This loop:
long n = 0;
unsigned int i, j, innerLoopLength = 4;
for (i = 0; i < 10000000; i++) {
for (j = 0; j < innerLoopLength; j++) {
n += v[j];
}
}
finishes in 0 ms, while this one:
long n = 0;
unsigned int i, j, innerLoopLength = argc;
for (i = 0; i < 10000000; i++) {
for (j = 0; j < innerLoopLength; j++) {
n += v[j];
}
}
takes 35 ms.
No matter what the innerLoopLength is, the first method is always pretty fast while the second getting slower and slower.
Does anybody know why and is there a way to speed up the seconds version? I'm grateful for every ms.
Full code:
#include <iostream>
#include <chrono>
#include <vector>
using namespace std;
int main(int argc, char *argv[]) {
vector<long> v;
cout << "argc: " << argc << endl;
for (long l = 1; l <= argc; l++) {
v.push_back(l);
}
auto start = chrono::steady_clock::now();
long n = 0;
unsigned int i, j, innerLoopLength = 4;
for (i = 0; i < 10000000; i++) {
for (j = 0; j < innerLoopLength; j++) {
n += v[j];
}
}
auto end = chrono::steady_clock::now();
cout << "duration: " << chrono::duration_cast<chrono::microseconds>(end - start).count() / 1000.0 << " ms" << endl;
cout << "n: " << n << endl;
return 0;
}
Compiled with -std=c++1z and -O3.
The fixed-length loop was far quicker due to loop unrolling:
Loop unrolling, also known as loop unwinding, is a loop transformation
technique that attempts to optimize a program's execution speed at the
expense of its binary size, which is an approach known as space–time
tradeoff. The transformation can be undertaken manually by the
programmer or by an optimizing compiler.
The goal of loop unwinding is to increase a program's speed by
reducing or eliminating instructions that control the loop, such as
pointer arithmetic and "end of loop" tests on each iteration; reducing
branch penalties; as well as hiding latencies, including the delay in
reading data from memory. To eliminate this computational overhead,
loops can be re-written as a repeated sequence of similar independent
statements.
Essentially, the inner loop of your C(++) code is transformed to the following before compilation:
for (i = 0; i < 10000000; i++) {
n += v[0];
n += v[1];
n += v[2];
n += v[3];
}
As you can see, it is a little bit faster.
In your specific case, there is yet another source of the optimization: you sum 1000000 times the same values to n. gcc can detect it since around 3.*, and converts it to a multiplication. You can check that, doing the same loop 100000000000 times will be similarly ready in 0 ms. You can check on the ASM level (g++ -S -o bench.s bench.c -O3), you will see only a multiplication and not an addition in a loop. To avoid this, you should add something what can't be converted to a multiplication so easily.
None of them can be done in the second case. Thus, on the ASM level, you will have to deal with a lot of conditional expressions (conditional jumps). These are costly in a modern CPU, because their unexpected result causes the CPU pipeline to reset.
What can you help:
If you know something from innerLoopLength, for example if it is always divisable by 4, you can unroll the loop for yourself
Some gcc(g++) optimization flag, to help him to understand, here you need fast code. Compile with at least -O3 -funroll-loops.
Related
While optimizing some code I discovered some things that I didn't expected.
I wrote a simple code to illustrate what I found below:
#include <string.h>
#include <chrono>
#include <iostream>
using namespace std;
int globalArr[1024][1024];
void initArr(int arr[1024][1024])
{
memset(arr, 0, 1024 * 1024 * sizeof(int));
}
void run()
{
int arr[1024][1024];
initArr(arr);
for(int i = 0; i < 1024; ++i)
{
for(int j = 0; j < 1024; ++j)
{
globalArr[i][j] = arr[i][j];
}
}
}
void run2(int arr[1024][1024])
{
initArr(arr);
for(int i = 0; i < 1024; ++i)
{
for(int j = 0; j < 1024; ++j)
{
globalArr[i][j] = arr[i][j];
}
}
}
int main()
{
{
auto start = chrono::high_resolution_clock::now();
for(int i = 0; i < 256; ++i)
{
run();
}
auto duration = chrono::high_resolution_clock::now() - start;
cout << "(run) Total time: " << chrono::duration_cast<chrono::microseconds>(duration).count() << " microseconds\n";
}
{
auto start = chrono::high_resolution_clock::now();
for(int i = 0; i < 256; ++i)
{
int arr[1024][1024];
run2(arr);
}
auto duration = chrono::high_resolution_clock::now() - start;
cout << "(run2) Total time: " << chrono::duration_cast<chrono::microseconds>(duration).count() << " microseconds\n";
}
return 0;
}
I build the code with g++ version 6.4.0 20180424 with -O3 flag.
Below is the result running on ryzen 1700.
(run) Total time: 43493 microseconds
(run2) Total time: 134740 microseconds
I tried to see the assembly with godbolt.org (Code separated in 2 urls)
https://godbolt.org/g/aKSHH6
https://godbolt.org/g/zfK14x
But I still don't understand what actually made the difference.
So my questions are:
1. What's causing the performance difference?
2. Is it possible passing array in argument with the same performance as local array?
Edit:
Just some extra info, below is the result build using O2
(run) Total time: 94461 microseconds
(run2) Total time: 172352 microseconds
Edit again:
From xaxxon's comment, I try remove the initArr call in both functions. And the result actually run2 is better than run
(run) Total time: 45151 microseconds
(run2) Total time: 35845 microseconds
But I still don't understand the reason.
What's causing the performance difference?
The compiler has to generate code for run2 that will continue to work correctly if you call
run2(globalArr);
or (worse), pass in some overlapping but non-identical address.
If you allow your C++ compiler to inline the call, and it chooses to do so, it'll be able to generate inlined code that knows whether the parameter really aliases your global. The out-of-line codegen still has to be conservative though.
Is it possible passing array in argument with the same performance as local array?
You can certainly fix the aliasing problem in C, using the restrict keyword, like
void run2(int (* restrict globalArr2)[256])
{
int (* restrict g)[256] = globalArr1;
for(int i = 0; i < 32; ++i)
{
for(int j = 0; j < 256; ++j)
{
g[i][j] = globalArr2[i][j];
}
}
}
(or probably in C++ using the non-standard extension __restrict).
This should allow the optimizer as much freedom as it had in your original run - unless it's smart enough to elide the local entirely and simply set the global to zero.
I wanted to learn to use C++ 11 std::threads with VS2012 and I wrote a very simple C++ console program with two threads which just increment a counter. I also want to test the performance difference when two threads are used. Test program is given below:
#include <iostream>
#include <thread>
#include <conio.h>
#include <atomic>
std::atomic<long long> sum(0);
//long long sum;
using namespace std;
const int RANGE = 100000000;
void test_without_threds()
{
sum = 0;
for(unsigned int j = 0; j < 2; j++)
for(unsigned int k = 0; k < RANGE; k++)
sum ++ ;
}
void call_from_thread(int tid)
{
for(unsigned int k = 0; k < RANGE; k++)
sum ++ ;
}
void test_with_2_threds()
{
std::thread t[2];
sum = 0;
//Launch a group of threads
for (int i = 0; i < 2; ++i) {
t[i] = std::thread(call_from_thread, i);
}
//Join the threads with the main thread
for (int i = 0; i < 2; ++i) {
t[i].join();
}
}
int _tmain(int argc, _TCHAR* argv[])
{
chrono::time_point<chrono::system_clock> start, end;
cout << "-----------------------------------------\n";
cout << "test without threds()\n";
start = chrono::system_clock::now();
test_without_threds();
end = chrono::system_clock::now();
chrono::duration<double> elapsed_seconds = end-start;
cout << "finished calculation for "
<< chrono::duration_cast<std::chrono::milliseconds>(end - start).count()
<< "ms.\n";
cout << "sum:\t" << sum << "\n";\
cout << "-----------------------------------------\n";
cout << "test with 2_threds\n";
start = chrono::system_clock::now();
test_with_2_threds();
end = chrono::system_clock::now();
cout << "finished calculation for "
<< chrono::duration_cast<std::chrono::milliseconds>(end - start).count()
<< "ms.\n";
cout << "sum:\t" << sum << "\n";\
_getch();
return 0;
}
Now, when I use for the counter just the long long variable (which is commented) I get value which is different from the correct - 100000000 instead of 200000000. I am not sure why is that and I suppose that the two threads are changing the counter at the same time, but I am not sure how it happens really because ++ is just a very simple instruction. It seems that the threads are caching the sum variable at beginning. Performance is 110 ms with two threads vs 200 ms for one thread.
So the correct way according to documentation is to use std::atomic. However now the performance is much worse for both cases as about 3300 ms without threads and 15820 ms with threads. What is the correct way to use std::atomic in this case?
I am not sure why is that and I suppose that the two threads are changing the counter at the same time, but I am not sure how it happens really because ++ is just a very simple instruction.
Each thread is pulling the value of sum into a register, incrementing the register, and finally writing it back to memory at the end of the loop.
So the correct way according to documentation is to use std::atomic. However now the performance is much worse for both cases as about 3300 ms without threads and 15820 ms with threads. What is the correct way to use std::atomic in this case?
You're paying for the synchronization std::atomic provides. It won't be nearly as fast as using an un-synchronized integer, though you can get a small improvement to performance by refining the memory order of the add:
sum.fetch_add(1, std::memory_order_relaxed);
In this particular case, you're compiling for x86 and operating on a 64-bit integer. This means that the compiler has to generate code to update the value in two 32-bit operations; if you change the target platform to x64, the compiler will generate code to do the increment in a single 64-bit operation.
As a general rule, the solution to problems like this is to reduce the number of writes to shared data.
Your code has a couple of problems. First of all, all the "inputs" involved are compile-time constants, so a good compiler can pre-compute the value for the single-threaded code, so (regardless of the value you give for range) it shows as running in 0 ms.
Second, you're sharing a single variable (sum) between all the threads, forcing all of their accesses to be synchronized at that point. Without synchronization, that gives undefined behavior. As you've already found, synchronizing the access to that variable is quite expensive, so you usually want to avoid it if at all reasonable.
One way to do that is to use a separate subtotal for each thread, so they can all do their additions in parallel, without synchronizing, the adding together the individual results at the end.
Another point is to ensure against false sharing. False sharing arises when two (or more) threads are writing to data that really is separate, but has been allocated in the same cache line. In this case, access to the memory can be serialized even though (as already noted) you don't have any data actually shared between the threads.
Based on those factors, I've rewritten your code slightly to create a separate sum variable for each thread. Those variables are of a class type that gives (fairly) direct access to the data, but does stop the optimizer from seeing that it can do the whole computation at compile-time, so we end up comparing one thread to 4 (which reminds me: I did increase the number of threads from 2 to 4, since I'm using a quad-core machine). I moved that number into a const variable though, so it should be easy to test with different numbers of threads.
#include <iostream>
#include <thread>
#include <conio.h>
#include <atomic>
#include <numeric>
const int num_threads = 4;
struct val {
long long sum;
int pad[2];
val &operator=(long long i) { sum = i; return *this; }
operator long long &() { return sum; }
operator long long() const { return sum; }
};
val sum[num_threads];
using namespace std;
const int RANGE = 100000000;
void test_without_threds()
{
sum[0] = 0LL;
for(unsigned int j = 0; j < num_threads; j++)
for(unsigned int k = 0; k < RANGE; k++)
sum[0] ++ ;
}
void call_from_thread(int tid)
{
for(unsigned int k = 0; k < RANGE; k++)
sum[tid] ++ ;
}
void test_with_threads()
{
std::thread t[num_threads];
std::fill_n(sum, num_threads, 0);
//Launch a group of threads
for (int i = 0; i < num_threads; ++i) {
t[i] = std::thread(call_from_thread, i);
}
//Join the threads with the main thread
for (int i = 0; i < num_threads; ++i) {
t[i].join();
}
long long total = std::accumulate(std::begin(sum), std::end(sum), 0LL);
}
int main()
{
chrono::time_point<chrono::system_clock> start, end;
cout << "-----------------------------------------\n";
cout << "test without threds()\n";
start = chrono::system_clock::now();
test_without_threds();
end = chrono::system_clock::now();
chrono::duration<double> elapsed_seconds = end-start;
cout << "finished calculation for "
<< chrono::duration_cast<std::chrono::milliseconds>(end - start).count()
<< "ms.\n";
cout << "sum:\t" << sum << "\n";\
cout << "-----------------------------------------\n";
cout << "test with threads\n";
start = chrono::system_clock::now();
test_with_threads();
end = chrono::system_clock::now();
cout << "finished calculation for "
<< chrono::duration_cast<std::chrono::milliseconds>(end - start).count()
<< "ms.\n";
cout << "sum:\t" << sum << "\n";\
_getch();
return 0;
}
When I run this, my results are closer to what I'd guess you hoped for:
-----------------------------------------
test without threds()
finished calculation for 78ms.
sum: 000000013FCBC370
-----------------------------------------
test with threads
finished calculation for 15ms.
sum: 000000013FCBC370
... the sums are identical, but N threads increases speed by a factor of approximately N (up to the number of cores available).
Try to use prefix increment, which will give performance improvement.
Test on my machine, std::memory_order_relaxed does not give any advantage.
Im trying get the elapsed time of my program. Actually i thought I should use yclock() from time.h. But it stays zero in all phases of the program although I'm adding 10^5 numbers(there must be some CPU time consumed). I already searched this problem and it seems like, people running Linux are having this issue only. I'm running Ubuntu 12.04LTS.
I'm going to compare AVX and SSE instructions, so using time_t is not really an option. Any hints?
Here is the code:
//Dimension of Arrays
unsigned int N = 100000;
//Fill two arrays with random numbers
unsigned int a[N];
clock_t start_of_programm = clock();
for(int i=0;i<N;i++){
a[i] = i;
}
clock_t after_init_of_a = clock();
unsigned int b[N];
for(int i=0;i<N;i++){
b[i] = i;
}
clock_t after_init_of_b = clock();
//Add the two arrays with Standard
unsigned int out[N];
for(int i = 0; i < N; ++i)
out[i] = a[i] + b[i];
clock_t after_add = clock();
cout << "start_of_programm " << start_of_programm << endl; // prints
cout << "after_init_of_a " << after_init_of_a << endl; // prints
cout << "after_init_of_b " << after_init_of_b << endl; // prints
cout << "after_add " << after_add << endl; // prints
cout << endl << "CLOCKS_PER_SEC " << CLOCKS_PER_SEC << endl;
And the output of the console. I also used printf() with %d, with no difference.
start_of_programm 0
after_init_of_a 0
after_init_of_b 0
after_add 0
CLOCKS_PER_SEC 1000000
clock does indeed return the CPU time used, but the granularity is in the order of 10Hz. So if your code doesn't take more than 100ms, you will get zero. And unless it's significantly longer than 100ms, you won't get a very accurate value, because it your error margin will be around 100ms.
So, increasing N or using a different method to measure time would be your choices. std::chrono will most likely produce a more accurate timing (but it will measure "wall-time", not CPU-time).
timespec t1, t2;
clock_gettime(CLOCK_REALTIME, &t1);
... do stuff ...
clock_gettime(CLOCK_REALTIME, &t2);
double t = timespec_diff(t2, t1);
double timespec_diff(timespec t2, timespec t1)
{
double d1 = t1.tv_sec + t1.tv_nsec / 1000000000.0;
double d2 = t2.tv_sec + t2.tv_nsec / 1000000000.0;
return d2 - d1;
}
The simplest way to get the time is to just use a stub function from OpenMP. This will work on MSVC, GCC, and ICC. With MSVC you don't even need to enable OpenMP. With ICC you can link just the stubs if you like -openmp-stubs. With GCC you have to use -fopenmp.
#include <omp.h>
double dtime;
dtime = omp_get_wtime();
foo();
dtime = omp_get_wtime() - dtime;
printf("time %f\n", dtime);
First, compiler is very likely to optimize your code. Check your compiler's optimization option.
Since array including out[], a[], b[] are not used by the successive code, and no value from out[], a[], b[] would be output, the compiler is to optimize code block as follows like never execute at all:
for(int i=0;i<=N;i++){
a[i] = i;
}
for(int i=0;i<=N;i++){
b[i] = i;
}
for(int i = 0; i < N; ++i)
out[i] = a[i] + b[i];
Since clock() function returns CPU time, the above code consume almost no time after optimization.
And one more thing, set N a bigger value. 100000 is too small for a performance test, nowadays computer runs very fast with o(n) code at 100000 scale.
unsigned int N = 10000000;
Add this to the end of the code
int sum = 0;
for(int i = 0; i<N; i++)
sum += out[i];
cout << sum;
Then you will see the times.
Since you dont use a[], b[], out[] it ignores corresponding for loops. This is because of optimization of the compiler.
Also, to see the exact time it takes use debug mode instead of release, then you will be able to see the time it takes.
I'm trying to get a good understanding of branch prediction by measuring the time to run loops with predictable branches vs. loops with random branches.
So I wrote a program that takes large arrays of 0's and 1's arranged in different orders (i.e. all 0's, repeating 0-1, all rand), and iterates through the array branching based on if the current index is 0 or 1, doing time-wasting work.
I expected that harder-to-guess arrays would take longer to run on, since the branch predictor would guess wrong more often, and that the time-delta between runs on two sets of arrays would remain the same regardless of the amount of time-wasting work.
However, as amount of time-wasting work increased, the difference in time-to-run between arrays increased, A LOT.
(X-axis is amount of time-wasting work, Y-axis is time-to-run)
Does anyone understand this behavior? You can see the code I'm running at the following code:
#include <stdlib.h>
#include <time.h>
#include <chrono>
#include <stdio.h>
#include <iostream>
#include <vector>
using namespace std;
static const int s_iArrayLen = 999999;
static const int s_iMaxPipelineLen = 60;
static const int s_iNumTrials = 10;
int doWorkAndReturnMicrosecondsElapsed(int* vals, int pipelineLen){
int* zeroNums = new int[pipelineLen];
int* oneNums = new int[pipelineLen];
for(int i = 0; i < pipelineLen; ++i)
zeroNums[i] = oneNums[i] = 0;
chrono::time_point<chrono::system_clock> start, end;
start = chrono::system_clock::now();
for(int i = 0; i < s_iArrayLen; ++i){
if(vals[i] == 0){
for(int i = 0; i < pipelineLen; ++i)
++zeroNums[i];
}
else{
for(int i = 0; i < pipelineLen; ++i)
++oneNums[i];
}
}
end = chrono::system_clock::now();
int elapsedMicroseconds = (int)chrono::duration_cast<chrono::microseconds>(end-start).count();
//This should never fire, it just exists to guarantee the compiler doesn't compile out our zeroNums/oneNums
for(int i = 0; i < pipelineLen - 1; ++i)
if(zeroNums[i] != zeroNums[i+1] || oneNums[i] != oneNums[i+1])
return -1;
delete[] zeroNums;
delete[] oneNums;
return elapsedMicroseconds;
}
struct TestMethod{
string name;
void (*func)(int, int&);
int* results;
TestMethod(string _name, void (*_func)(int, int&)) { name = _name; func = _func; results = new int[s_iMaxPipelineLen]; }
};
int main(){
srand( (unsigned int)time(nullptr) );
vector<TestMethod> testMethods;
testMethods.push_back(TestMethod("all-zero", [](int index, int& out) { out = 0; } ));
testMethods.push_back(TestMethod("repeat-0-1", [](int index, int& out) { out = index % 2; } ));
testMethods.push_back(TestMethod("repeat-0-0-0-1", [](int index, int& out) { out = (index % 4 == 0) ? 0 : 1; } ));
testMethods.push_back(TestMethod("rand", [](int index, int& out) { out = rand() % 2; } ));
int* vals = new int[s_iArrayLen];
for(int currentPipelineLen = 0; currentPipelineLen < s_iMaxPipelineLen; ++currentPipelineLen){
for(int currentMethod = 0; currentMethod < (int)testMethods.size(); ++currentMethod){
int resultsSum = 0;
for(int trialNum = 0; trialNum < s_iNumTrials; ++trialNum){
//Generate a new array...
for(int i = 0; i < s_iArrayLen; ++i)
testMethods[currentMethod].func(i, vals[i]);
//And record how long it takes
resultsSum += doWorkAndReturnMicrosecondsElapsed(vals, currentPipelineLen);
}
testMethods[currentMethod].results[currentPipelineLen] = (resultsSum / s_iNumTrials);
}
}
cout << "\t";
for(int i = 0; i < s_iMaxPipelineLen; ++i){
cout << i << "\t";
}
cout << "\n";
for (int i = 0; i < (int)testMethods.size(); ++i){
cout << testMethods[i].name.c_str() << "\t";
for(int j = 0; j < s_iMaxPipelineLen; ++j){
cout << testMethods[i].results[j] << "\t";
}
cout << "\n";
}
int end;
cin >> end;
delete[] vals;
}
Pastebin link: http://pastebin.com/F0JAu3uw
I think you may be measuring the cache/memory performance, more than the branch prediction. Your inner 'work' loop is accessing an ever increasing chunk of memory. Which may explain the linear growth, the periodic behaviour, etc.
I could be wrong, as I've not tried replicating your results, but if I were you I'd factor out memory accesses before timing other things. Perhaps sum one volatile variable into another, rather than working in an array.
Note also that, depending on the CPU, the branch prediction can be a lot smarter than just recording the last time a branch was taken - repeating patterns, for example, aren't as bad as random data.
Ok, a quick and dirty test I knocked up on my tea break which tried to mirror your own test method, but without thrashing the cache, looks like this:
Is that more what you expected?
If I can spare any time later there's something else I want to try, as I've not really looked at what the compiler is doing...
Edit:
And, here's my final test - I recoded it in assembler to remove the loop branching, ensure an exact number of instructions in each path, etc.
I also added an extra case, of a 5-bit repeating pattern. It seems pretty hard to upset the branch predictor on my ageing Xeon.
In addition to what JasonD pointed out, I would also like to note that there are conditions inside for loop, which may affect branch predictioning:
if(vals[i] == 0)
{
for(int i = 0; i < pipelineLen; ++i)
++zeroNums[i];
}
i < pipelineLen; is a condition like your ifs. Of course compiler may unroll this loop, however pipelineLen is argument passed to a function so probably it does not.
I'm not sure if this can explain wavy pattern of your results, but:
Since the BTB is only 16 entries long in the Pentium 4 processor, the prediction will eventually fail for loops that are longer than 16 iterations. This limitation can be avoided by unrolling a loop until it is only 16 iterations long. When this is done, a loop conditional will always fit into the BTB, and a branch misprediction will not occur on loop exit. The following is an exam ple of loop unrolling:
Read full article: http://software.intel.com/en-us/articles/branch-and-loop-reorganization-to-prevent-mispredicts
So your loops are not only measuring memory throughput but they are also affecting BTB.
If you have passed 0-1 pattern in your list but then executed a for loop with pipelineLen = 2 your BTB will be filled with something like 0-1-1-0 - 1-1-1-0 - 0-1-1-0 - 1-1-1-0 and then it will start to overlap, so this can indeed explain wavy pattern of your results (some overlaps will be more harmful than others).
Take this as an example of what may happen rather than literal explanation. Your CPU may have much more sophisticated branch prediction architecture.
This question already has answers here:
Why are elementwise additions much faster in separate loops than in a combined loop?
(10 answers)
Performance of breaking apart one loop into two loops
(6 answers)
Closed 9 years ago.
What is the overhead in splitting a for-loop like this,
int i;
for (i = 0; i < exchanges; i++)
{
// some code
// some more code
// even more code
}
into multiple for-loops like this?
int i;
for (i = 0; i < exchanges; i++)
{
// some code
}
for (i = 0; i < exchanges; i++)
{
// some more code
}
for (i = 0; i < exchanges; i++)
{
// even more code
}
The code is performance-sensitive, but doing the latter would improve readability significantly. (In case it matters, there are no other loops, variable declarations, or function calls, save for a few accessors, within each loop.)
I'm not exactly a low-level programming guru, so it'd be even better if someone could measure up the performance hit in comparison to basic operations, e.g. "Each additional for-loop would cost the equivalent of two int allocations." But, I understand (and wouldn't be surprised) if it's not that simple.
Many thanks, in advance.
There are often way too many factors at play... And it's easy to demonstrate both ways:
For example, splitting the following loop results in almost a 2x slow-down (full test code at the bottom):
for (int c = 0; c < size; c++){
data[c] *= 10;
data[c] += 7;
data[c] &= 15;
}
And this is almost stating the obvious since you need to loop through 3 times instead of once and you make 3 passes over the entire array instead of 1.
On the other hand, if you take a look at this question: Why are elementwise additions much faster in separate loops than in a combined loop?
for(int j=0;j<n;j++){
a1[j] += b1[j];
c1[j] += d1[j];
}
The opposite is sometimes true due to memory alignment.
What to take from this?
Pretty much anything can happen. Neither way is always faster and it depends heavily on what's inside the loops.
And as such, determining whether such an optimization will increase performance is usually trial-and-error. With enough experience you can make fairly confident (educated) guesses. But in general, expect anything.
"Each additional for-loop would cost the equivalent of two int allocations."
You are correct that it's not that simple. In fact it's so complicated that the numbers don't mean much. A loop iteration may take X cycles in one context, but Y cycles in another due to a multitude of factors such as Out-of-order Execution and data dependencies.
Not only is the performance context-dependent, but it also vary with different processors.
Here's the test code:
#include <time.h>
#include <iostream>
using namespace std;
int main(){
int size = 10000;
int *data = new int[size];
clock_t start = clock();
for (int i = 0; i < 1000000; i++){
#ifdef TOGETHER
for (int c = 0; c < size; c++){
data[c] *= 10;
data[c] += 7;
data[c] &= 15;
}
#else
for (int c = 0; c < size; c++){
data[c] *= 10;
}
for (int c = 0; c < size; c++){
data[c] += 7;
}
for (int c = 0; c < size; c++){
data[c] &= 15;
}
#endif
}
clock_t end = clock();
cout << (double)(end - start) / CLOCKS_PER_SEC << endl;
system("pause");
}
Output (one loop): 4.08 seconds
Output (3 loops): 7.17 seconds
Processors prefer to have a higher ratio of data instructions to jump instructions.
Branch instructions may force your processor to clear the instruction pipeline and reload.
Based on the reloading of the instruction pipeline, the first method would be faster, but not significantly. You would add at least 2 new branch instructions by splitting.
A faster optimization is to unroll the loop. Unrolling the loop tries to improve the ratio of data instructions to branch instructions by performing more instructions inside the loop before branching to the top of the loop.
Another significant performance optimization is to organize the data so it fits into one of the processor's cache lines. So for example, you could split have inner loops that process a single cache of data and the outer loop would load new items into the cache.
This optimizations should only be applied after the program runs correctly and robustly and the environment demands more performance. The environment defined as observers (animation / movies), users (waiting for a response) or hardware (performing operations before a critical time event). Any other purpose is a waste of your time, as the OS (running concurrent programs) and storage access will contribute more to your program's performance issues.
This will give you a good indication of whether or not one version is faster than another.
#include <array>
#include <chrono>
#include <iostream>
#include <numeric>
#include <string>
const int iterations = 100;
namespace
{
const int exchanges = 200;
template<typename TTest>
void Test(const std::string &name, TTest &&test)
{
typedef std::chrono::high_resolution_clock Clock;
typedef std::chrono::duration<float, std::milli> ms;
std::array<float, iterations> timings;
for (auto i = 0; i != iterations; ++i)
{
auto t0 = Clock::now();
test();
timings[i] = ms(Clock::now() - t0).count();
}
auto avg = std::accumulate(timings.begin(), timings.end(), 0) / iterations;
std::cout << "Average time, " << name << ": " << avg << std::endl;
}
}
int main()
{
Test("single loop",
[]()
{
for (auto i = 0; i < exchanges; ++i)
{
// some code
// some more code
// even more code
}
});
Test("separated loops",
[]()
{
for (auto i = 0; i < exchanges; ++i)
{
// some code
}
for (auto i = 0; i < exchanges; ++i)
{
// some more code
}
for (auto i = 0; i < exchanges; ++i)
{
// even more code
}
});
}
The thing is quite simple. The first code is like taking a single lap on a race track and the other code is like taking a full 3-lap race. So, more time required to take three laps rather than one lap. However, if the loops are doing something that needs to be done in sequence and they depend on each other then second code will do the stuff. for example if first loop is doing some calculations and second loop is doing some work with those calculations then both loops need to be done in sequence otherwise not...