I'm working on a small project with Qt (for learning Qt and bit of c++ exercise) and what I want to achieve is a clone of "online coding editors" which multiple users can read and edit a document. Doesn't have to be online, main purpose is to handle concurrent file editing. I just don't know how to approach this task.
What I have done till now is to build a simple text editor. Program has two text areas. In text area 1 you write your code. In text area 2 it shows the output. When you run your code it saves the contents of the text area 1 to a file (Code.cpp for example) then compile the saved file. When it compiled, another function runs the exe and writes the output to another file(This done in powershell's Out-File command). text area 2 just reads the content of the output file.
For single user this works. The problem is I don't know how to handle when there are multiple users. Someone suggested me that I should use text editor program as a client and handle concurrent operations in a server. That seems like a nice approach. Does that mean I should also handle the save file and run code option on the server?
And how do I do let multiple users edit the same file? Obviously I'm not asking for a -real- code. I know mutexes and semaphores but never implemented one. Some pseudo code might help maybe? I don't know where to start to dig up so here I am. I would really appreciate if someone can point me a direction (any books to read or tutorials... etc)
Take a look at QThread and Qt Signals/Slots. Let's say you have a main program that has an editor and a save command. This is your main thread. Your save command is executed in a worker thread, an instance of QThread that can run next to your main thread. When the user clicks save, your worker thread will send a Qt Signal saying that the save command was executed. Your main thread can then refresh the file contents. Now because you use QThread and Qt Signals you will not need any mutex or semaphore or any kind of resource locking because that's already done for you. You can see this as thread safe.
The following example was directly taken from the Qt docs: https://doc.qt.io/qt-5/qthread.html
class Worker : public QObject
{
Q_OBJECT
public slots:
void doWork(const QString ¶meter) {
QString result;
/* ... here is the expensive or blocking operation ... */
emit resultReady(result);
}
signals:
void resultReady(const QString &result);
};
class Controller : public QObject
{
Q_OBJECT
QThread workerThread;
public:
Controller() {
Worker *worker = new Worker;
worker->moveToThread(&workerThread);
connect(&workerThread, &QThread::finished, worker, &QObject::deleteLater);
connect(this, &Controller::operate, worker, &Worker::doWork);
connect(worker, &Worker::resultReady, this, &Controller::handleResults);
workerThread.start();
}
~Controller() {
workerThread.quit();
workerThread.wait();
}
public slots:
void handleResults(const QString &);
signals:
void operate(const QString &);
};
Related
I am developing an application in Qt, which is UI intensive. It is UI intensive because, my application displays logs,which come at a very high speed and UI has to reflect that.
Now after the number of logs exceed a certain amount, My previous logs will start to get deleted, because my UI window has a limit(100000 logs, to keep app fast).
So in order to save the old logs , I want to write the old logs to a file, before they get deleted.
Problem
If I write the file in main thread,my UI hangs(becomes very slow). So I decided to write file in a worker thread. This is what I did this:
I made my own class WorkerThread that inherits class QThread and inside that class run() method, I write the data to a file.
The data that I want to write is stored in threads member variables itself:
So my code is:
Some other class function
.
.
.
.
WorkerThread *workerThread = new WorkerThread();
connect(workerThread, SIGNAL(resultReady()), workerThread, SLOT(quit()));
workerThread->attribute1 = dataToWrite1;
workerThread->attribute2 = dataToWrite2;
workerThread->start();
WorkerThread class
class WorkerThread : public QThread
{
Q_OBJECT
public:
QString attribute1;
QString attribute2;
protected:
void run() {
// DELIMITER IS ..: //
QFile myFile("C:/shiftedlines/myFile.txt");
if(myFile.open(QIODevice::WriteOnly|QIODevice::Append))
{
QTextStream stream(&myFile);
stream<< attribute1<<"..:";
stream<< attribute2<<"\n";
}
emit resultReady();
}
signals:
void resultReady();
};
But after writing about 500 lines, my application crashes. How do I go about solving this problem?
This does not address the issue you are having but since you asked this in the comments, this is how I implemented such tasks in the past.
worker class
class worker : public QObject
{
Q_OBJECT
public:
worker();
public slots:
void start();
signals:
void finished();
};
main
worker* cur_worker = new worker();
// move to its own thread
QThread* worker_thread = new QThread(this);
cur_worker->moveToThread(worker_thread);
QObject::connect(worker_thread, SIGNAL(started()), cur_worker, SLOT(start()));
QObject::connect(cur_worker, SIGNAL(finished()), worker_thread, SLOT(quit()));
QObject::connect(worker_thread, SIGNAL(finished()), worker_thread, SLOT(deleteLater()));
// start
worker_thread->start();
This example does not handle the destruction of the worker object, which in your case you probably want to do immediately.
Writing to a file should be quite fast as long as it's done correctly.
What is slow is not writing to the file, but opening it.
Make sure you don't open / close the file each time you receive a log, but open the file in write only and append mode, and keep it open while your application is running and writing log.
Usually you can write in recent SSD drive at a speed around 700MB/s of data, so I doubt that you would have any noticeable impact on the UI.
If you really want to go for thread (which IMO is probably overkill) don't forget that to be thread safe, you have to communicate with your thread using signals / slots.
From your code, it seems you start a new thread for each log write, which each tries to open the file. Your file can be written only by one thread at a time and this will be blocked by the system, so above 1 thread for writing into a file, it is useless to have more.
Probably your threads hangs into trying to open the file which is already accessed by some other, and end up with hundreds of hanging threads which ends up in a memory overflow if you have them in the stack.
The roule of Open your file once and write as long as you have something to write also applies in the thread.
I need to update the content of a field on my QWidget via a JSON file (updated in real time). I've read about functions readLine() and readAll() of QFile, but when I try a loop like :
while(true):
jsfile.readLine()
creation of objects, update of values, display etc ...
I lost the focus on my window. But I want to keep the control of the application with my buttons and obviously to watch the evolution of the JSON values.
I have thought that Qt manages itself the events and keeps the focus on the current window, but like I've said, it's not the case.
Is there a good solution (multi threads maybe) to use my window while the application reads the file (with new informations in real time)?
(With the constraint "real time" I can't read the whole file every time and I've no choice about the format of this file)
Update
I tried the thread method.
So, I choose to create my thread instance into the main (with my main window) and connect here. But, when I run the program, I've this error :
no matching member function for call to 'connect'
Reader reader;
QObject::connect(controler, SIGNAL(ready()),
reader, SLOT(received()));
According to this error, I've thought that the reason was main don't inherits of Object, and so, I've move the connection ans the creation of thread instance into my main window.
Reader reader;
QObject::connect(reader, SIGNAL(newobject(QJsonObject)),
this, SLOT(displayJSON(QJsonObject)));
With this one, I've the same error while I've already connect lot of widget into this class without any error.
What can be the problem ?
Update 2
I've a solution when I give as argument my main window (controler) in reader's constructor and connect into this one but, if possible, I would an explanation for the previous problem.
The current problem that I have is that signals are emit well but slots are executed after the end the application (so after the end of the thread's execution and not during)
This isn't really the subject of this topic so we can close this one.
You can use QThread (Qt documentation: QThread) class to create a thread, which will read your file. The main thread will execute your GUI application and it will be available during file reading.
You can find a simple example in documentation for creating your thread:
class WorkerThread : public QThread
{
Q_OBJECT
void run() Q_DECL_OVERRIDE {
QString result;
/* ... here is the expensive or blocking operation ... */
emit resultReady(result);
}
signals:
void resultReady(const QString &s);
};
void MyObject::startWorkInAThread()
{
WorkerThread *workerThread = new WorkerThread(this);
connect(workerThread, &WorkerThread::resultReady, this, &MyObject::handleResults);
connect(workerThread, &WorkerThread::finished, workerThread, &QObject::deleteLater);
workerThread->start();
}
You can modify this example for your purpose. For example, WorkerThread for your task may be something like this:
class WorkerThread : public QThread
{
Q_OBJECT
void run() Q_DECL_OVERRIDE {
while(!stopFlag)
{
// read JSON file to QByteArray. Use QFile and QTextStream
// use QJsonDocument to read JSON content
// find what is new in JSON
emit signalSomethingNew(/*parameters*/);
QThread::currentThread()->msleep(/*timeout*/);
}
}
signals:
void signalSomethingNew(/*parameters*/);
};
At the end you must implement slot on your QWidget for signalSomethingNew(/*parameters*/) and make connection:
connect(yourThread, &WorkingThread::signalSomethingNew, youWidget, &YouWidget::yourSlot);
For working with JSON data: QJsonDocument
I'm interpreting your question as "my application is unresponsive whilst doing work" rather than "my focus jumped to another window" - please comment if you meant something different.
You have a choice of options:
Create and run a background QThread to do the work. Have it emit signals (connected to your widgets using Qt::QueuedConnection - the default) when it has results to display.
This is a good solution when the worker has a lot of computation to do, or needs all the input to be read before it can start. It works very well when the target system has processors available with no other work to do.
Use a QSocketNotifier to signal your GUI thread when some of the input becomes available (note that the name is misleading - it actually works on all kinds of file descriptor, not just sockets).
This is appropriate when the algorithm is simple and incremental - i.e. if a small chunk of input can be read and processed quickly.
Incorporate periodic calls to processEvents() in your algorithm:
auto *const dispatcher = QThread::currentThread()->eventDispatcher;
while (line = json.readLine()) {
doSomethingWith(line);
if (dispatcher)
dispatcher->processEvents();
}
This won't work unless you can modify the algorithm like this - if the loop is in somebody else's (closed) code, then you'll need one of the other solutions.
I have a small chat application where I use a SQLite database to store all the conversations. I've noticed that the app freezes randomly, and I then have to minimize and maximize it to make it work again. I thought that the problem might be the SQLite selects / inserts that were causing the gui to freeze. I decided to try and move all the SQLite methods into a separate thread.
After doing so the app still freezes.
Some things that might be worth knowing:
I use QTcpSocket directly in my MainWindow but it seems that there is no use in running the QTcpSocket in a separate thread?
I have separated the SQLite methods into a new thread (see implementation below)
I use 3 WebViews for displaying my chat messages, the entire application GUI is build with these WebViews
Does my code below really run in a separate thread? GUI still freezes.
My header file:
class dbThread : public QObject
{
Q_OBJECT
public:
dbThread(QObject* parent);
public slots:
bool openDB(QString agentID);
signals:
void clearPreviousHistory();
private:
QSqlDatabase db;
QHash<QString, QString> countries;
};
My cpp file:
MainWindow::MainWindow(QWidget *parent) :
QMainWindow(parent),
ui(new Ui::MainWindow)
{
QThread* thread = new QThread(this);
dbtrad = new dbThread(this);
dbtrad->moveToThread(thread);
dbtrad->openDB(userID);
connect(dbtrad, SIGNAL(clearPreviousHistory()), this, SLOT(clearHistoryV()));
thread->start();
}
dbThread::dbThread(QObject * parent): QObject(parent) {
}
bool dbThread::openDB(QString agentID) {
qDebug() << "OPEN DB FROM THREAD ";
// Find QSLite driver
db = QSqlDatabase::addDatabase("QSQLITE");
// ......
}
This is how I call dbThread methods from my MainWindow:
dbtrad->getHistory(channelId);
Edit
New code:
// Start database thread
QThread* thread = new QThread(this);
dbtrad = new dbThread(this);
dbtrad->moveToThread(thread);
connect(this, SIGNAL(requestOpenDB(QString)), dbtrad, SLOT(openDB(QString)));
thread->start();
emit requestOpenDB(userID);
dbtrad->openDB(userID); will execute like any normal function (Why should it?), in the GUI thread.
moveToThread allow you to execute slots called using signals in a separate thread.
If you want to execute openDB in the thread you can trigger its execution using
connect (thread, SIGNAL(started()), dbtrad, SLOT(openDBWithUIDAlreadySet()))
or
connect (this, SIGNAL(requestOpenDB(int)), dbtrad, SLOT(openDB(int)))
You need to use existing or additional signals. Qthread::start() emit the signal started(). You can also define
MainWindow{
signals:
void requestOpenDB(int);
void queryHistory(int channelid);
}
and emit the signals manually using
emit requestOpenDB(userID); //for openDB
emit queryHistory(channelId); // for getHistory
the responses from the dbThread object also need to be given using a signal which is connected to a slot. Like a notification.
QTcpSocketdoes indeed not need to be in a separated thread.
as long as all the database access is done from that thread where the database was created it should also be no problem
And now to the fun part: i think you create the database in the main thread ... by calling dbtrad->openDB(userId)
Yes so qt moveToThread() does not do what you are expecting it to do. The function that you are calling from your main thread will get executed in your main thread only. That database access is causing GUI freezes.
moveToThread only moves "event processing" in a seperate thread. Which means any slots of dbThread which are connected using Qt::QueuedConnectionwill get executed in new thread.
Following way will execute getHistory() method in your main ui thread only. You need to create a signal in main thread and make getHistory() a slot of dbThread class. Then connect both.
Reading documentation AND logs is essential!!!
In log you have a warning that YOU CAN"T MOVE TO THREAD IF OBJECT HAVE A PARENT.
Also documentation clearly says that:
Changes the thread affinity for this object and its children. The
object cannot be moved if it has a parent. Event processing will
continue in the targetThread.
Proper way to fix it:
MainWindow::MainWindow(QWidget *parent) :
QMainWindow(parent),
ui(new Ui::MainWindow)
{
thread = new QThread(this);
dbtrad = new dbThread(); // NO PARENT
dbtrad->moveToThread(thread);
// run object method in thread assigned to this object:
QMetaObject::invokeMethod(dbtrad, "openDB", Qt::QueuedConnection, Q_ARG(QString, userID));
connect(dbtrad, SIGNAL(clearPreviousHistory()), this, SLOT(clearHistoryV()));
thread->start();
}
MainWindow::~MainWindow()
{
dbtrad->deleteLater();
thread->quit();
thread->wait(5000); // wait max 5 seconds to terminate thread
}
i have an multithreaded qt application. when i am doing some processes in mainwindow.cpp, at the same time, i want to update mainwindow.ui from other thread.
i have mythread.h
#ifndef MYTHREAD_H
#define MYTHREAD_H
#include <QThread>
#include "mainwindow.h"
class mythread : public QThread
{
public:
void run();
mythread( MainWindow* ana );
MainWindow* ana;
private:
};
#endif // MYTHREAD_H
mythread.cpp
mythread::mythread(MainWindow* a)
{
cout << "thread created" << endl;
ana = a;
}
void mythread::run()
{
QPixmap i1 (":/notes/pic/4mdodiyez.jpg");
QLabel *label = new QLabel();
label->setPixmap(i1);
ana->ui->horizontalLayout_4->addWidget(label);
}
but the problem is that, i cannot reach the ana->ui->horizontalLayout_4->addWidget(label);
how can i do that?
but the problem is that, i cannot reach the
ana->ui->horizontalLayout_4->addWidget(label);
Put your UI modifications in a slot in your main window, and connect a thread signal to that slot, chances are it will work. I think only the main thread has access to the UI in Qt. Thus if you want GUI functionality, it must be there, and can be only signaled from other threads.
OK, here is a simple example. BTW, your scenario doesn't really require to extend QThread - so you are better off not doing it, unless you really have to. That is why in this example I will use a normal QThread with a QObject based worker instead, but the concept is the same if you subclass QThread:
The main UI:
class MainUI : public QWidget
{
Q_OBJECT
public:
explicit MainUI(QWidget *parent = 0): QWidget(parent) {
layout = new QHBoxLayout(this);
setLayout(layout);
QThread *thread = new QThread(this);
GUIUpdater *updater = new GUIUpdater();
updater->moveToThread(thread);
connect(updater, SIGNAL(requestNewLabel(QString)), this, SLOT(createLabel(QString)));
connect(thread, SIGNAL(destroyed()), updater, SLOT(deleteLater()));
updater->newLabel("h:/test.png");
}
public slots:
void createLabel(const QString &imgSource) {
QPixmap i1(imgSource);
QLabel *label = new QLabel(this);
label->setPixmap(i1);
layout->addWidget(label);
}
private:
QHBoxLayout *layout;
};
... and the worker object:
class GUIUpdater : public QObject {
Q_OBJECT
public:
explicit GUIUpdater(QObject *parent = 0) : QObject(parent) {}
void newLabel(const QString &image) { emit requestNewLabel(image); }
signals:
void requestNewLabel(const QString &);
};
The worker object is created and moved to another thread, then connected to the slot that creates the labels, then its newLabel method is invoked, which is just a wrapper to emit the requestNewLabel signal and pass the path to the image. The signal is then passed from the worker object/thread to the main UI slot along with the image path parameter and a new label is added to the layout.
Since the worker object is created without parent in order to be able to move it to another thread, we also connect the thread destroyed signal to the worker deleteLater() slot.
First and foremost, "you're doing it wrong". Normally you want to create a class derived from a QObject and move that class to a new thread object instead of deriving your class from a Qthread
Now to get onto the specifics of your question, you're not able to directly modify the ui elements of your main GUI thread from a separate thread. You have to connect a signal from your 2nd thread to a slot in your main thread. You can pass any data that you need through this signal/slot connection but you're unable to directly modify the ui element (which in all honestly you probably do not want to if you intend to keep the frontend of your app separate from the backend). Checkout Qt's signal and slot documentation for a whole lot more information
how can i do that?
You've already got the answers to what you should be doing, but not a why, so I'm going to add a why.
The reason you don't modify GUI elements from another thread is because GUI elements are usually not thread-safe. This means that if both your main GUI thread and your worker thread update the UI, you cannot be certain of the order of what happened when.
For reading data generally this can sometimes be fine (e.g. checking a condition) but generally you do not want this to be case. For writing data, this is almost always the source of very, very stressful bugs which occur "at random".
Another answer has remarked on good design principles - not only does constraining your GUI logic to one thread and firing signals to talk to it get rid of your race condition issues, but it also forces you to compartmentalize your code nicely. Presentation logic (the display bit) and data processing logic can then be cleanly separated out, which makes maintaining the two much easier.
At this stage you might think: heck, this threads business is farrrrrr too much work! I'll just avoid that. To see why this is a bad idea, implement a file copy program in a single thread with a simple progress bar telling you how far along the copy is. Run it on a large file. On Windows, after a while, the application will "go white" (or on XP I think it goes gray) and will be "not responding". This is very literally what is happening.
GUI applications internally mostly work on the variation of "one big loop" processing and dispatching messages. Windows, for example, measures response time to those messages. If a message takes too long to get a response, Windows then decides it is dead, and takes over. This is documented in GetMessage().
So whilst it may seem like quite a bit of work, Signals/Slots (an event-driven model) is basically the way to go - another way to think of this is that it is totally acceptable for your threads to generate "events" for the UI too - such as progress updates and the like.
I'm trying to implement some small app which is a gui app and has some heavy work to do as a one of it's main tasks. Obviously I'm putting this "work" into a separate thread and starting this thread by invoking start fnc on this obj. Unfortunatelly nothing happens. On the other hands when instead of start I invoke implemented fnc run computations are performed as they should although of course in same thread as gui. What to do?
So I have class inheriting QThread:
class Working_Thread : public QThread
{
Q_OBJECT
public:
typedef boost::filesystem3::path path_t;
private:
bool& cancel_flag_;
const std::set<path_t>& paths_;
int search_depth_;
typedef void (Dir_File_Select_Dialog::*fnc_ptr)(const std::set<path_t>&,int);
fnc_ptr fnc_;
Dir_File_Select_Dialog* parent_;
protected:
void run()
{
(parent_->*fnc_)(paths_,search_depth_);
}
public:
Working_Thread(bool& cancel_flag,const std::set<path_t>&,int&,fnc_ptr fnc,Dir_File_Select_Dialog* parent);
};
And here is fragment from gui thread when I try to start new thread:
Working_Thread* working_thread = new Working_Thread(cancel_flag,paths,search_depth,&Dir_File_Select_Dialog::extract_files_,this);
working_thread->start();//this desn't invoke run fnc
but when I do:
working_thread->run();//this will perform computations although in gui thread
UPDATE:
Little change I did which now performs computations when using start fnc but it still blocks GUI.
Working_Thread* working_thread = new Working_Thread(cancel_flag,paths,search_depth,&Dir_File_Select_Dialog::extract_files_,this);
working_thread->start();//hangs
working_thread->wait();//when I call wait here computation is performed but GUI is blocked.
I don't know how your code is actually done, but as a first step i suggest you to follow the best practice suggested at the end of the new revision of the Qt documentation of QThread :
http://qt-project.org/doc/qt-4.8/QThread.html (look for bottom of this page)
For a similar tutorial you also may check this article: http://mayaposch.wordpress.com/2011/11/01/how-to-really-truly-use-qthreads-the-full-explanation/
Every time i tried to directly make my treatment in a QThread I ended up having big problems with threads (most of time, the treatment beeing done in the caller's tread).
This documentation has been added in 4.8 and the examples provided by documentation of previous versions were missleading.
(code copied from the Qt documentation)
Consider the following pattern as your default way to use QThread:
class Worker : public QObject
{
Q_OBJECT
public slots:
void doWork() {
/* ... */
}
};
/* ... */
QThread *thread = new QThread;
Worker *worker = new Worker;
//obj is a pointer to a QObject that will trigger the work to start. It could just be this
connect(obj, SIGNAL(startWork()), worker, SLOT(doWork()));
worker->moveToThread(thread);
thread->start();
//obj will need to emit startWork() to get the work going.
Alternatively, you could do:
//based on the same Worker class as above:
/* ... */
QThread *thread = new QThread;
Worker *worker = new Worker;
worker->moveToThread(thread);
thread->start();
QMetaObject::invokeMethod(worker, "doWork", Qt::QueuedConnection);
It is normal that the GUI blocks if you call wait() on a thread, because this will wait for the thread to finish, and also you haven't specified any timeout for wait in this case.
Now regarding the initial problem (when you don't call wait()), I have used QThread successfully in similar scenarios. I do not know though what is wrong in your code, but what I would check is if your execution doesn't hang in other places, like in the invocation of
(parent_->*fnc_)(paths_,search_depth_);
So maybe inserting some log / debug message before and after this call, and also in the function that is invoke here might help isolating the problem. At least then you'll know if the run() method is invoked or not. For example:
qDebug() << "In thread.run()";
(parent_->*fnc_)(paths_,search_depth_);
qDebug() << "In thread.run(), calculations are done";
Also I find it suspicious that you perform calculation using a GUI object (Dir_File_Select_Dialog). This is not normal in Qt, Gui objects should normally be used in the GUI thread. Why not implement the calculations directly in run? Or at least move it to a non-GUI object, just to be sure and keep GUI implementations separated from background operations.
If you call wait, the GUI is going to be blocked.
If this program hangs when you do a start, it seems that the problem is in this call: (parent_->*fnc_)(paths_,search_depth_);
You could place a qDebug call just before and after this call.