How to round up a real number to nth decimal in SML? - sml

New to SML, trying to round up a real number to nth decimal, by declaring a function round(n,L), where L is a list of real numbers and n decide the nth decimal that can round up to.
My approach is to convert the real number to a string first, and then get the substring to the nth decimal and then parse the substring back to real number, this works fine if I only want to get the real number to nth decimal, but if I have a number like 0.3456 which I want to round to 0.35, my method won't really achieve that.
fun rd(_,[]) = []
|rd(a:int, x::y:real list) =
if x>0.0
then Option.getOpt(Real.fromString(String.substring(Real.toString(x),0,a+2)),0.0) :: rd(a,y)
else Option.getOpt(Real.fromString(String.substring(Real.toString(x),0,a+3)),0.0) :: rd(a,y)
The expected result is like this:
- rd (2, [0.1234, 0.2345, ~0.3456]);
val it = [0.12,0.23,~0.35] : real list`
But the actual output I got is
val it = [0.12,0.23,~0.34] : real list
If I want to round up the number, is there any good approach?
I've also tried this:
fun rd(_,[]) = []
|rd(a:int, x::y:real list) =
let
val n = real(round(x*Math.pow(10.0,real(a)))) / Math.pow(10.0,real(a))
in n::rd(a,y)
end;
but this solution will give me an uncaught exception overflow...

trying to round up a real number to nth decimal
declaring a function round(n,L), where L is a list of real numbers and n decide the nth decimal
Judging by your use of Math.pow(10.0,real(a)) in your second attempted solution, you seem to be on track. I don't understand where a list comes in; as Yawar points out, try and solve this for rounding a single real, and then apply that recursively (using map) to a list of reals.
So a function
fun roundN (x, n) = ...
fun roundManyN (xs, n) = map (fn x => roundN (x, n)) xs
Start by making some examples and encode them as tests. Since you can't compare real for equality in those tests, start by making (or copying) a custom equality operator.
fun nearlyEqual (a, b, eps) =
let val absA = Real.abs a
val absB = Real.abs b
val diff = Real.abs (a - b)
in Real.== (a, b) orelse
( if Real.== (a, 0.0) orelse
Real.== (b, 0.0) orelse
diff < Real.minNormalPos
then diff < eps * Real.minNormalPos
else diff / Real.min (absA + absB, Real.maxFinite) < eps )
end
val test_roundN_1 =
let val got = roundN (3.14159, 1)
val expected = 3.1
in nearlyEqual (got, expected, 0.1) end
val test_roundN_2 =
let val got = roundN (3.14159, 2)
val expected = 3.14
in nearlyEqual (got, expected, 0.01) end
(* rounding point *)
val test_roundN_3 =
let val got = roundN (3.14159, 3)
val expected = 3.142
in nearlyEqual (got, expected, 0.001) end
(* rounding point *)
val test_roundN_4 =
let val got = roundN (3.14159, 4)
val expected = 3.1416
in nearlyEqual (got, expected, 0.0001) end
val test_roundN_5 =
let val got = roundN (3.14159, 5)
val expected = 3.14159
in nearlyEqual (got, expected, 0.00001) end
You also have some edge cases that you eventually want to deal with:
When n is zero or negative, or when n is greater than the number of digits in the fraction.
When x is close to a rounding point, e.g. roundN (3.1451, 2) ~> 3.15.
When x·10ⁿ has a magnitude that exceeds the size of an int.
When n is so large that a magnitude change may affect the precision of a real.
For a better testing library, check out testlib.sml (and its use in test.sml) in this exercism exercise.
Extracting your second solution into a function, and giving Math.pow (10.0, real n) a temporary binding, you get the solution:
fun roundN (x, n) =
let val m = Math.pow(10.0, real n)
in real (round (x * m)) / m end
this solution will give me an uncaught exception overflow
On what input, I might ask.
One source could be that round : real -> int is a partial function: There are real values that cannot be expressed as int, such as Real.posInf, Real.negInf, 1e10 (on 32-bit SML) and 1e19 (on 64-bit SML). To avoid this, consider using Real.realRound : real -> real to avoid the int conversion.
One way to avoid errors related to x * Math.pow(10.0, real n) causing imprecision because the number grows too big, could be to strip the integer part before multiplying, and adding the integer part back after dividing.

Related

Russian peasant exponentiation using tail-recursive OCaml

I tried the no tail recursion version of Russian Peasant exponentiation and it returned like this:
let rec fast_expNTR (base, power) =
match power with
|0->1
|n-> if n mod 2=0 then fast_expNTR (square base, power/2)
else base * fast_expNTR(square base , power/2)
But in else base*fast_expNTR(square base , power/2), it says expression is expected of type float but was given a type int. I don't understand the error.
Also, here is my attempt on tail-recursive fast exponentiation:
let fast_exp (base , power)=
let rec helper (acc ,acc2,p)=
if p=0 then acc * acc2
else if p mod 2 =0 then helper(int_of_float (square (float_of_int acc)),acc2, p/2)
else helper(int_of_float(square (float_of_int acc)),acc * acc2, p/2)
in helper(base,1,power)
But it didn't compute the correct result. Please help
Hint: Your function square has type float -> float and * is the integer multiplication.

Stuck in infinite loop in ocaml while calculating Pi approximation using Viete's formula

I have problem when calculating Pi approximation with given precision. I've concluded that the infinite loop problem is caused by my loop exit condition however I don't know what the exact problem is. In my opinion the exit condition should be something like
abs(current_aproximation - previous_approximation) < precision
Here is the code:
let pi(prec) =
let rec loop(curr, prev) =
if(abs_float( (2. /. curr) -. (2. /. prev) ) < prec) then // problematic line
(2. /. curr)
else
loop(curr *. sqrt(2. +. curr) /. 2., curr)
in loop(sqrt(0.5), 1.);;
Thanks for any tips on resolving the issue.
You are computing a different product: after one iteration, you should have calculated sqrt(2)/2 * sqrt(2+sqrt(2))/2 but you calculate sqrt(2)/2 * sqrt(2+sqrt(2)/2)/2.
What about this algorithm?
let pi prec =
let rec p2 xn root =
let nroot = sqrt(2. +. root) in
let xm = xn *. (nroot /. 2.) in
if (abs_float (( 2. /. xm ) -. (2. /. xn))) < prec
then xm
else p2 xm nroot
in 2. /. (p2 1.0 0.0)
it evaluates to:
# pi 0.1 ;;
- : float = 3.12144515225805197
# pi 0.01 ;;
- : float = 3.14033115695475251
# pi 0.001 ;;
- : float = 3.14127725093277288
# pi 0.0001 ;;
- : float = 3.14157294036709134
If you modify your code to print out the value of curr, you'll notice that you quickly reach a fixpoint:
9.88131291682e-324
9.88131291682e-324
9.88131291682e-324
9.88131291682e-324
9.88131291682e-324
9.88131291682e-324
9.88131291682e-324
9.88131291682e-324
9.88131291682e-324
(...)
According to Wikipedia your initial value should be (sqrt 2.) /. 2. rather than sqrt (0.5). But even with this modification, it's impossible to request a precision any smaller than 0.61 without hitting the fixpoint described earlier.
My guess is that floats are not precise enough to express this algorithm that way.

How to get integers from list where sum of them is less than X?

Sorry for the mess that was here.
I wanted a classic greedy algorithm for knapsack problem in haskell for integers.
But there was other question - how to refer to list in list comprehension?
There are several approaches to this:
Generate all lists which are smaller. Take the longest
For every n <= X, generate [1..n] and check whether its sum is lesser x. Take the longest of those sets:
allLists x = takeWhile ( (<=x) . sum) $ inits [1..]
theList = last . allLists
where inits is from Data.List
Alternatively, we remember mathematics
We know that the sum of [1..n] is n*(n+1)/2. We want x >= n * (n+1)/2. We solve for n and get that n should be 0.5 * (sqrt (8 * x + 1) - 1). Since that's not a natural number, we floor it:
theList x = [1..n]
where n = floor $ 0.5 * (sqrt (8 * (fromIntegral x) + 1) - 1)
This will give all the lists that its sum is not greater than 100:
takeWhile (\l -> sum l <= 100) $ inits [1..]

Prime factorizacion in haskell

I'm making a program that, for a given integer n, returns a list of a pair of integers, where the first element is a prime from the prime factorization of n, and the second element is the corresponding exponent of that prime. For example for n = 50, it would output [(2,1),(5,2)], since 50 =(2^1)*(5^2).
So anyway, this is my code:
--returns all numbers that divide x
divis :: Integer -> [Integer]
divis 1 = []
divis x = [n | n<-[2..(x-1)], mod x n == 0]
--checks if a number is prime
isprime :: Integer -> Bool
isprime 1 = False
isprime n = if divis n == [] then True else False
--list of prime numbers that divide x
facto :: Integer -> [Integer]
facto 1 = []
facto x = [n | n <- (divis x), isprime n == True]
--finds the biggest exponent of a number m that divides another number n
potencia :: Integer -> Integer -> Integer
potencia _ 0 = error "error"
potencia _ 1 = error "error"
potencia n m = (head [x | x <- [0..], not(mod n (m^x) == 0)]) - 1
The next step would be that, for a number n, I can put togheter in a pair for each number in facto n its corresponding exponent, and output that.
I have tried with this:
factorizar :: Integer -> [(Integer, Integer)]
factorizar 0 = error "nope"
factorizar 1 = [(1,1)] --This isn't accurate but I'll change it later
factorizar n = [(x,y) | x<-(facto n), y == potencia n x, mod n (x^y) == 0] --THIS
I know, the y part in the set comprehension is ugly everywhere. The thing is I dont know what to use since for defining y I need to use x as well, but it is part of the set comprehension. I have tried changing it, or using 'where' but it always has a problem with 'y', telling me it's not in the scope or something. What could be an elegant solution for this?
The simple answer is
y == potencia n x
should really read
let y = potencia n x
and you don't need to check that mod n (x^y) == 0 - I think it is going to be true by definition of potencia.
There are other things you could do differently, but they are tidy-ups.

Why does the exponential operator use float variables in OCaml?

Why does the exponential operator use float variables in OCaml?
Shouldn't it allow int variables too?
# 3**3;;
Error: This expression has type int but an expression was expected of type
float
Works:
# 3.0**3.0;;
- : float = 27.
So, the existing answers go into how to get around this, but not into why it is the case. There are two main reasons:
1) OCaml doesn't have operator aliasing. You can't have two operators that do the "same thing", but to different types. This means that only one kind of number, integers or floats (or some other representation) will get to use the standard ** interface.
2) pow(), the exponentiation function has historically been defined on floats (for instance, in Standard C).
Also, for another way to get around the problem, if you're using OCaml Batteries included, there is a pow function defined for integers.
You can use int
let int_exp x y = (float_of_int x) ** (float_of_int y) |> int_of_float
There's a similar question: Integer exponentiation in OCaml
Here's one possible tail-recursive implementation of integer exponentiation:
let is_even n =
n mod 2 = 0
(* https://en.wikipedia.org/wiki/Exponentiation_by_squaring *)
let pow base exponent =
if exponent < 0 then invalid_arg "exponent can not be negative" else
let rec aux accumulator base = function
| 0 -> accumulator
| 1 -> base * accumulator
| e when is_even e -> aux accumulator (base * base) (e / 2)
| e -> aux (base * accumulator) (base * base) ((e - 1) / 2) in
aux 1 base exponent