks everywhere, which clutters the code until it reaches a state of unreadability.
EH replaced the old clean deterministical approach (return values..), which had just a few but understandable and easily solveable drawbacks with an approach that creates many possible exit points in your code, and if you start writing code that catches exceptions (what you are forced to do at some point), then it even creates a multitude of paths through your code (code in the catch blocks, think about a server program where you need logging facilities other than std::cerr ..). EH has advantages, but that's not the point.
My actual questions:
Do you really write exception safe code?
Are you sure your last "production ready" code is exception safe?
Can you even be sure, that it is?
Do you know and/or actually use alternatives that work?
Your question makes an assertion, that "Writing exception-safe code is very hard". I will answer your questions first, and then, answer the hidden question behind them.
Answering questions
Do you really write exception safe code?
Of course, I do.
This is the reason Java lost a lot of its appeal to me as a C++ programmer (lack of RAII semantics), but I am digressing: This is a C++ question.
It is, in fact, necessary when you need to work with STL or Boost code. For example, C++ threads (boost::thread or std::thread) will throw an exception to exit gracefully.
Are you sure your last "production ready" code is exception safe?
Can you even be sure, that it is?
Writing exception-safe code is like writing bug-free code.
You can't be 100% sure your code is exception safe. But then, you strive for it, using well-known patterns, and avoiding well-known anti-patterns.
Do you know and/or actually use alternatives that work?
There are no viable alternatives in C++ (i.e. you'll need to revert back to C and avoid C++ libraries, as well as external surprises like Windows SEH).
Writing exception safe code
To write exception safe code, you must know first what level of exception safety each instruction you write is.
For example, a new can throw an exception, but assigning a built-in (e.g. an int, or a pointer) won't fail. A swap will never fail (don't ever write a throwing swap), a std::list::push_back can throw...
Exception guarantee
The first thing to understand is that you must be able to evaluate the exception guarantee offered by all of your functions:
none: Your code should never offer that. This code will leak everything, and break down at the very first exception thrown.
basic: This is the guarantee you must at the very least offer, that is, if an exception is thrown, no resources are leaked, and all objects are still whole
strong: The processing will either succeed, or throw an exception, but if it throws, then the data will be in the same state as if the processing had not started at all (this gives a transactional power to C++)
nothrow/nofail: The processing will succeed.
Example of code
The following code seems like correct C++, but in truth, offers the "none" guarantee, and thus, it is not correct:
void doSomething(T & t)
{
if(std::numeric_limits<int>::max() > t.integer) // 1. nothrow/nofail
t.integer += 1 ; // 1'. nothrow/nofail
X * x = new X() ; // 2. basic : can throw with new and X constructor
t.list.push_back(x) ; // 3. strong : can throw
x->doSomethingThatCanThrow() ; // 4. basic : can throw
}
I write all my code with this kind of analysis in mind.
The lowest guarantee offered is basic, but then, the ordering of each instruction makes the whole function "none", because if 3. throws, x will leak.
The first thing to do would be to make the function "basic", that is putting x in a smart pointer until it is safely owned by the list:
void doSomething(T & t)
{
if(std::numeric_limits<int>::max() > t.integer) // 1. nothrow/nofail
t.integer += 1 ; // 1'. nothrow/nofail
std::auto_ptr<X> x(new X()) ; // 2. basic : can throw with new and X constructor
X * px = x.get() ; // 2'. nothrow/nofail
t.list.push_back(px) ; // 3. strong : can throw
x.release() ; // 3'. nothrow/nofail
px->doSomethingThatCanThrow() ; // 4. basic : can throw
}
Now, our code offers a "basic" guarantee. Nothing will leak, and all objects will be in a correct state. But we could offer more, that is, the strong guarantee. This is where it can become costly, and this is why not all C++ code is strong. Let's try it:
void doSomething(T & t)
{
// we create "x"
std::auto_ptr<X> x(new X()) ; // 1. basic : can throw with new and X constructor
X * px = x.get() ; // 2. nothrow/nofail
px->doSomethingThatCanThrow() ; // 3. basic : can throw
// we copy the original container to avoid changing it
T t2(t) ; // 4. strong : can throw with T copy-constructor
// we put "x" in the copied container
t2.list.push_back(px) ; // 5. strong : can throw
x.release() ; // 6. nothrow/nofail
if(std::numeric_limits<int>::max() > t2.integer) // 7. nothrow/nofail
t2.integer += 1 ; // 7'. nothrow/nofail
// we swap both containers
t.swap(t2) ; // 8. nothrow/nofail
}
We re-ordered the operations, first creating and setting X to its right value. If any operation fails, then t is not modified, so, operation 1 to 3 can be considered "strong": If something throws, t is not modified, and X will not leak because it's owned by the smart pointer.
Then, we create a copy t2 of t, and work on this copy from operation 4 to 7. If something throws, t2 is modified, but then, t is still the original. We still offer the strong guarantee.
Then, we swap t and t2. Swap operations should be nothrow in C++, so let's hope the swap you wrote for T is nothrow (if it isn't, rewrite it so it is nothrow).
So, if we reach the end of the function, everything succeeded (No need of a return type) and t has its excepted value. If it fails, then t has still its original value.
Now, offering the strong guarantee could be quite costly, so don't strive to offer the strong guarantee to all your code, but if you can do it without a cost (and C++ inlining and other optimization could make all the code above costless), then do it. The function user will thank you for it.
Conclusion
It takes some habit to write exception-safe code. You'll need to evaluate the guarantee offered by each instruction you'll use, and then, you'll need to evaluate the guarantee offered by a list of instructions.
Of course, the C++ compiler won't back up the guarantee (in my code, I offer the guarantee as a #warning doxygen tag), which is kinda sad, but it should not stop you from trying to write exception-safe code.
Normal failure vs. bug
How can a programmer guarantee that a no-fail function will always succeed? After all, the function could have a bug.
This is true. The exception guarantees are supposed to be offered by bug-free code. But then, in any language, calling a function supposes the function is bug-free. No sane code protects itself against the possibility of it having a bug. Write code the best you can, and then, offer the guarantee with the supposition it is bug-free. And if there is a bug, correct it.
Exceptions are for exceptional processing failure, not for code bugs.
Last words
Now, the question is "Is this worth it ?".
Of course, it is. Having a "nothrow/no-fail" function knowing that the function won't fail is a great boon. The same can be said for a "strong" function, which enables you to write code with transactional semantics, like databases, with commit/rollback features, the commit being the normal execution of the code, throwing exceptions being the rollback.
Then, the "basic" is the very least guarantee you should offer. C++ is a very strong language there, with its scopes, enabling you to avoid any resource leaks (something a garbage collector would find it difficult to offer for the database, connection or file handles).
So, as far as I see it, it is worth it.
Edit 2010-01-29: About non-throwing swap
nobar made a comment that I believe, is quite relevant, because it is part of "how do you write exception safe code":
[me] A swap will never fail (don't even write a throwing swap)
[nobar] This is a good recommendation for custom-written swap() functions. It should be noted, however, that std::swap() can fail based on the operations that it uses internally
the default std::swap will make copies and assignments, which, for some objects, can throw. Thus, the default swap could throw, either used for your classes or even for STL classes. As far as the C++ standard is concerned, the swap operation for vector, deque, and list won't throw, whereas it could for map if the comparison functor can throw on copy construction (See The C++ Programming Language, Special Edition, appendix E, E.4.3.Swap).
Looking at Visual C++ 2008 implementation of the vector's swap, the vector's swap won't throw if the two vectors have the same allocator (i.e., the normal case), but will make copies if they have different allocators. And thus, I assume it could throw in this last case.
So, the original text still holds: Don't ever write a throwing swap, but nobar's comment must be remembered: Be sure the objects you're swapping have a non-throwing swap.
Edit 2011-11-06: Interesting article
Dave Abrahams, who gave us the basic/strong/nothrow guarantees, described in an article his experience about making the STL exception safe:
http://www.boost.org/community/exception_safety.html
Look at the 7th point (Automated testing for exception-safety), where he relies on automated unit testing to make sure every case is tested. I guess this part is an excellent answer to the question author's "Can you even be sure, that it is?".
Edit 2013-05-31: Comment from dionadar
t.integer += 1; is without the guarantee that overflow will not happen NOT exception safe, and in fact may technically invoke UB! (Signed overflow is UB: C++11 5/4 "If during the evaluation of an expression, the result is not mathematically defined or not in the range of representable values for its type, the behavior is undefined.") Note that unsigned integer do not overflow, but do their computations in an equivalence class modulo 2^#bits.
Dionadar is referring to the following line, which indeed has undefined behaviour.
t.integer += 1 ; // 1. nothrow/nofail
The solution here is to verify if the integer is already at its max value (using std::numeric_limits<T>::max()) before doing the addition.
My error would go in the "Normal failure vs. bug" section, that is, a bug.
It doesn't invalidate the reasoning, and it does not mean the exception-safe code is useless because impossible to attain.
You can't protect yourself against the computer switching off, or compiler bugs, or even your bugs, or other errors. You can't attain perfection, but you can try to get as near as possible.
I corrected the code with Dionadar's comment in mind.
Writing exception-safe code in C++ is not so much about using lots of try { } catch { } blocks. It's about documenting what kind of guarantees your code provides.
I recommend reading Herb Sutter's Guru Of The Week series, in particular installments 59, 60 and 61.
To summarize, there are three levels of exception safety you can provide:
Basic: When your code throws an exception, your code does not leak resources, and objects remain destructible.
Strong: When your code throws an exception, it leaves the state of the application unchanged.
No throw: Your code never throws exceptions.
Personally, I discovered these articles quite late, so much of my C++ code is definitely not exception-safe.
Some of us have been using exception for over 20 years. PL/I has them, for example. The premise that they are a new and dangerous technology seems questionable to me.
First of all (as Neil stated), SEH is Microsoft's Structured Exception Handling. It is similar to but not identical to exception processing in C++. In fact, you have to enable C++ Exception Handling if you want it in Visual Studio - the default behavior does not guarantee that local objects are destroyed in all cases! In either case, Exception Handling is not really harder it is just different.
Now for your actual questions.
Do you really write exception safe code?
Yes. I strive for exception safe code in all cases. I evangelize using RAII techniques for scoped access to resources (e.g., boost::shared_ptr for memory, boost::lock_guard for locking). In general, consistent usage of RAII and scope guarding techniques will make exception safe code much easier to write. The trick is to learn what exists and how to apply it.
Are you sure your last "production ready" code is exception safe?
No. It is as safe as it is. I can say that I haven't seen a process fault due to an exception in several years of 24/7 activity. I don't expect perfect code, just well-written code. In addition to providing exception safety, the techniques above guarantee correctness in a way that is near impossible to achieve with try/catch blocks. If you are catching everything in your top control scope (thread, process, etc.), then you can be sure that you will continue to run in the face of exceptions (most of the time). The same techniques will also help you continue to run correctly in the face of exceptions without try/catch blocks everywhere.
Can you even be sure that it is?
Yes. You can be sure by a thorough code audit but no one really does that do they? Regular code reviews and careful developers go a long way to getting there though.
Do you know and/or actually use alternatives that work?
I have tried a few variations over the years such as encoding states in the upper bits (ala HRESULTs) or that horrible setjmp() ... longjmp() hack. Both of these break down in practice though in completely different ways.
In the end, if you get into the habit of applying a few techniques and carefully thinking about where you can actually do something in response to an exception, you will end up with very readable code that is exception safe. You can sum this up by following these rules:
You only want to see try/catch when you can do something about a specific exception
You almost never want to see a raw new or delete in code
Eschew std::sprintf, snprintf, and arrays in general - use std::ostringstream for formatting and replace arrays with std::vector and std::string
When in doubt, look for functionality in Boost or STL before rolling your own
I can only recommend that you learn how to use exceptions properly and forget about result codes if you plan on writing in C++. If you want to avoid exceptions, you might want to consider writing in another language that either does not have them or makes them safe. If you want to really learn how to fully utilize C++, read a few books from Herb Sutter, Nicolai Josuttis, and Scott Meyers.
It is not possible to write exception-safe code under the assumption that "any line can throw". The design of exception-safe code relies critically on certain contracts/guarantees that you are supposed to expect, observe, follow and implement in your code. It is absolutely necessary to have code that is guaranteed to never throw. There are other kinds of exception guarantees out there.
In other words, creating exception-safe code is to a large degree a matter of program design not just a matter of plain coding.
Do you really write exception safe code?
Well, I certainly intend to.
Are you sure your last "production ready" code is exception safe?
I'm sure that my 24/7 servers built using exceptions run 24/7 and don't leak memory.
Can you even be sure, that it is?
It's very difficult to be sure that any code is correct. Typically, one can only go by results
Do you know and/or actually use alternatives that work?
No. Using exceptions is cleaner and easier than any of the alternatives I've used over the last 30 years in programming.
Leaving aside the confusion between SEH and C++ exceptions, you need to be aware that exceptions can be thrown at any time, and write your code with that in mind. The need for exception-safety is largely what drives the use of RAII, smart pointers, and other modern C++ techniques.
If you follow the well-established patterns, writing exception-safe code is not particularly hard, and in fact it's easier than writing code that handles error returns properly in all cases.
EH is good, generally. But C++'s implementation is not very friendly as it's really hard to tell how good your exception catching coverage is. Java for instance makes this easy, the compiler will tend to fail if you don't handle possible exceptions .
I really like working with Eclipse and Java though (new to Java), because it throws errors in the editor if you are missing an EH handler. That makes things a LOT harder to forget to handle an exception...
Plus, with the IDE tools, it adds the try / catch block or another catch block automatically.
Some of us prefer languages like Java which force us to declare all the exceptions thrown by methods, instead of making them invisible as in C++ and C#.
When done properly, exceptions are superior to error return codes, if for no other reason than you don't have to propagate failures up the call chain manually.
That being said, low-level API library programming should probably avoid exception handling, and stick to error return codes.
It's been my experience that it's difficult to write clean exception handling code in C++. I end up using new(nothrow) a lot.
I try my darned best to write exception-safe code, yes.
That means I take care to keep an eye on which lines can throw. Not everyone can, and it is critically important to keep that in mind. The key is really to think about, and design your code to satisfy, the exception guarantees defined in the standard.
Can this operation be written to provide the strong exception guarantee? Do I have to settle for the basic one? Which lines may throw exceptions, and how can I ensure that if they do, they don't corrupt the object?
Do you really write exception safe code?
[There's no such thing. Exceptions are a paper shield to errors unless you have a managed environment. This applies to first three questions.]
Do you know and/or actually use alternatives that work?
[Alternative to what? The problem here is people don't separate actual errors from normal program operation. If it's normal program operation (ie a file not found), it's not really error handling. If it's an actual error, there is no way to 'handle' it or it's not an actual error. Your goal here is to find out what went wrong and either stop the spreadsheet and log an error, restart the driver to your toaster, or just pray that the jetfighter can continue flying even when it's software is buggy and hope for the best.]
A lot (I would even say most) people do.
What's really important about exceptions, is that if you don't write any handling code - the result is perfectly safe and well-behaved. Too eager to panic, but safe.
You need to actively make mistakes in handlers to get something unsafe, and only catch(...){} will compare to ignoring error code.

How defensive should you be? [duplicate]

This question already has answers here:
Closed 13 years ago.
Possible Duplicate:
Defensive programming
We had a great discussion this morning about the subject of defensive programming. We had a code review where a pointer was passed in and was not checked if it was valid.
Some people felt that only a check for null pointer was needed. I questioned whether it could be checked at a higher level, rather than every method it is passed through, and that checking for null was a very limited check if the object at the other end of the point did not meet certain requirements.
I understand and agree that a check for null is better than nothing, but it feels to me that checking only for null provides a false sense of security since it is limited in scope. If you want to ensure that the pointer is usable, check for more than the null.
What are your experiences on the subject? How do you write defenses in to your code for parameters that are passed to subordinate methods?
In Code Complete 2, in the chapter on error handling, I was introduced to the idea of barricades. In essence, a barricade is code which rigorously validates all input coming into it. Code inside the barricade can assume that any invalid input has already been dealt with, and that the inputs that are received are good. Inside the barricade, code only needs to worry about invalid data passed to it by other code within the barricade. Asserting conditions and judicious unit testing can increase your confidence in the barricaded code. In this way, you program very defensively at the barricade, but less so inside the barricade. Another way to think about it is that at the barricade, you always handle errors correctly, and inside the barricade you merely assert conditions in your debug build.
As far as using raw pointers goes, usually the best you can do is assert that the pointer is not null. If you know what is supposed to be in that memory then you could ensure that the contents are consistent in some way. This begs the question of why that memory is not wrapped up in an object which can verify it's consistency itself.
So, why are you using a raw pointer in this case? Would it be better to use a reference or a smart pointer? Does the pointer contain numeric data, and if so, would it be better to wrap it up in an object which managed the lifecycle of that pointer?
Answering these questions can help you find a way to be more defensive, in that you'll end up with a design that is easier to defend.
The best way to be defensive is not to check pointers for null at runtime, but to avoid using pointers that may be null to begin with
If the object being passed in must not be null, use a reference! Or pass it by value! Or use a smart pointer of some sort.
The best way to do defensive programming is to catch your errors at compile-time.
If it is considered an error for an object to be null or point to garbage, then you should make those things compile errors.
Ultimately, you have no way of knowing if a pointer points to a valid object. So rather than checking for one specific corner case (which is far less common than the really dangerous ones, pointers pointing to invalid objects), make the error impossible by using a data type that guarantees validity.
I can't think of another mainstream language that allows you to catch as many errors at compile-time as C++ does. use that capability.
There is no way to check if a pointer is valid.
In all serious, it depends on how many bugs you'd like to have to have inflicted upon you.
Checking for a null pointer is definitely something that I would consider necessary but not sufficient. There are plenty of other solid principles you can use starting with entry points of your code (e.g., input validation = does that pointer point to something useful) and exit points (e.g., you thought the pointer pointed to something useful but it happened to cause your code to throw an exception).
In short, if you assume that everyone calling your code is going to do their best to ruin your life, you'll probably find a lot of the worst culprits.
EDIT for clarity: some other answers are talking about unit tests. I firmly believe that test code is sometimes more valuable than the code that it's testing (depending on who's measuring the value). That said, I also think that units tests are also necessary but not sufficient for defensive coding.
Concrete example: consider a 3rd party search method that is documented to return a collection of values that match your request. Unfortunately, what wasn't clear in the documentation for that method is that the original developer decided that it would be better to return a null rather than an empty collection if nothing matched your request.
So now, you call your defensive and well unit-tested method thinking (that is sadly lacking an internal null pointer check) and boom! NullPointerException that, without an internal check, you have no way of dealing with:
defensiveMethod(thirdPartySearch("Nothing matches me"));
// You just passed a null to your own code.
I'm a big fan of the "let it crash" school of design. (Disclaimer: I don't work on medical equipment, avionics, or nuclear power-related software.) If your program blows up, you fire up the debugger and figure out why. In contrast, if your program keeps running after illegal parameters have been detected, by the time it crashes you'll probably have no idea what went wrong.
Good code consists of many small functions/methods, and adding a dozen lines of parameter-checking to every one of those snippets of code makes it harder to read and harder to maintain. Keep it simple.
I may be a bit extreme, but I don't like Defensive Programming, I think it's laziness that has introduced the principle.
For this particular example, there is no sense in assert that the pointer is not null. If you want a null pointer, there is no better way to actually enforce it (and document it clearly at the same time) than to use a reference instead. And it's documentation that will actually be enforced by the compiler and does not cost a ziltch at runtime!!
In general, I tend not to use 'raw' types directly. Let's illustrate:
void myFunction(std::string const& foo, std::string const& bar);
What are the possible values of foo and bar ? Well that's pretty much limited only by what a std::string may contain... which is pretty vague.
On the other hand:
void myFunction(Foo const& foo, Bar const& bar);
is much better!
if people mistakenly reverse the order of the arguments, it's detected by the compiler
each class is solely responsible for checking that the value is right, the users are not burdenned.
I have a tendency to favor Strong Typing. If I have an entry that should be composed only of alphabetical characters and be up to 12 characters, I'd rather create a small class wrapping a std::string, with a simple validate method used internally to check the assignments, and pass that class around instead. This way I know that if I test the validation routine ONCE, I don't have to actually worry about all the paths through which that value can get to me > it will be validated when it reaches me.
Of course, that doesn't me that the code should not be tested. It's just that I favor strong encapsulation, and validation of an input is part of knowledge encapsulation in my opinion.
And as no rule can come without an exception... exposed interface is necessarily bloated with validation code, because you never know what might come upon you. However with self-validating objects in your BOM it's quite transparent in general.
"Unit tests verifying the code does what it should do" > "production code trying to verify its not doing what its not supposed to do".
I wouldn't even check for null myself, unless its part of a published API.
It very much depends; is the method in question ever called by code external to your group, or is it an internal method?
For internal methods, you can test enough to make this a moot point, and if you're building code where the goal is highest possible performance, you might not want to spend the time on checking inputs you're pretty darn sure are right.
For externally visible methods - if you have any - you should always double check your inputs. Always.
From debugging point of view, it is most important that your code is fail-fast. The earlier the code fails, the easier to find the point of failure.
For internal methods, we usually stick to asserts for these kinds of checks. That does get errors picked up in unit tests (you have good test coverage, right?) or at least in integration tests that are running with assertions on.
checking for null pointer is only half of the story,
you should also assign a null value to every unassigned pointer.
most responsible API will do the same.
checking for a null pointer comes very cheap in CPU cycles, having an application crashing once its delivered can cost you and your company in money and reputation.
you can skip null pointer checks if the code is in a private interface you have complete control of and/or you check for null by running a unit test or some debug build test (e.g. assert)
There are a few things at work here in this question which I would like to address:
Coding guidelines should specify that you either deal with a reference or a value directly instead of using pointers. By definition, pointers are value types that just hold an address in memory -- validity of a pointer is platform specific and means many things (range of addressable memory, platform, etc.)
If you find yourself ever needing a pointer for any reason (like for dynamically generated and polymorphic objects) consider using smart pointers. Smart pointers give you many advantages with the semantics of "normal" pointers.
If a type for instance has an "invalid" state then the type itself should provide for this. More specifically, you can implement the NullObject pattern that specifies how an "ill-defined" or "un-initialized" object behaves (maybe by throwing exceptions or by providing no-op member functions).
You can create a smart pointer that does the NullObject default that looks like this:
template <class Type, class NullTypeDefault>
struct possibly_null_ptr {
possibly_null_ptr() : p(new NullTypeDefault) {}
possibly_null_ptr(Type* p_) : p(p_) {}
Type * operator->() { return p.get(); }
~possibly_null_ptr() {}
private:
shared_ptr<Type> p;
friend template<class T, class N> Type & operator*(possibly_null_ptr<T,N>&);
};
template <class Type, class NullTypeDefault>
Type & operator*(possibly_null_ptr<Type,NullTypeDefault> & p) {
return *p.p;
}
Then use the possibly_null_ptr<> template in cases where you support possibly null pointers to types that have a default derived "null behavior". This makes it explicit in the design that there is an acceptable behavior for "null objects", and this makes your defensive practice documented in the code -- and more concrete -- than a general guideline or practice.
Pointer should only be used if do you need to do something with the pointer. Such as pointer arithmetic to transverse some data structure. Then if possible that should be encapsulated in a class.
IF the pointer is passed into the function to do something with the object to which it points, then pass in a reference instead.
One method for defensive programming is to assert almost everything that you can. At the beginning of the project it is annoying but later it is a good adjunct to unit testing.
A number of answer address the question of how to write defenses in your code, but no much was said about "how defensive should you be?". That's something you have to evaluate based on the criticality of your software components.
We're doing flight software and the impacts of a software error range from a minor annoyance to loss of aircraft/crew. We categorize different pieces of software based on their potential adverse impacts which affects coding standards, testing, etc. You need to evaluate how your software will be used and the impacts of errors and set what level of defensiveness you want (and can afford). The DO-178B standard calls this "Design Assurance Level".