I'd like to implement a fast correlation coefficient computation using SSE/AVX2. The operands are two unsigned char vectors. The function should be mostly equivalent to this:
float correlate_simple(const unsigned char* vec1, const unsigned char* vec2, size_t length)
{
int sum1 = 0;
int sum2 = 0;
int sum11 = 0;
int sum22 = 0;
int sum12 = 0;
for (size_t i = length; i > 0; --i, ++vec1, ++vec2) {
sum1 += *vec1;
sum2 += *vec2;
sum11 += *vec1 * *vec1;
sum22 += *vec2 * *vec2;
sum12 += *vec1 * *vec2;
}
double mean1 = double(sum1) / double(length);
double mean2 = double(sum2) / double(length);
double mean11 = double(sum11) / double(length);
double mean22 = double(sum22) / double(length);
double mean12 = double(sum12) / double(length);
double b = (mean11 - mean1 * mean1) * (mean22 - mean2 * mean2);
if (b <= 0.0)
return 0.0f;
double a = (mean12 - mean1 * mean2);
return float(a / sqrt(b));
}
The parameter length ranges from 1 to less than 1000.
In order to do this, I researched on how to implement an inner product of two unsigned byte arrays. However, I could not come up with a solution that does not involve converting all the unsigned 8 bit values to signed 16 bit values.
The intrinsic _mm256_maddubs_epi16(a, b) expects b to be a signed byte. This would not be a problem in this case since subtracting some constant (here: 127) from b does not change the correlation coefficient. Unfortunately I could not find an intrinsic that would allow me to subtract 127 from unsigned bytes producing signed bytes (not relying on some two's complement magic).
// vec: const unsigned char*
auto x = _mm256_load_si256((const __m256i*) vec);
auto v = _mm256_set1_epi8(127);
// wrong if vec[i] is less than 127:
auto x_centered = _mm256_sub_epi8 (x, v);
What would be the best approach here to compute inner products (and finally a correlation coefficient)?
Addendum:
Below is my current implementation of a pure inner product. I decided to convert to 16 bit integer to avoid overflow errors.
Update: Changed from reading 128 bits to 256 bits at a time.
int accumulate_i32(__m256i x)
{
auto tmp1 = _mm256_srli_si256(x, 8);
x = _mm256_add_epi32(x, tmp1);
auto tmp2 = _mm256_extractf128_si256(x, 1);
tmp2 = _mm_add_epi32(tmp2, _mm256_castsi256_si128(x));
return _mm_cvtsi128_si32(tmp2) + _mm_extract_epi32(tmp2, 1);
}
int inner_product_avx(const unsigned char* vec1, const unsigned char* vec2, unsigned int length)
{
constexpr unsigned int memoryAlignmentBytes = 32;
constexpr unsigned int bytesPerPack = 256 / 8;
assert((reinterpret_cast<std::uintptr_t>(vec1) % memoryAlignmentBytes) == 0);
assert((reinterpret_cast<std::uintptr_t>(vec2) % memoryAlignmentBytes) == 0);
// compute middle part via AVX2
unsigned int packCount = length / bytesPerPack;
const __m256i zeros = _mm256_setzero_si256();
auto sumlo = _mm256_setzero_si256();
auto sumhi = _mm256_setzero_si256();
for (unsigned int packIdx = 0; packIdx < packCount; ++packIdx) {
auto x1 = _mm256_load_si256((const __m256i*)vec1);
auto x2 = _mm256_load_si256((const __m256i*)vec2);
auto x1lo = _mm256_unpacklo_epi8(x1, zeros);
auto x1hi = _mm256_unpackhi_epi8(x1, zeros);
auto x2lo = _mm256_unpacklo_epi8(x2, zeros);
auto x2hi = _mm256_unpackhi_epi8(x2, zeros);
auto tmplo = _mm256_madd_epi16(x1lo, x2lo);
auto tmphi = _mm256_madd_epi16(x1hi, x2hi);
sumlo = _mm256_add_epi32(sumlo, tmplo);
sumhi = _mm256_add_epi32(sumhi, tmphi);
vec1 += bytesPerPack;
vec2 += bytesPerPack;
}
int sum = accumulate_i32(sumlo) + accumulate_i32(sumhi);
// compute remaining part that cannot be represented as a
// whole packed integer
unsigned int packRestCount = length % bytesPerPack;
for (size_t i = packRestCount; i > 0; --i, ++vec1, ++vec2)
sum += int(*vec1) * int(*vec2);
return sum;
}
This takes roughly 20 % of the time of the simple C++ implementation (see below). Considering the fact that the AVX code works on 16 16-bit integers simultaneously, I would have expected a higher gain. - Is this reasonable or did I miss something?
Unrolling the last loop in the AVX code did not descrease computation time.
int inner_product_simple(const unsigned char* vec1, const unsigned char* vec2, size_t length)
{
int sum = 0;
for (size_t i = length; i > 0; --i, ++vec1, ++vec2)
sum += int(*vec1) * int(*vec2);
return sum;
}
I would start from something like that. It uses 32-bit accumulators just like your current code. Untested.
namespace
{
// Compute sum of the 64-bit lanes, convert to double
inline double hadd_epi64( const __m256i i64 )
{
__m128i res = _mm256_castsi256_si128( i64 );
res = _mm_add_epi64( res, _mm256_extractf128_si256( i64, 1 ) );
res = _mm_add_epi64( res, _mm_unpackhi_epi64( res, res ) );
return (double)_mm_cvtsi128_si64( res );
}
// Convert 32-bit lanes into 64-bit, compute sum of the 8, convert to double
inline double hadd_epu32( __m256i x )
{
const __m256i zero = _mm256_setzero_si256();
__m256i i64 = _mm256_unpacklo_epi32( x, zero );
i64 = _mm256_add_epi64( i64, _mm256_unpackhi_epi32( x, zero ) );
return hadd_epi64( i64 );
};
}
class InnerProduct
{
// These fields are interpreted as 64-bit integers
__m256i a, b;
// These fields are interpreted as 32-bit integers
__m256i aa, bb, ab;
// Accumulate products of 16-bit numbers, 16 of them at once
inline void add16( __m256i x, __m256i y )
{
const __m256i x2 = _mm256_madd_epi16( x, x );
const __m256i y2 = _mm256_madd_epi16( y, y );
const __m256i prod = _mm256_madd_epi16( x, y );
aa = _mm256_add_epi32( aa, x2 );
bb = _mm256_add_epi32( bb, y2 );
ab = _mm256_add_epi32( ab, prod );
}
public:
InnerProduct()
{
a = b = aa = bb = ab = _mm256_setzero_si256();
}
// Handle 32 bytes
inline void addBytes( __m256i x, __m256i y )
{
// Accumulate values
const __m256i zero = _mm256_setzero_si256();
a = _mm256_add_epi64( a, _mm256_sad_epu8( x, zero ) );
b = _mm256_add_epi64( b, _mm256_sad_epu8( y, zero ) );
// Split the vectors into 2 sets of 16-bit numbers, accumulate products
const __m256i z = _mm256_unpacklo_epi8( x, zero );
const __m256i w = _mm256_unpacklo_epi8( y, zero );
add16( z, w );
x = _mm256_unpackhi_epi8( x, zero );
y = _mm256_unpackhi_epi8( y, zero );
add16( x, y );
}
// Compute the result
float compute( size_t count ) const
{
const double div = (double)count;
const double mean1 = hadd_epi64( a ) / div;
const double mean2 = hadd_epi64( b ) / div;
const double mean11 = hadd_epu32( aa ) / div;
const double mean22 = hadd_epu32( bb ) / div;
const double mean12 = hadd_epu32( ab ) / div;
const double b = ( mean11 - mean1 * mean1 ) * ( mean22 - mean2 * mean2 );
if( b <= 0 )
return 0;
const double a = ( mean12 - mean1 * mean2 );
return float( a / sqrt( b ) );
}
};
// Load 1-31 bytes into AVX register, zero out unused higher bytes
inline __m256i loadPartial( const uint8_t* p, size_t length )
{
alignas( 32 ) std::array<uint8_t, 32> arr{};
memcpy( arr.data(), p, length );
return _mm256_load_si256( ( const __m256i* )arr.data() );
}
float correlate_simple( const uint8_t* vec1, const uint8_t* vec2, const size_t length )
{
InnerProduct ip;
const uint8_t* const vec1End = vec1 + ( ( length / 32 ) * 32 );
for( ; vec1 < vec1End; vec1 += 32, vec2 += 32 )
{
const __m256i x = _mm256_loadu_si256( ( const __m256i * )vec1 );
const __m256i y = _mm256_loadu_si256( ( const __m256i * )vec2 );
ip.addBytes( x, y );
}
const size_t remainder = length % 32;
if( remainder > 0 )
{
const __m256i x = loadPartial( vec1, remainder );
const __m256i y = loadPartial( vec2, remainder );
ip.addBytes( x, y );
}
return ip.compute( length );
}
Unfortunately I could not find an intrinsic that would allow me to subtract 127 from unsigned bytes producing signed bytes (not relying on some two's complement magic).
Intel x86 CPUs use 2's compliment representation of signed numbers, this is why there are no separate versions of SIMD intrinsics for signed/unsigned packed integers. Intel SIMD intrinsics are outside the scope of C++ standard and have a specific well-defined behaviour.
I have Function like this:
#define SPLIT(zmm, ymmA, ymmB) \
ymmA = _mm512_castsi512_si256(zmm); \
ymmB = _mm512_extracti32x8_epi32(zmm, 1)
#define PAIR_AND_BLEND(src1, src2, dst1, dst2) \
dst1 = _mm256_blend_epi32(src1, src2, 0b11110000); \
dst2 = _mm256_permute2x128_si256(src1, src2, 0b00100001);
#define OPERATE_ROW_2(i, ymmA, ymmB) \
zmm##i = _mm512_maddubs_epi16(zmm30, zmm##i); \
zmm##i = _mm512_madd_epi16(zmm##i, zmm31); \
SPLIT(zmm##i, ymmA, ymmB);
/*
* multiply query to each code in codes.
* #param n: number of codes
* #param query: 64 x uint8_t array data
* #param codes: 64 x n x uint8_t array data
* #param output: n x int32_t array data, to store output data.
*/
void avx_IP_distance_64_2(size_t n,
const uint8_t *query,
const uint8_t *codes,
int32_t *output){
__m512i zmm0, zmm1, zmm2, zmm3,
zmm4, zmm5, zmm6, zmm7,
zmm8, zmm9, zmm10, zmm11,
zmm12, zmm13, zmm14, zmm15,
zmm16, zmm17, zmm18, zmm19,
zmm20, zmm21, zmm22, zmm23,
zmm24, zmm25, zmm26, zmm27,
zmm28, zmm29, zmm30, zmm31;
__m256i ymm0, ymm1, ymm2, ymm3,
ymm4, ymm5, ymm6, ymm7,
ymm8, ymm9, ymm10, ymm11,
ymm12, ymm13, ymm14, ymm15;
zmm30 = _mm512_loadu_si512(query);
zmm31 = _mm512_set1_epi16(1);
int k_8 = n / 8;
int left = n % 8;
for (int i = 0; i < k_8; ++i){
zmm0 = _mm512_loadu_si512(codes);
zmm1 = _mm512_loadu_si512(codes + 64 * 1);
zmm2 = _mm512_loadu_si512(codes + 64 * 2);
zmm3 = _mm512_loadu_si512(codes + 64 * 3);
zmm4 = _mm512_loadu_si512(codes + 64 * 4);
zmm5 = _mm512_loadu_si512(codes + 64 * 5);
zmm6 = _mm512_loadu_si512(codes + 64 * 6);
zmm7 = _mm512_loadu_si512(codes + 64 * 7);
OPERATE_ROW_2(0, ymm0, ymm1);
OPERATE_ROW_2(1, ymm2, ymm3);
OPERATE_ROW_2(2, ymm4, ymm5);
OPERATE_ROW_2(3, ymm6, ymm7);
OPERATE_ROW_2(4, ymm8, ymm9);
OPERATE_ROW_2(5, ymm10, ymm11);
OPERATE_ROW_2(6, ymm12, ymm13);
OPERATE_ROW_2(7, ymm14, ymm15);
ymm0 = _mm256_add_epi32(ymm0, ymm1);
ymm2 = _mm256_add_epi32(ymm2, ymm3);
ymm4 = _mm256_add_epi32(ymm4, ymm5);
ymm6 = _mm256_add_epi32(ymm6, ymm7);
ymm8 = _mm256_add_epi32(ymm8, ymm9);
ymm10 = _mm256_add_epi32(ymm10, ymm11);
ymm12 = _mm256_add_epi32(ymm12, ymm13);
ymm14 = _mm256_add_epi32(ymm14, ymm15);
PAIR_AND_BLEND(ymm0, ymm8, ymm1, ymm9);
PAIR_AND_BLEND(ymm2, ymm10, ymm3, ymm11);
PAIR_AND_BLEND(ymm4, ymm12, ymm5, ymm13);
PAIR_AND_BLEND(ymm6, ymm14, ymm7, ymm15);
ymm1 = _mm256_add_epi32(ymm1, ymm9);
ymm3 = _mm256_add_epi32(ymm3, ymm11);
ymm5 = _mm256_add_epi32(ymm5, ymm13);
ymm7 = _mm256_add_epi32(ymm7, ymm15);
ymm1 = _mm256_hadd_epi32(ymm1, ymm3);
ymm5 = _mm256_hadd_epi32(ymm5, ymm7);
ymm1 = _mm256_hadd_epi32(ymm1, ymm5);
_mm256_storeu_si256((__m256i *)(output), ymm1);
codes += 8 * 64;
output += 8;
}
for (int i = 0; i < left; ++i){
OPERATE_ROW_1(0);
}
}
#define LOOP 10
int main(){
int d = 64;
int q = 1;
int n = 100000;
std::mt19937 rng;
std::uniform_real_distribution<> distrib;
uint8_t *codes = new uint8_t[d * n];
uint8_t *query = new uint8_t[d * q];
int32_t *output = new int32_t[n];
for (int i = 0; i < n; ++i){
for (int j = 0; j < d; ++j){
// codes[d*i+j] = j;
codes[d * i + j] = int(distrib(rng)) * 127;
}
}
for (int i = 0; i < q; ++i){
for (int j = 0; j < d; ++j){
// query[d*i+j] = j;
query[d * i + j] = int(distrib(rng)) * 127 - 64;
}
}
Timer timer;
timer.start();
for (int i = 0; i < LOOP; ++i){
avx_IP_distance_64_2(n, query, codes, output);
}
timer.end("Second type");
return 0;
}
When n = 10k, time duration is: 0.143917 ms
When n = 100k, time duration is: 3.2002 ms
When N is less than 10k, the time consumption basically increases linearly.
I suspect it’s a caching problem, but I’m not sure.
I want to know why the time consumption does not increase linearly with n?
Context
I've made a directshow filter to change contrast and brightness of my video. I want to speed it up.
Working filter without SSE
HRESULT CBrightness::Transform(IMediaSample *pMediaSample)
{
...
BYTE *pData; // Pointer to the actual image buffer
pMediaSample->GetPointer(&pData);
int numPixels = cxImage * cyImage;
...
prgb = (RGBTRIPLE*) pData;
for (int iPixel=0; iPixel < numPixels; iPixel++ ) {
RGBTRIPLE *ppixel = prgb + iPixel;
ppixel->rgbtGreen = ppixel->rgbtGreen * _contrastPower + _brightnessPower;
ppixel->rgbtBlue = ppixel->rgbtBlue * _contrastPower + _brightnessPower;
ppixel->rgbtRed = ppixel->rgbtRed * _contrastPower + _brightnessPower;
if(ppixel->rgbtGreen>255) ppixel->rgbtGreen = 255;
if(ppixel->rgbtBlue>255) ppixel->rgbtBlue = 255;
if(ppixel->rgbtRed>255) ppixel->rgbtRed = 255;
}
...
}
Not working filter with SEE
HRESULT CBrightness::Transform(IMediaSample *pMediaSample)
{
BYTE *pData; // Pointer to the actual image buffer
long lDataLen; // Holds length of any given sample
int iPixel; // Used to loop through the image pixels
RGBTRIPLE *prgb; // Holds a pointer to the current pixel
AM_MEDIA_TYPE* pType = &m_pInput->CurrentMediaType();
VIDEOINFOHEADER *pvi = (VIDEOINFOHEADER *) pType->pbFormat;
ASSERT(pvi);
CheckPointer(pMediaSample,E_POINTER);
pMediaSample->GetPointer(&pData);
lDataLen = pMediaSample->GetSize();
// Get the image properties from the BITMAPINFOHEADER
int cxImage = pvi->bmiHeader.biWidth;
int cyImage = pvi->bmiHeader.biHeight;
int numPixels = cxImage * cyImage;
prgb = (RGBTRIPLE*) pData;
double dcontrast = 0.7;
__m128d cStore = _mm_set1_pd(dcontrast);
BYTE *pDataOutput = new BYTE[lDataLen];
for (iPixel=0; iPixel < numPixels; iPixel += 4 ) {
//unpack to 32 bits
__m128i current = _mm_unpacklo_epi8( _mm_loadu_si128( (__m128i*)( prgb+iPixel ) ), _mm_setzero_si128());
__m128d image = _mm_cvtepi32_pd(_mm_unpacklo_epi16(current, _mm_setzero_si128()));
//vector operations
__m128d result = _mm_mul_pd(cStore, image);
//pack back to 8 bits
__m128i pack_32 = _mm_cvtpd_epi32 (result);
__m128i pack_16 = _mm_packs_epi32 (pack_32, pack_32);
__m128i pack_8 = _mm_packus_epi16(pack_16, pack_16);
//store the new pixel in pDataOutput
_mm_storeu_si128((__m128i*)(pDataOutput+iPixel), pack_8);
//also tryed to store the result in the original array
//_mm_storeu_si128((__m128i*)(prgb+iPixel), pack_8); // blacks out the whole video
}
//assign the original pointer to point at the start of the new data array
pData = pDataOutput;
return NOERROR;
}
Problems
This code does nothing to the original stream:
//store the new pixel in pDataOutput
_mm_storeu_si128((__m128i*)(pDataOutput+iPixel), pack_8);
....
pData = pDataOutput;
This code blacks out the whole video:
_mm_storeu_si128((__m128i*)(prgb+iPixel), pack_8);
Questions
Am I using the SSE instructions correctly ?
How do I assign the modified data to the original media sample pointer ?
Maybe this example will be useful to you:
void Filter(const uint8_t * src, size_t width, size_t height, double contrast, double brightness, uint8_t * dst)
{
const int shift = 8;
size_t size = width*height*3;
__m128i _contrast16 = _mm_set1_epi16(int16_t(contrast*(1 << shift)));
__m128i _brightness16 = _mm_set1_epi16(int16_t(brightness*(1 << shift)));
for(size_t i = 0; i < size; i += sizeof(__m128i))
{
__m128i _src8 = _mm_load_si128((__m128i*)(src + i));
__m128i _srcLo16 = _mm_unpacklo_epi8(_src8, _mm_setzero_si128());
__m128i _srcHi16 = _mm_unpackhi_epi8(_src8, _mm_setzero_si128());
__m128i _dstLo16 = _mm_srai_epi16(_mm_add_epi16(_brightness16, _mm_mullo_epi16(_contrast16, _srcLo16)), shift);
__m128i _dstHi16 = _mm_srai_epi16(_mm_add_epi16(_brightness16, _mm_mullo_epi16(_contrast16, _srcHi16)), shift);
_mm_store_si128((__m128i*)(dst + i), _mm_packus_epi16(_dstLo16, _dstHi16));
}
}
If use the individual coefficients for each channel:
inline void Filter(const uint8_t * src, const __m128i & contrastLo, const __m128i & contrastHi,
const __m128i & brightnessLo, const __m128i & brightnessHi, int shift, uint8_t * dst)
{
__m128i _src8 = _mm_load_si128((__m128i*)src);
__m128i _srcLo16 = _mm_unpacklo_epi8(_src8, _mm_setzero_si128());
__m128i _srcHi16 = _mm_unpackhi_epi8(_src8, _mm_setzero_si128());
__m128i _dstLo16 = _mm_srai_epi16(_mm_add_epi16(brightnessLo, _mm_mullo_epi16(contrastLo, _srcLo16)), shift);
__m128i _dstHi16 = _mm_srai_epi16(_mm_add_epi16(brightnessHi, _mm_mullo_epi16(contrastHi, _srcHi16)), shift);
_mm_store_si128((__m128i*)dst, _mm_packus_epi16(_dstLo16, _dstHi16));
}
void Filter(const uint8_t * src, size_t width, size_t height, double contrast[3], double brightness[3], uint8_t * dst)
{
const int shift = 8;
size_t size = width*height*3;
const int16_t
c0 = int16_t(contrast[0]*(1 << shift)),
c1 = int16_t(contrast[1]*(1 << shift)),
c2 = int16_t(contrast[2]*(1 << shift));
const int16_t
b0 = int16_t(brightness[0]*(1 << shift)),
b1 = int16_t(brightness[1]*(1 << shift)),
b2 = int16_t(brightness[2]*(1 << shift));
__m128i _contrast[3], _brightness[3];
_contrast[0] = _mm_setr_epi16(c0, c1, c2, c0, c1, c2, c0, c1);
_contrast[1] = _mm_setr_epi16(c2, c0, c1, c2, c0, c1, c2, c0);
_contrast[2] = _mm_setr_epi16(c1, c2, c0, c1, c2, c0, c1, c2);
_brightness[0] = _mm_setr_epi16(b0, b1, b2, b0, b1, b2, b0, b1);
_brightness[1] = _mm_setr_epi16(b2, b0, b1, b2, b0, b1, b2, b0);
_brightness[2] = _mm_setr_epi16(b1, b2, b0, b1, b2, b0, b1, b2);
for(size_t i = 0; i < size;)
{
Filter(src + i, _contrast[0], _contrast[1], _brightness[0], _brightness[1], shift, dst + i);
i += sizeof(__m128i);
Filter(src + i, _contrast[2], _contrast[0], _brightness[2], _brightness[0], shift, dst + i);
i += sizeof(__m128i);
Filter(src + i, _contrast[1], _contrast[2], _brightness[1], _brightness[2], shift, dst + i);
i += sizeof(__m128i);
}
}
I have a short to float cast in C++ that is bottlenecking my code.
The code translates from a hardware device buffer which is natively shorts, this represents the input from a fancy photon counter.
float factor= 1.0f/value;
for (int i = 0; i < W*H; i++)//25% of time is spent doing this
{
int value = source[i];//ushort -> int
destination[i] = value*factor;//int*float->float
}
A few details
Value should go from 0 to 2^16-1, it represents the pixel values of a highly sensitive camera
I'm on a multicore x86 machine with an i7 processor (i7 960 which is SSE 4.2 and 4.1).
Source is aligned to an 8 bit boundary (a requirement of the hardware device)
W*H is always divisible by 8, most of the time W and H are divisible by 8
This makes me sad, is there anything I can do about it?
I am using Visual Studios 2012...
Here's a basic SSE4.1 implementation:
__m128 factor = _mm_set1_ps(1.0f / value);
for (int i = 0; i < W*H; i += 8)
{
// Load 8 16-bit ushorts.
// vi = {a,b,c,d,e,f,g,h}
__m128i vi = _mm_load_si128((const __m128i*)(source + i));
// Convert to 32-bit integers
// vi0 = {a,0,b,0,c,0,d,0}
// vi1 = {e,0,f,0,g,0,h,0}
__m128i vi0 = _mm_cvtepu16_epi32(vi);
__m128i vi1 = _mm_cvtepu16_epi32(_mm_unpackhi_epi64(vi,vi));
// Convert to float
__m128 vf0 = _mm_cvtepi32_ps(vi0);
__m128 vf1 = _mm_cvtepi32_ps(vi1);
// Multiply
vf0 = _mm_mul_ps(vf0,factor);
vf1 = _mm_mul_ps(vf1,factor);
// Store
_mm_store_ps(destination + i + 0,vf0);
_mm_store_ps(destination + i + 4,vf1);
}
This assumes:
source and destination are both aligned to 16 bytes.
W*H is a multiple of 8.
It's possible to do better by further unrolling this loop. (see below)
The idea here is as follows:
Load 8 shorts into a single SSE register.
Split the register into two: One with the bottom 4 shorts and the other with the top 4 shorts.
Zero-extend both registers into 32-bit integers.
Convert them both to floats.
Multiply by the factor.
Store them into destination.
EDIT :
It's been a while since I've done this type of optimization, so I went ahead and unrolled the loops.
Core i7 920 # 3.5 GHz
Visual Studio 2012 - Release x64:
Original Loop : 4.374 seconds
Vectorize no unroll: 1.665
Vectorize unroll 2 : 1.416
Further unrolling resulted in diminishing returns.
Here's the test code:
#include <smmintrin.h>
#include <time.h>
#include <iostream>
#include <malloc.h>
using namespace std;
void default_loop(float *destination,const short* source,float value,int size){
float factor = 1.0f / value;
for (int i = 0; i < size; i++)
{
int value = source[i];
destination[i] = value*factor;
}
}
void vectorize8_unroll1(float *destination,const short* source,float value,int size){
__m128 factor = _mm_set1_ps(1.0f / value);
for (int i = 0; i < size; i += 8)
{
// Load 8 16-bit ushorts.
__m128i vi = _mm_load_si128((const __m128i*)(source + i));
// Convert to 32-bit integers
__m128i vi0 = _mm_cvtepu16_epi32(vi);
__m128i vi1 = _mm_cvtepu16_epi32(_mm_unpackhi_epi64(vi,vi));
// Convert to float
__m128 vf0 = _mm_cvtepi32_ps(vi0);
__m128 vf1 = _mm_cvtepi32_ps(vi1);
// Multiply
vf0 = _mm_mul_ps(vf0,factor);
vf1 = _mm_mul_ps(vf1,factor);
// Store
_mm_store_ps(destination + i + 0,vf0);
_mm_store_ps(destination + i + 4,vf1);
}
}
void vectorize8_unroll2(float *destination,const short* source,float value,int size){
__m128 factor = _mm_set1_ps(1.0f / value);
for (int i = 0; i < size; i += 16)
{
__m128i a0 = _mm_load_si128((const __m128i*)(source + i + 0));
__m128i a1 = _mm_load_si128((const __m128i*)(source + i + 8));
// Split into two registers
__m128i b0 = _mm_unpackhi_epi64(a0,a0);
__m128i b1 = _mm_unpackhi_epi64(a1,a1);
// Convert to 32-bit integers
a0 = _mm_cvtepu16_epi32(a0);
b0 = _mm_cvtepu16_epi32(b0);
a1 = _mm_cvtepu16_epi32(a1);
b1 = _mm_cvtepu16_epi32(b1);
// Convert to float
__m128 c0 = _mm_cvtepi32_ps(a0);
__m128 d0 = _mm_cvtepi32_ps(b0);
__m128 c1 = _mm_cvtepi32_ps(a1);
__m128 d1 = _mm_cvtepi32_ps(b1);
// Multiply
c0 = _mm_mul_ps(c0,factor);
d0 = _mm_mul_ps(d0,factor);
c1 = _mm_mul_ps(c1,factor);
d1 = _mm_mul_ps(d1,factor);
// Store
_mm_store_ps(destination + i + 0,c0);
_mm_store_ps(destination + i + 4,d0);
_mm_store_ps(destination + i + 8,c1);
_mm_store_ps(destination + i + 12,d1);
}
}
void print_sum(const float *destination,int size){
float sum = 0;
for (int i = 0; i < size; i++){
sum += destination[i];
}
cout << sum << endl;
}
int main(){
int size = 8000;
short *source = (short*)_mm_malloc(size * sizeof(short), 16);
float *destination = (float*)_mm_malloc(size * sizeof(float), 16);
for (int i = 0; i < size; i++){
source[i] = i;
}
float value = 1.1;
int iterations = 1000000;
clock_t start;
// Default Loop
start = clock();
for (int it = 0; it < iterations; it++){
default_loop(destination,source,value,size);
}
cout << (double)(clock() - start) / CLOCKS_PER_SEC << endl;
print_sum(destination,size);
// Vectorize 8, no unroll
start = clock();
for (int it = 0; it < iterations; it++){
vectorize8_unroll1(destination,source,value,size);
}
cout << (double)(clock() - start) / CLOCKS_PER_SEC << endl;
print_sum(destination,size);
// Vectorize 8, unroll 2
start = clock();
for (int it = 0; it < iterations; it++){
vectorize8_unroll2(destination,source,value,size);
}
cout << (double)(clock() - start) / CLOCKS_PER_SEC << endl;
print_sum(destination,size);
_mm_free(source);
_mm_free(destination);
system("pause");
}
I believe I have the best answer. My results are much faster than Mystical's. They only require SSE2 but take advantage of SSE3, SSE4, AVX, and even AVX2 if available. You don't have to change any code. You only have to recompile.
I ran over three sizes: 8008, 64000, and 2560*1920 = 4915200. I tried several different variations. I list the most important ones below. The function vectorize8_unroll2 is mystical's function. I made a improved version of his called vectorize8_unroll2_parallel. The function vec16_loop_unroll2_fix and vec16_loop_unroll2_parallel_fix are my functions which I believe are better than mystical's. These functions will automatically use AVX if you compile with AVX but work fine on SSE4 and even SSE2
Additionally, you wrote "W*H is always divisible by 8, most of the time W and H are divisible by 8".
So we can't assume W*H is divisible by 16 in all cases. Mystical's function vectorize8_unroll2 has a bug when size is not a multiple of 16 (try size=8008 in his code and you will see what I mean). My code has no such bug.
I'm using Ander Fog's vectorclass for the vectorization. It's not a lib or dll file. It's just a few header files. I use OpenMP for the parallelization. Here are some of the results:
Intel Xeon E5630 #2.53GHz (supports upto SSE4.2)
size 8008, size2 8032, iterations 1000000
default_loop time: 7.935 seconds, diff 0.000000
vectorize8_unroll2 time: 1.875 seconds, diff 0.000000
vec16_loop_unroll2_fix time: 1.878 seconds, diff 0.000000
vectorize8_unroll2_parallel time: 1.253 seconds, diff 0.000000
vec16_loop_unroll2_parallel_fix time: 1.151 seconds, diff 0.000000
size 64000, size2 64000, iterations 100000
default_loop time: 6.387 seconds, diff 0.000000
vectorize8_unroll2 time: 1.875 seconds, diff 0.000000
vec16_loop_unroll2_fix time: 2.195 seconds, diff 0.000000
vectorize8_unroll2_parallel time: 0.439 seconds, diff 0.000000
vec16_loop_unroll2_parallel_fix time: 0.432 seconds, diff 0.000000
size 4915200, size2 4915200, iterations 1000
default_loop time: 5.125 seconds, diff 0.000000
vectorize8_unroll2 time: 3.496 seconds, diff 0.000000
vec16_loop_unroll2_fix time: 3.490 seconds, diff 0.000000
vectorize8_unroll2_parallel time: 3.119 seconds, diff 0.000000
vec16_loop_unroll2_parallel_fix time: 3.127 seconds, diff 0.000000
Edit: I added the results on a system with AVX using GCC at the end of this answer.
Below is the code. The code only looks long because I do lots of cross checks and test many variations. Download the vectorclass at
http://www.agner.org/optimize/#vectorclass . Copy the header files (vectorclass.h, instrset.h, vectorf128.h, vectorf256.h, vectorf256e.h, vectori128.h, vectori256.h, vectori256e.h) into the directory you compile from. Add /D__SSE4_2__ under C++/CommandLine. Compile in release mode. If you have a CPU with AVX then put /arch:AVX instead. Add OpenMP support under C++ properites/languages.
In GCC
SSE4.2: g++ foo.cpp -o foo_gcc -O3 -mSSE4.2 -fopenmp
AVX: g++ foo.cpp -o foo_gcc -O3 -mavx -fopenmp
In the code below the function vec16_loop_unroll2_parallel requires the array be a multiple of 32. You can change the array size to be a multiple of 32 (that's what size2 refers to) or if that's not possible you can just use the function vec16_loop_unroll2_parallel_fix which has no such restriction. It's just as fast anyway.
#include <stdio.h>
#include "vectorclass.h"
#include "omp.h"
#define ROUND_DOWN(x, s) ((x) & ~((s)-1))
inline void* aligned_malloc(size_t size, size_t align) {
void *result;
#ifdef _MSC_VER
result = _aligned_malloc(size, align);
#else
if(posix_memalign(&result, align, size)) result = 0;
#endif
return result;
}
inline void aligned_free(void *ptr) {
#ifdef _MSC_VER
_aligned_free(ptr);
#else
free(ptr);
#endif
}
void default_loop(float *destination, const unsigned short* source, float value, int size){
float factor = 1.0f/value;
for (int i = 0; i < size; i++) {
int value = source[i];
destination[i] = value*factor;
}
}
void default_loop_parallel(float *destination, const unsigned short* source, float value, int size){
float factor = 1.0f / value;
#pragma omp parallel for
for (int i = 0; i < size; i++) {
int value = source[i];
destination[i] = value*factor;
}
}
void vec8_loop(float *destination, const unsigned short* source, float value, int size) {
float factor= 1.0f/value;
for (int i = 0; i < size; i += 8) {
Vec8us vi = Vec8us().load(source + i);
Vec4ui vi0 = extend_low(vi);
Vec4ui vi1 = extend_high(vi);
Vec4f vf0 = to_float(vi0);
Vec4f vf1 = to_float(vi1);
vf0*=factor;
vf1*=factor;
vf0.store(destination + i);
vf1.store(destination + i + 4);
}
}
void vec8_loop_unroll2(float *destination, const unsigned short* source, float value, int size) {
float factor= 1.0f/value;
for (int i = 0; i < size; i += 16) {
Vec8us vi = Vec8us().load(source + i);
Vec4ui vi0 = extend_low(vi);
Vec4ui vi1 = extend_high(vi);
Vec4f vf0 = to_float(vi0);
Vec4f vf1 = to_float(vi1);
vf0*=factor;
vf1*=factor;
vf0.store(destination + i + 0);
vf1.store(destination + i + 4);
Vec8us vi_new = Vec8us().load(source + i + 8);
Vec4ui vi2 = extend_low(vi_new);
Vec4ui vi3 = extend_high(vi_new);
Vec4f vf2 = to_float(vi2);
Vec4f vf3 = to_float(vi3);
vf2*=factor;
vf3*=factor;
vf2.store(destination + i + 8);
vf3.store(destination + i + 12);
}
}
void vec8_loop_parallel(float *destination, const unsigned short* source, float value, int size) {
float factor= 1.0f/value;
#pragma omp parallel for
for (int i = 0; i < size; i += 8) {
Vec8us vi = Vec8us().load(source + i);
Vec4ui vi0 = extend_low(vi);
Vec4ui vi1 = extend_high(vi);
Vec4f vf0 = to_float(vi0);
Vec4f vf1 = to_float(vi1);
vf0*=factor;
vf1*=factor;
vf0.store(destination + i);
vf1.store(destination + i + 4);
}
}
void vec8_loop_unroll2_parallel(float *destination, const unsigned short* source, float value, int size) {
float factor= 1.0f/value;
#pragma omp parallel for
for (int i = 0; i < size; i += 16) {
Vec8us vi = Vec8us().load(source + i);
Vec4ui vi0 = extend_low(vi);
Vec4ui vi1 = extend_high(vi);
Vec4f vf0 = to_float(vi0);
Vec4f vf1 = to_float(vi1);
vf0*=factor;
vf1*=factor;
vf0.store(destination + i + 0);
vf1.store(destination + i + 4);
Vec8us vi_new = Vec8us().load(source + i + 8);
Vec4ui vi2 = extend_low(vi_new);
Vec4ui vi3 = extend_high(vi_new);
Vec4f vf2 = to_float(vi2);
Vec4f vf3 = to_float(vi3);
vf2*=factor;
vf3*=factor;
vf2.store(destination + i + 8);
vf3.store(destination + i + 12);
}
}
void vec16_loop(float *destination, const unsigned short* source, float value, int size) {
float factor= 1.0f/value;
for (int i = 0; i < size; i += 16) {
Vec16us vi = Vec16us().load(source + i);
Vec8ui vi0 = extend_low(vi);
Vec8ui vi1 = extend_high(vi);
Vec8f vf0 = to_float(vi0);
Vec8f vf1 = to_float(vi1);
vf0*=factor;
vf1*=factor;
vf0.store(destination + i);
vf1.store(destination + i + 8);
}
}
void vec16_loop_unroll2(float *destination, const unsigned short* source, float value, int size) {
float factor= 1.0f/value;
for (int i = 0; i < size; i += 32) {
Vec16us vi = Vec16us().load(source + i);
Vec8ui vi0 = extend_low(vi);
Vec8ui vi1 = extend_high(vi);
Vec8f vf0 = to_float(vi0);
Vec8f vf1 = to_float(vi1);
vf0*=factor;
vf1*=factor;
vf0.store(destination + i + 0);
vf1.store(destination + i + 8);
Vec16us vi_new = Vec16us().load(source + i + 16);
Vec8ui vi2 = extend_low(vi_new);
Vec8ui vi3 = extend_high(vi_new);
Vec8f vf2 = to_float(vi2);
Vec8f vf3 = to_float(vi3);
vf2*=factor;
vf3*=factor;
vf2.store(destination + i + 16);
vf3.store(destination + i + 24);
}
}
void vec16_loop_unroll2_fix(float *destination, const unsigned short* source, float value, int size) {
float factor= 1.0f/value;
int i = 0;
for (; i <ROUND_DOWN(size, 32); i += 32) {
Vec16us vi = Vec16us().load(source + i);
Vec8ui vi0 = extend_low(vi);
Vec8ui vi1 = extend_high(vi);
Vec8f vf0 = to_float(vi0);
Vec8f vf1 = to_float(vi1);
vf0*=factor;
vf1*=factor;
vf0.store(destination + i + 0);
vf1.store(destination + i + 8);
Vec16us vi_new = Vec16us().load(source + i + 16);
Vec8ui vi2 = extend_low(vi_new);
Vec8ui vi3 = extend_high(vi_new);
Vec8f vf2 = to_float(vi2);
Vec8f vf3 = to_float(vi3);
vf2*=factor;
vf3*=factor;
vf2.store(destination + i + 16);
vf3.store(destination + i + 24);
}
for (; i < size; i++) {
int value = source[i];
destination[i] = value*factor;
}
}
void vec16_loop_parallel(float *destination, const unsigned short* source, float value, int size) {
float factor= 1.0f/value;
#pragma omp parallel for
for (int i = 0; i < size; i += 16) {
Vec16us vi = Vec16us().load(source + i);
Vec8ui vi0 = extend_low(vi);
Vec8ui vi1 = extend_high(vi);
Vec8f vf0 = to_float(vi0);
Vec8f vf1 = to_float(vi1);
vf0*=factor;
vf1*=factor;
vf0.store(destination + i);
vf1.store(destination + i + 8);
}
}
void vec16_loop_unroll2_parallel(float *destination, const unsigned short* source, float value, int size) {
float factor= 1.0f/value;
#pragma omp parallel for
for (int i = 0; i < size; i += 32) {
Vec16us vi = Vec16us().load(source + i);
Vec8ui vi0 = extend_low(vi);
Vec8ui vi1 = extend_high(vi);
Vec8f vf0 = to_float(vi0);
Vec8f vf1 = to_float(vi1);
vf0*=factor;
vf1*=factor;
vf0.store(destination + i + 0);
vf1.store(destination + i + 8);
Vec16us vi_new = Vec16us().load(source + i + 16);
Vec8ui vi2 = extend_low(vi_new);
Vec8ui vi3 = extend_high(vi_new);
Vec8f vf2 = to_float(vi2);
Vec8f vf3 = to_float(vi3);
vf2*=factor;
vf3*=factor;
vf2.store(destination + i + 16);
vf3.store(destination + i + 24);
}
}
void vec16_loop_unroll2_parallel_fix(float *destination, const unsigned short* source, float value, int size) {
float factor= 1.0f/value;
int i = 0;
#pragma omp parallel for
for (int i=0; i <ROUND_DOWN(size, 32); i += 32) {
Vec16us vi = Vec16us().load(source + i);
Vec8ui vi0 = extend_low(vi);
Vec8ui vi1 = extend_high(vi);
Vec8f vf0 = to_float(vi0);
Vec8f vf1 = to_float(vi1);
vf0*=factor;
vf1*=factor;
vf0.store(destination + i + 0);
vf1.store(destination + i + 8);
Vec16us vi_new = Vec16us().load(source + i + 16);
Vec8ui vi2 = extend_low(vi_new);
Vec8ui vi3 = extend_high(vi_new);
Vec8f vf2 = to_float(vi2);
Vec8f vf3 = to_float(vi3);
vf2*=factor;
vf3*=factor;
vf2.store(destination + i + 16);
vf3.store(destination + i + 24);
}
for(int i = ROUND_DOWN(size, 32); i < size; i++) {
int value = source[i];
destination[i] = value*factor;
}
}
void vectorize8_unroll1(float *destination,const unsigned short* source,float value,int size){
__m128 factor = _mm_set1_ps(1.0f / value);
for (int i = 0; i < size; i += 8)
{
// Load 8 16-bit ushorts.
__m128i vi = _mm_load_si128((const __m128i*)(source + i));
// Convert to 32-bit integers
__m128i vi0 = _mm_cvtepu16_epi32(vi);
__m128i vi1 = _mm_cvtepu16_epi32(_mm_unpackhi_epi64(vi,vi));
// Convert to float
__m128 vf0 = _mm_cvtepi32_ps(vi0);
__m128 vf1 = _mm_cvtepi32_ps(vi1);
// Multiply
vf0 = _mm_mul_ps(vf0,factor);
vf1 = _mm_mul_ps(vf1,factor);
// Store
_mm_store_ps(destination + i + 0,vf0);
_mm_store_ps(destination + i + 4,vf1);
}
}
void vectorize8_unroll2(float *destination,const unsigned short* source,float value,int size){
__m128 factor = _mm_set1_ps(1.0f / value);
for (int i = 0; i < size; i += 16)
{
__m128i a0 = _mm_load_si128((const __m128i*)(source + i + 0));
__m128i a1 = _mm_load_si128((const __m128i*)(source + i + 8));
// Split into two registers
__m128i b0 = _mm_unpackhi_epi64(a0,a0);
__m128i b1 = _mm_unpackhi_epi64(a1,a1);
// Convert to 32-bit integers
a0 = _mm_cvtepu16_epi32(a0);
b0 = _mm_cvtepu16_epi32(b0);
a1 = _mm_cvtepu16_epi32(a1);
b1 = _mm_cvtepu16_epi32(b1);
// Convert to float
__m128 c0 = _mm_cvtepi32_ps(a0);
__m128 d0 = _mm_cvtepi32_ps(b0);
__m128 c1 = _mm_cvtepi32_ps(a1);
__m128 d1 = _mm_cvtepi32_ps(b1);
// Multiply
c0 = _mm_mul_ps(c0,factor);
d0 = _mm_mul_ps(d0,factor);
c1 = _mm_mul_ps(c1,factor);
d1 = _mm_mul_ps(d1,factor);
// Store
_mm_store_ps(destination + i + 0,c0);
_mm_store_ps(destination + i + 4,d0);
_mm_store_ps(destination + i + 8,c1);
_mm_store_ps(destination + i + 12,d1);
}
}
void vectorize8_unroll1_parallel(float *destination,const unsigned short* source,float value,int size){
__m128 factor = _mm_set1_ps(1.0f / value);
#pragma omp parallel for
for (int i = 0; i < size; i += 8)
{
// Load 8 16-bit ushorts.
__m128i vi = _mm_load_si128((const __m128i*)(source + i));
// Convert to 32-bit integers
__m128i vi0 = _mm_cvtepu16_epi32(vi);
__m128i vi1 = _mm_cvtepu16_epi32(_mm_unpackhi_epi64(vi,vi));
// Convert to float
__m128 vf0 = _mm_cvtepi32_ps(vi0);
__m128 vf1 = _mm_cvtepi32_ps(vi1);
// Multiply
vf0 = _mm_mul_ps(vf0,factor);
vf1 = _mm_mul_ps(vf1,factor);
// Store
_mm_store_ps(destination + i + 0,vf0);
_mm_store_ps(destination + i + 4,vf1);
}
}
void vectorize8_unroll2_parallel(float *destination,const unsigned short* source,float value,int size){
__m128 factor = _mm_set1_ps(1.0f / value);
#pragma omp parallel for
for (int i = 0; i < size; i += 16)
{
__m128i a0 = _mm_load_si128((const __m128i*)(source + i + 0));
__m128i a1 = _mm_load_si128((const __m128i*)(source + i + 8));
// Split into two registers
__m128i b0 = _mm_unpackhi_epi64(a0,a0);
__m128i b1 = _mm_unpackhi_epi64(a1,a1);
// Convert to 32-bit integers
a0 = _mm_cvtepu16_epi32(a0);
b0 = _mm_cvtepu16_epi32(b0);
a1 = _mm_cvtepu16_epi32(a1);
b1 = _mm_cvtepu16_epi32(b1);
// Convert to float
__m128 c0 = _mm_cvtepi32_ps(a0);
__m128 d0 = _mm_cvtepi32_ps(b0);
__m128 c1 = _mm_cvtepi32_ps(a1);
__m128 d1 = _mm_cvtepi32_ps(b1);
// Multiply
c0 = _mm_mul_ps(c0,factor);
d0 = _mm_mul_ps(d0,factor);
c1 = _mm_mul_ps(c1,factor);
d1 = _mm_mul_ps(d1,factor);
// Store
_mm_store_ps(destination + i + 0,c0);
_mm_store_ps(destination + i + 4,d0);
_mm_store_ps(destination + i + 8,c1);
_mm_store_ps(destination + i + 12,d1);
}
}
void copy_arrays(float* a, float*b, const int size) {
float sum = 0;
for(int i=0; i<size; i++) {
b[i] = a[i];
}
}
float compare_arrays(float* a, float*b, const int size) {
float sum = 0;
for(int i=0; i<size; i++) {
float diff = a[i] - b[i];
if(diff!=0) {
printf("i %d, a[i] %f, b[i] %f, diff %f\n", i, a[i], b[i], diff);
break;
}
sum += diff;
}
return sum;
}
void randomize_array(unsigned short* a, const int size) {
for(int i=0; i<size; i++) {
float r = (float)rand()/RAND_MAX;
a[i] = (int)(65536*r);
}
}
void run(int size, int iterations) {
int rd = ROUND_DOWN(size, 32);
int size2 = rd == size ? size : rd + 32;
float value = 1.1f;
printf("size %d, size2 %d, iterations %d\n", size, size2, iterations);
unsigned short* source = (unsigned short*)aligned_malloc(size2*sizeof(short), 16);
float* destination = (float*)aligned_malloc(size2*sizeof(float), 16);
float* destination_old = (float*)aligned_malloc(size2*sizeof(float), 16);
float* destination_ref = (float*)aligned_malloc(size2*sizeof(float), 16);
void (*fp[16])(float *destination, const unsigned short* source, float value, int size);
fp[0] = default_loop;
fp[1] = vec8_loop;
fp[2] = vec8_loop_unroll2;
fp[3] = vec16_loop;
fp[4] = vec16_loop_unroll2;
fp[5] = vec16_loop_unroll2_fix;
fp[6] = vectorize8_unroll1;
fp[7] = vectorize8_unroll2;
fp[8] = default_loop_parallel;
fp[9] = vec8_loop_parallel;
fp[10] = vec8_loop_unroll2_parallel;
fp[11] = vec16_loop_parallel;
fp[12] = vec16_loop_unroll2_parallel;
fp[13] = vec16_loop_unroll2_parallel_fix;
fp[14] = vectorize8_unroll1_parallel;
fp[15] = vectorize8_unroll2_parallel;
char* func_str[] = {"default_loop", "vec8_loop", "vec8_loop_unrool2", "vec16_loop", "vec16_loop_unroll2", "vec16_loop_unroll2_fix", "vectorize8_unroll1", "vectorize8_unroll2",
"default_loop_parallel", "vec8_loop_parallel", "vec8_loop_unroll2_parallel","vec16_loop_parallel", "vec16_loop_unroll2_parallel", "vec16_loop_unroll2_parallel_fix",
"vectorize8_unroll1_parallel", "vectorize8_unroll2_parallel"};
randomize_array(source, size2);
copy_arrays(destination_old, destination_ref, size);
fp[0](destination_ref, source, value, size);
for(int i=0; i<16; i++) {
copy_arrays(destination_old, destination, size);
double dtime = omp_get_wtime();
for (int it = 0; it < iterations; it++){
fp[i](destination, source, value, size);
}
dtime = omp_get_wtime() - dtime;
float diff = compare_arrays(destination, destination_ref, size);
printf("%40s time: %.3f seconds, diff %f\n", func_str[i], dtime, diff);
}
printf("\n");
aligned_free(source);
aligned_free(destination);
aligned_free(destination_old);
aligned_free(destination_ref);
}
int main() {
run(8008, 1000000);
run(64000, 100000);
run(2560*1920, 1000);
}
Results Using GCC on a system with AVX. GCC automatically parallelizes the loop (Visual Studio fails due to the short but works if you try int). You gain very little with hand written vectorization code. However, using multiple threads can help depending upon the array size. For the small array size 8008 OpenMP gives a worse result. However, for the larger array size 128000 using OpenMP gives much better resutls. For the largest array size 4915200 it's entirely memory bound and OpenMP does not help.
i7-2600k # 4.4GHz
size 8008, size2 8032, iterations 1000000
default_loop time: 1.319 seconds, diff 0.000000
vec16_loop_unroll2_fix time: 1.167 seconds, diff 0.000000
vectorize8_unroll2 time: 1.227 seconds, diff 0.000000
vec16_loop_unroll2_parallel time: 1.528 seconds, diff 0.000000
vectorize8_unroll2_parallel time: 1.381 seconds, diff 0.000000
size 128000, size2 128000, iterations 100000
default_loop time: 2.902 seconds, diff 0.000000
vec16_loop_unroll2_fix time: 2.838 seconds, diff 0.000000
vectorize8_unroll2 time: 2.844 seconds, diff 0.000000
vec16_loop_unroll2_parallel_fix time: 0.706 seconds, diff 0.000000
vectorize8_unroll2_parallel time: 0.672 seconds, diff 0.000000
size 4915200, size2 4915200, iterations 1000
default_loop time: 2.313 seconds, diff 0.000000
vec16_loop_unroll2_fix time: 2.309 seconds, diff 0.000000
vectorize8_unroll2 time: 2.318 seconds, diff 0.000000
vec16_loop_unroll2_parallel_fix time: 2.353 seconds, diff 0.000000
vectorize8_unroll2_parallel time: 2.349 seconds, diff 0.000000
Using SSE intrinsics, on my machine [Quad Core Athlon, 3.3GHz, 16GB of RAM], and g++ -O2 optimisation [1] gives about 2.5-3x speed up. I also wrote a function to do the same thing in inline assembler, but it's not noticeably faster (again, this applies on my machine, feel free to run on other machines).
I tried a variety of sizes of H * W, and it all gives approximately the same results.
[1] Using g++ -O3 gives the same time for all four functions, as apparently -O3 enables "automatically vectorise code". So the whole thing was a bit of a waste of time assuming your compiler supports similar auto-vectorisation functionality.
Results
convert_naive sum=4373.98 t=7034751 t/n=7.03475
convert_naive sum=4373.98 t=7266738 t/n=7.26674
convert_naive sum=4373.98 t=7006154 t/n=7.00615
convert_naive sum=4373.98 t=6815329 t/n=6.81533
convert_naive sum=4373.98 t=6820318 t/n=6.82032
convert_unroll4 sum=4373.98 t=8103193 t/n=8.10319
convert_unroll4 sum=4373.98 t=7276156 t/n=7.27616
convert_unroll4 sum=4373.98 t=7028181 t/n=7.02818
convert_unroll4 sum=4373.98 t=7074258 t/n=7.07426
convert_unroll4 sum=4373.98 t=7081518 t/n=7.08152
convert_sse_intrinsic sum=4373.98 t=3377290 t/n=3.37729
convert_sse_intrinsic sum=4373.98 t=3227018 t/n=3.22702
convert_sse_intrinsic sum=4373.98 t=3007898 t/n=3.0079
convert_sse_intrinsic sum=4373.98 t=3253366 t/n=3.25337
convert_sse_intrinsic sum=4373.98 t=5576068 t/n=5.57607
convert_sse_inlineasm sum=4373.98 t=3470887 t/n=3.47089
convert_sse_inlineasm sum=4373.98 t=2838492 t/n=2.83849
convert_sse_inlineasm sum=4373.98 t=2828556 t/n=2.82856
convert_sse_inlineasm sum=4373.98 t=2789052 t/n=2.78905
convert_sse_inlineasm sum=4373.98 t=3176522 t/n=3.17652
Code
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <cstring>
#include <xmmintrin.h>
#include <emmintrin.h>
#define W 1000
#define H 1000
static __inline__ unsigned long long rdtsc(void)
{
unsigned hi, lo;
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
return ( (unsigned long long)lo)|( ((unsigned long long)hi)<<32 );
}
void convert_naive(short *source, float *destination)
{
float factor= 1.0f/32767;
for (int i = 0; i < W*H; i++)
{
int value = source[i];
destination[i] = value*factor;
}
}
void convert_unroll4(short *source, float *destination)
{
float factor= 1.0f/32767;
for (int i = 0; i < W*H; i+=4)
{
int v1 = source[i];
int v2 = source[i+1];
int v3 = source[i+2];
int v4 = source[i+3];
destination[i] = v1*factor;
destination[i+1] = v2*factor;
destination[i+2] = v3*factor;
destination[i+3] = v4*factor;
}
}
void convert_sse_intrinsic(short *source, float *destination)
{
__m128 factor = { 1.0f/32767, 1.0f/32767, 1.0f/32767, 1.0f/32767 };
__m64 zero1 = { 0,0 };
__m128i zero2 = { 0,0 };
__m64 *ps = reinterpret_cast<__m64 *>(source);
__m128 *pd = reinterpret_cast<__m128 *>(destination);
for (int i = 0; i < W*H; i+=4)
{
__m128i value = _mm_unpacklo_epi16(_mm_set_epi64(zero1, *ps), zero2);
value = _mm_srai_epi32(_mm_slli_epi32(value, 16), 16);
__m128 fval = _mm_cvtepi32_ps(value);
*pd = _mm_mul_ps(fval, factor); // destination[0,1,2,3] = value[0,1,2,3] * factor;
pd++;
ps++;
}
}
void convert_sse_inlineasm(short *source, float *destination)
{
__m128 factor = { 1.0f/32767, 1.0f/32767, 1.0f/32767, 1.0f/32767 };
__asm__ __volatile__(
"\t pxor %%xmm1, %%xmm1\n"
"\t movaps %3, %%xmm2\n"
"\t mov $0, %%rax\n"
"1:"
"\t movq (%1, %%rax), %%xmm0\n"
"\t movq 8(%1, %%rax), %%xmm3\n"
"\t movq 16(%1, %%rax), %%xmm4\n"
"\t movq 24(%1, %%rax), %%xmm5\n"
"\t punpcklwd %%xmm1, %%xmm0\n"
"\t pslld $16, %%xmm0\n"
"\t psrad $16, %%xmm0\n"
"\t cvtdq2ps %%xmm0, %%xmm0\n"
"\t mulps %%xmm2, %%xmm0\n"
"\t punpcklwd %%xmm1, %%xmm3\n"
"\t pslld $16, %%xmm3\n"
"\t psrad $16, %%xmm3\n"
"\t cvtdq2ps %%xmm3, %%xmm3\n"
"\t mulps %%xmm2, %%xmm3\n"
"\t punpcklwd %%xmm1, %%xmm4\n"
"\t pslld $16, %%xmm4\n"
"\t psrad $16, %%xmm4\n"
"\t cvtdq2ps %%xmm4, %%xmm4\n"
"\t mulps %%xmm2, %%xmm4\n"
"\t punpcklwd %%xmm1, %%xmm5\n"
"\t pslld $16, %%xmm5\n"
"\t psrad $16, %%xmm5\n"
"\t cvtdq2ps %%xmm5, %%xmm5\n"
"\t mulps %%xmm2, %%xmm5\n"
"\t movaps %%xmm0, (%0, %%rax, 2)\n"
"\t movaps %%xmm3, 16(%0, %%rax, 2)\n"
"\t movaps %%xmm4, 32(%0, %%rax, 2)\n"
"\t movaps %%xmm5, 48(%0, %%rax, 2)\n"
"\t addq $32, %%rax\n"
"\t cmpq %2, %%rax\n"
"\t jbe 1b\n"
: /* no outputs */
: "r" (destination), "r" (source), "i"(sizeof(*source) * H * W), "m"(factor):
"rax", "xmm0", "xmm1", "xmm3");
}
short inbuffer[W * H] __attribute__ ((aligned (16)));
float outbuffer[W * H + 16] __attribute__ ((aligned (16)));
#ifdef DEBUG
float outbuffer2[W * H];
#endif
typedef void (*func)(short *source, float *destination);
struct BmEntry
{
const char *name;
func fn;
};
void bm(BmEntry& e)
{
memset(outbuffer, 0, sizeof(outbuffer));
unsigned long long t = rdtsc();
e.fn(inbuffer, outbuffer);
t = rdtsc() - t;
float sum = 0;
for(int i = 0; i < W * H; i++)
{
sum += outbuffer[i];
}
#if DEBUG
convert_naive(inbuffer, outbuffer2);
for(int i = 0; i < W * H; i++)
{
if (outbuffer[i] != outbuffer2[i])
{
std::cout << i << ":: " << inbuffer[i] << ": "
<< outbuffer[i] << " != " << outbuffer2[i]
<< std::endl;
}
}
#endif
std::cout << std::left << std::setw(30) << e.name << " sum=" << sum << " t=" << t <<
" t/n=" << (double)t / (W * H) << std::endl;
}
#define BM(x) { #x, x }
BmEntry table[] =
{
BM(convert_naive),
BM(convert_unroll4),
BM(convert_sse_intrinsic),
BM(convert_sse_inlineasm),
};
int main()
{
for(int i = 0; i < W * H; i++)
{
inbuffer[i] = (short)i;
}
for(int i = 0; i < sizeof(table)/sizeof(table[i]); i++)
{
for(int j = 0; j < 5; j++)
bm(table[i]);
}
return 0;
}
No sure if the condition expression in the loop is evaluated only once.
You can try:
float factor= 1.0f/value;
for (int i = 0, count = W*H; i < count; ++i)//25% of time is spent doing this
{
int value = source[i];//short -> int
destination[i] = value*factor;//int->float
}
This is not a valid answer, don't take it as it, but I'm actually wondering how would the code behave by using a 256k look-up table. (basically a 'short to float' table with 65536 entries).
A CoreI7 has about 8 megabytes of cache I believe, so the look-up table would fit in the data cache.
I really wonder how that would impact the performance :)
and You can use OpenMP to hire every core of your CPU, and it is simple just do as following:
#include <omp.h>
float factor= 1.0f/value;
#pragma omp parallel for
for (int i = 0; i < W*H; i++)//25% of time is spent doing this
{
int value = source[i];//ushort -> int
destination[i] = value*factor;//int*float->float
}
here is the result based on previous program, just add the like this:
#pragma omp parallel for
for (int it = 0; it < iterations; it++){
...
}
and then here is the result
beta#beta-PC ~
$ g++ -o opt.exe opt.c -msse4.1 -fopenmp
beta#beta-PC ~
$ opt
0.748
2.90873e+007
0.484
2.90873e+007
0.796
2.90873e+007
beta#beta-PC ~
$ g++ -o opt.exe opt.c -msse4.1 -O3
beta#beta-PC ~
$ opt
1.404
2.90873e+007
1.404
2.90873e+007
1.404
2.90873e+007
. .
result shows 100% improvment with openmp. Visual C++ supports openmp too.
You could try to approximate the expression
float factor = 1.0f/value;
by an fraction numerator/denomitator where both numerator and denominator are ints. This can be done to the precision you need in your application like
int denominator = 10000;
int numerator = factor * denominator;
Then you can do your computation in integer arithmetics like
int value = source[i];
destination[i] = (value * numerator) / numerator;
You have to take care of overflows, perhaps you need to switch to long (or even long long on 64bit systems) for the calculation.