Value constructors in haskell - list

I have a question about Haskell. I'm new so I don't understand too well, but if anyone could help me I'd really appreciate. I have this exercise from a book that I bought.
Create a type Question with value contructors Sim or Nao. Make a
function that:
listQuest: receive from a parameter a list of Questions and return 0 for Nao or 1 for Sim corresponding the constructors in the list.
I tried this code:
module Question where
data Question = Yes | No deriving Show
questNum :: Question -> Int
questNum No = 0
questNum Yes = 1
listQuest :: [Question] -> [Int]
listQuest listQuestion = [ questNum quest | quest <- listQuestion ]
I'm lost in the prompt matter. Don't know what to write to use the function.
Thanks for the help

There are several ways to do that, you did it by list comprehension, another way is using map:
listQuest :: [Question] -> [Int]
listQuest xs = map questNum xs
shorter
listQuest :: [Question] -> [Int]
listQuest = map questNum
using foldr (it is also a way to say map, indeed you can write the general map using foldr):
listQuest :: [Question] -> [Int]
listQuest = foldr (\x rs -> questNum x : rs) []
and the old good pattern matching (is map, but with pattern matching):
listQuest :: [Question] -> [Int]
listQuest [] = []
listQuest (x:xs) = questNum x : listQuest xs
your way, and all of this, are equivalent.
On the prompt:
Then on the prompt you type something like:
$> :l file_name.hs
$> listQuest [Yes, Yes, No]
$> [1,1,0]

Related

Getting the permutation of a list in haskell?

at the university we just started learning haskell. So I am really new to that whole "functional programming"-world...
I already had to implement a function that lets you insert a value at each point in a list. It is already running and works like this.
-- Inserts a value of type a in each position of a list and returns a list of all those lists
insert :: a -> [a] -> [[a]]
My task now is to implement a function that calculates all permutations of a given list.
So I thought I could use the already working insert-function and do it like this:
perms :: [a] -> [[a]]
perms [] = [[]]
perms (x:xs) = insert x perms(xs)
But unfortunately it is not working. I am not sure but I think the problem might be, that the insert-function creates a list of lists and thereby on recursion a list of lists of lists of ... which leads to a problem when recalling the insert function recursivly, because x is not fitting into those cascading lists.
Can somebody help me with this just a little bit? Thank you very much :)
Alright... I found the solution with the help from #chepner. My Code is now running and looks like this:
perms :: [a] -> [[a]]
perms [] = [[]]
perms (x:xs) = insertEverywhere x (perms xs)
where insertEverywhere :: a -> [[a]] -> [[a]]
insertEverywhere e [[]] = [[e]]
insertEverywhere e [x] = (insert e x)
insertEverywhere e (l:ls) = (insert e l) ++ (insertEverywhere e ls)

Adding zeros between elements in list?

I'm trying to change a list in haskell to include 0 between every element. If we have initial list [1..20] then i would like to change it to [1,0,2,0,3..20]
What i thought about doing is actually using map on every function, extracting element then adding it to list and use ++[0] to it but not sure if this is the right approach or not. Still learning haskell so might have errors.
My code:
x = map classify[1..20]
classify :: Int -> Int
addingFunction 0 [Int]
addingFunction :: Int -> [a] -> [a]
addingFunction x xs = [a] ++ x ++ xs
intersperse is made for this. Just import Data.List (intersperse), then intersperse 0 yourList.
You cannot do this with map. One of the fundamental properties of map is that its output will always have exactly as many items as its input, because each output element corresponds to one input, and vice versa.
There is a related tool with the necessary power, though:
concatMap :: (a -> [b]) -> [a] -> [b]
This way, each input item can produce zero or more output items. You can use this to build the function you wanted:
between :: a -> [a] -> [a]
sep `between` xs = drop 1 . concatMap insert $ xs
where insert x = [sep, x]
0 `between` [1..10]
[1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10]
Or a more concise definition of between:
between sep = drop 1 . concatMap ((sep :) . pure)
With simple pattern matching it should be:
addingFunction n [] = []
addingFunction n [x] = [x]
addingFunction n (x:xs) = x: n : (addingFunction n xs)
addingFunction 0 [1..20]
=> [1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10,0,11,0,12,0,13,0,14,0,15,0,16,0,17,0,18,0,19,0,20]
If you want to use map to solve this, you can do something like this:
Have a function that get a int and return 2 element list with int and zero:
addZero :: List
addZero a = [0, a]
Then you can call map with this function:
x = map addZero [1..20] -- this will return [[0,1], [0, 2] ...]
You will notice that it is a nested list. That is just how map work. We need a way to combine the inner list together into just one list. This case we use foldl
combineList :: [[Int]] -> [Int]
combineList list = foldl' (++) [] list
-- [] ++ [0, 1] ++ [0, 2] ...
So the way foldl work in this case is that it accepts a combine function, initial value, and the list to combine.
Since we don't need the first 0 we can drop it:
dropFirst :: [Int] -> [Int]
dropFirst list = case list of
x:xs -> xs
[] -> []
Final code:
x = dropFirst $ combineList $ map addZero [1..20]
addZero :: Int -> [Int]
addZero a = [0, a]
combineList :: [[Int]] -> [Int]
combineList list = foldl (++) [] list
dropFirst :: [Int] -> [Int]
dropFirst list = case list of
x:xs -> xs
[] -> []
We here can make use of a foldr pattern where for each element in the original list, we prepend it with an 0:
addZeros :: Num a => [a] -> [a]
addZeros [] = []
addZeros (x:xs) = x : foldr (((0 :) .) . (:)) [] xs
If you don't want to use intersperse, you can write your own.
intersperse :: a -> [a] -> [a]
intersperse p as = drop 1 [x | a <- as, x <- [p, a]]
If you like, you can use Applicative operations:
import Control.Applicative
intersperse :: a -> [a] -> [a]
intersperse p as = drop 1 $ as <**> [const p, id]
This is basically the definition used in Data.Sequence.

Recursion over Lists - Haskell

Basically I have this exercise: Recall the StudentMark type synonym from last week. Write a recursive function:
listMarks :: String -> [StudentMark] -> [Int]
which gives a list of the marks for a particular student; for example:
listMarks "Joe" [("Joe", 45), ("Sam", 70), ("Joe", 52)] = [45,52]
This was the way I wrote the function:
type StudentMark = (String, Int)
listMarks :: String -> [StudentMark] -> [Int]
listMarks _ [] = []
listMarks std (x:xs)
| std == fst x = snd x : listMarks (fst x) xs
| otherwise = listMarks (fst x) xs
This does not work if a string from the list is different from the "std" string. I would like to understand why and how could I make this work? Thank you!
Easy Fix
Just change the guard | otherwise = listMarks std xs. I would also change it in the guard above, as | std == fst x = snd x : listMarks std xs as yes, they are equal, but it makes it more clear what you want to achieve. so your code would be:
type StudentMark = (String, Int)
listMarks :: String -> [StudentMark] -> [Int]
listMarks _ [] = []
listMarks std (x:xs)
| std == fst x = snd x : listMarks std xs
| otherwise = listMarks std xs
Better Versions
As you can see, you ae calling the function with always the same first argument, so it's highly likely you can write a neater version. Here are two quick ideas:
List Comprehension
Personally my favourite, list comprehensions are very versitile and clear:
listMarks' :: String -> [StudentMark] -> [Int]
listMarks' str marks = [m |(n,m) <- marks, n==str]
Basically you filter the list based on the first element, and then you return the second one.
Higher Order Functions
With higher order functions map, filter and fold, you can do as much as recursion and lcs, but often looks tidier. You want to, again, filter the list based on the first element, and then you return the second one.
listMarks'' :: String -> [StudentMark] -> [Int]
listMarks'' str = map snd . filter (\(n,_) -> n == str)

How to recursively call a function over the length of the list?

I had an interview question, and it has been bugging me since then.
I have a function, fill, that does the computation like taking two lists and then replacing 2s in the second list, where ever there are 2s in the first list and also once 2s are filled in the second list from the first list, then it can flow till a 1 is encountered. For eg:
Two lists [2,1,2,1,2] [0,0,1,0,0] is passed, so the output I get is [2,2,1,2,2]. Now, I want to write a function that takes an argument something like this: [[2,1,2,1,2],[0,0,1,0,0],[0,0,0,0,0]], I want to apply my above function recursively till the end of this list of lists. So like first [2,1,2,1,2] [0,0,1,0,0] are passed to fill, then it should get the result [2,2,1,2,2], then [2,2,1,2,2] and [0,0,0,0,0] should be passed, getting the result [2,2,2,2,2]. How can I do that?
EDIT:
I did this:
fillAll::[[Int]]->[Int]
fillAll [] = []
fillAll (x:xs) =
(foldl' seep x xs) $
helper2 x
helper2:: [Int] -> Bool
helper2 lst =
if 2 `elem` lst then True else False
So, you have your function fill:
fill :: [Int] -> [Int] -> [Int]
And you want to turn this into a function which takes a list of lists:
fillRec :: [[Int]] -> [Int]
This is a natural case for a fold. This repeatedly 'folds' each element of a list together using a combining function. We need to make sure the list isn't empty:
fillRec [] = []
fillRec (x : xs) = foldl fill x xs
This version of foldl (e.g. folds from the left, rather than from the right) is non-strict, which can cause large memory accumulation. It's better to use the strict variant foldl' from Data.List:
fillRec (x : xs) = foldl' fill x xs
I'm going to assume that you already have fill :: [Int] -> [Int] -> [Int] defined. If so, this problem is pretty easy to solve using a fold. Explicitly, you could do something like
fillAll :: [[Int]] -> [Int]
fillAll [] = []
fillAll (x:xs) = go x xs
where
go first [] = first
go first (second:rest) = go (fill first second) rest
Or you can use one of the built-in folds:
fillAll [] = []
fillAll (x:xs) = foldl fill x xs
but as Impredicative points out, you'll have better performance with foldl' from Data.List

Replace an element in a list only once - Haskell

I want to replace an element in a list with a new value only at first time occurrence.
I wrote the code below but using it, all the matched elements will change.
replaceX :: [Int] -> Int -> Int -> [Int]
replaceX items old new = map check items where
check item | item == old = new
| otherwise = item
How can I modify the code so that the changing only happen at first matched item?
Thanks for helping!
The point is that map and f (check in your example) only communicate regarding how to transform individual elements. They don't communicate about how far down the list to transform elements: map always carries on all the way to the end.
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
Let's write a new version of map --- I'll call it mapOnce because I can't think of a better name.
mapOnce :: (a -> Maybe a) -> [a] -> [a]
There are two things to note about this type signature:
Because we may stop applying f part-way down the list, the input list and the output list must have the same type. (With map, because the entire list will always be mapped, the type can change.)
The type of f hasn't changed to a -> a, but to a -> Maybe a.
Nothing will mean "leave this element unchanged, continue down the list"
Just y will mean "change this element, and leave the remaining elements unaltered"
So:
mapOnce _ [] = []
mapOnce f (x:xs) = case f x of
Nothing -> x : mapOnce f xs
Just y -> y : xs
Your example is now:
replaceX :: [Int] -> Int -> Int -> [Int]
replaceX items old new = mapOnce check items where
check item | item == old = Just new
| otherwise = Nothing
You can easily write this as a recursive iteration like so:
rep :: Eq a => [a] -> a -> a -> [a]
rep items old new = rep' items
where rep' (x:xs) | x == old = new : xs
| otherwise = x : rep' xs
rep' [] = []
A direct implementation would be
rep :: Eq a => a -> a -> [a] -> [a]
rep _ _ [] = []
rep a b (x:xs) = if x == a then b:xs else x:rep a b xs
I like list as last argument to do something like
myRep = rep 3 5 . rep 7 8 . rep 9 1
An alternative using the Lens library.
>import Control.Lens
>import Control.Applicative
>_find :: (a -> Bool) -> Simple Traversal [a] a
>_find _ _ [] = pure []
>_find pred f (a:as) = if pred a
> then (: as) <$> f a
> else (a:) <$> (_find pred f as)
This function takes a (a -> Bool) which is a function that should return True on an type 'a' that you wan to modify.
If the first number greater then 5 needs to be doubled then we could write:
>over (_find (>5)) (*2) [4, 5, 3, 2, 20, 0, 8]
[4,5,3,2,40,0,8]
The great thing about lens is that you can combine them together by composing them (.). So if we want to zero the first number <100 in the 2th sub list we could:
>over ((element 1).(_find (<100))) (const 0) [[1,2,99],[101,456,50,80,4],[1,2,3,4]]
[[1,2,99],[101,456,0,80,4],[1,2,3,4]]
To be blunt, I don't like most of the answers so far. dave4420 presents some nice insights on map that I second, but I also don't like his solution.
Why don't I like those answers? Because you should be learning to solve problems like these by breaking them down into smaller problems that can be solved by simpler functions, preferably library functions. In this case, the library is Data.List, and the function is break:
break, applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly empty) of xs of elements that do not satisfy p and second element is the remainder of the list.
Armed with that, we can attack the problem like this:
Split the list into two pieces: all the elements before the first occurence of old, and the rest.
The "rest" list will either be empty, or its first element will be the first occurrence of old. Both of these cases are easy to handle.
So we have this solution:
import Data.List (break)
replaceX :: Eq a => a -> a -> [a] -> [a]
replaceX old new xs = beforeOld ++ replaceFirst oldAndRest
where (beforeOld, oldAndRest) = break (==old) xs
replaceFirst [] = []
replaceFirst (_:rest) = new:rest
Example:
*Main> replaceX 5 7 ([1..7] ++ [1..7])
[1,2,3,4,7,6,7,1,2,3,4,5,6,7]
So my advice to you:
Learn how to import libraries.
Study library documentation and learn standard functions. Data.List is a great place to start.
Try to use those library functions as much as you can.
As a self study exercise, you can pick some of the standard functions from Data.List and write your own versions of them.
When you run into a problem that can't be solved with a combination of library functions, try to invent your own generic function that would be useful.
EDIT: I just realized that break is actually a Prelude function, and doesn't need to be imported. Still, Data.List is one of the best libraries to study.
Maybe not the fastest solution, but easy to understand:
rep xs x y =
let (left, (_ : right)) = break (== x) xs
in left ++ [y] ++ right
[Edit]
As Dave commented, this will fail if x is not in the list. A safe version would be:
rep xs x y =
let (left, right) = break (== x) xs
in left ++ [y] ++ drop 1 right
[Edit]
Arrgh!!!
rep xs x y = left ++ r right where
(left, right) = break (== x) xs
r (_:rs) = y:rs
r [] = []
replaceValue :: Int -> Int -> [Int] -> [Int]
replaceValue a b (x:xs)
|(a == x) = [b] ++ xs
|otherwise = [x] ++ replaceValue a b xs
Here's an imperative way to do it, using State Monad:
import Control.Monad.State
replaceOnce :: Eq a => a -> a -> [a] -> [a]
replaceOnce old new items = flip evalState False $ do
forM items $ \item -> do
replacedBefore <- get
if item == old && not replacedBefore
then do
put True
return new
else
return old