I have a task to draw 3D objects on the ground using OpenGL. I use OpenGL left-handed coord system where Y axis is up. But 3D objects and camera orbiting objects should use different coord systems with following properties:
XY plane is a ground plane;
Z-axis is up;
Y-axis is "North";
X-axis is "East";
The azimuth (or horizontal) angle is [0, 360] degrees;
The elevation (or vertical) angle is [0, 90] degrees from XY plane.
End user uses azimuth and elevation to rotate camera around some center. So I made following code to convert from spherical coordinates to quaternion:
//polar: x - radius, y - horizontal angle, z - vertical
QQuaternion CoordinateSystemGround::fromPolarToQuat(const QVector3D& polar) const {
QQuaternion dest = QQuaternion::fromEulerAngles({0, polar.y(), polar.z()});
//convert user coord system back to OpenGL by rotation around X-axis
QQuaternion orig = QQuaternion::fromAxisAndAngle(1, 0, 0, -90);
return dest * orig;
}
and back:
QVector3D CoordinateSystemGround::fromQuatToPolar(const QQuaternion& q) const {
//convert OpenGL coord system to destination by rotation around X-axis
QQuaternion dest = QQuaternion::fromAxisAndAngle(1, 0, 0, 90);
QQuaternion out = q * dest;
QVector3D euler = out.toEulerAngles();
float hor = euler.y();
if(hor < 0.0f)
hor += 360.0f;
float ver = euler.z();
if(ver > 90.0f)
ver = 90.0f;
else if(ver < 0.0f)
ver = 0.0f;
//x changes later
return QVector3D(0, hor, ver);
}
But it doesn't work right. I suppose fromPolarToQuat conversion has mistake somewhere and I can't understand where.
Seems like I found the solution. So, to get polar angles from quaternion:
QVector3D CoordinateSystemGround::fromQuatToPolar(const QQuaternion& q) const {
QQuaternion coord1 = QQuaternion::fromAxisAndAngle(0, 1, 0, -180);
QQuaternion coord2 = QQuaternion::fromAxisAndAngle(1, 0, 0, -90);
QQuaternion out = orig1 * orig2 * q;
QVector3D euler = out.toEulerAngles();
float hor = euler.y();
if(hor < 0.0f)
hor += 360.0f;
float ver = euler.x();
return QVector3D(0, hor, -ver);
}
And back:
QQuaternion CoordinateSystemGround::fromPolarToQuat(const QVector3D& polar) const {
QQuaternion dest = QQuaternion::fromEulerAngles({-polar.z(), polar.y(), 0});
QQuaternion coord1 = QQuaternion::fromAxisAndAngle(1, 0, 0, 90);
QQuaternion coord2 = QQuaternion::fromAxisAndAngle(0, 1, 0, 180);
return coord1 * coord2 * dest;
}
Not sure it's an optimal solution though, but it works as it should.
Edited
After some research I've found few mistakes and made optimized and hope correct version of conversion:
QVector3D CoordinateSystemGround::fromQuatToPolar(const QQuaternion& q) const {
// back to OpenGL coord system: just multiplication on inverted destination coord system
QQuaternion dest = QQuaternion::fromAxes({-1, 0, 0}, {0, 0, 1}, {0, 1, 0}).inverted();
QVector3D euler = (dest * q).toEulerAngles();
float hor = euler.y();
if(hor < 0.0f)
hor += 360.0f;
float ver = euler.x();
return QVector3D(0, hor, -ver);
}
And back:
QQuaternion CoordinateSystemGround::fromPolarToQuat(const QVector3D& polar) const {
//just rotate if we were in OpenGL coord system
QQuaternion orig = QQuaternion::fromEulerAngles({-polar.z(), polar.y(), 0});
//and then multiply on destination coord system
QQuaternion dest = QQuaternion::fromAxes({-1, 0, 0}, {0, 0, 1}, {0, 1, 0});
return dest * orig;
}
Related
I am using GLM to make a LookAt matrix. I use the normal OpenGL coordinate system, but with the Z axis going inwards which is the opposite of the OpenGL standard. Thus, the LookAt function requires some changes:
glm::vec3 pos = glm::vec3(0, 0, -10); // equal to glm::vec3(0, 0, 10) in standard coords
glm::quat rot = glm::vec3(0.991445, 0.130526, 0, 0); // 15 degrees rotation about the x axis
glm::vec3 resultPos = pos * glm::vec3(1, 1, -1); // flip Z axis
glm::vec3 resultLook = pos + (glm::conjugate(rot) * glm::vec3(0, 0, 1)) * glm::vec3(1, 1, -1); // rotate unit Z vec and then flip Z
glm::vec3 resultUp = (glm::conjugate(rot) * glm::vec3(0, 1, 0)) * glm::vec3(1, 1, -1); // same thing as resultLook but with unit Y vec
glm::mat4 lookAt = glm::lookAt(resultPos, resultLook, resultUp)
However, that is a lot of calculation for just flipping a single axis. What do I need to do to get a view matrix which has a flipped Z axis?
I am practicing DirectX 11 following Frank Luna's book.
I have implemented a demo that renders a cube, but the result is not correct.
https://i.imgur.com/2uSkEiq.gif
As I hope you can see from the image (I apologize for the low quality), it seems like the camera is "trapped" inside the cube even when I move it away. There is also a camera frustum clipping problem.
I think the problem is therefore in the definition of the projection matrix.
Here is the cube vertices definition.
std::vector<Vertex> vertices =
{
{XMFLOAT3(-1, -1, -1), XMFLOAT4(1, 1, 1, 1)},
{XMFLOAT3(-1, +1, -1), XMFLOAT4(0, 0, 0, 1)},
{XMFLOAT3(+1, +1, -1), XMFLOAT4(1, 0, 0, 1)},
{XMFLOAT3(+1, -1, -1), XMFLOAT4(0, 1, 0, 1)},
{XMFLOAT3(-1, -1, +1), XMFLOAT4(0, 0, 1, 1)},
{XMFLOAT3(-1, +1, +1), XMFLOAT4(1, 1, 0, 1)},
{XMFLOAT3(+1, +1, +1), XMFLOAT4(0, 1, 1, 1)},
{XMFLOAT3(+1, -1, +1), XMFLOAT4(1, 0, 1, 1)},
};
Here is how I calculate the view and projection matrices.
void TestApp::OnResize()
{
D3DApp::OnResize();
mProj = XMMatrixPerspectiveFovLH(XM_PIDIV4, AspectRatio(), 1, 1000);
}
void TestApp::UpdateScene(float dt)
{
float x = mRadius * std::sin(mPhi) * std::cos(mTheta);
float y = mRadius * std::cos(mPhi);
float z = mRadius * std::sin(mPhi) * std::sin(mTheta);
XMVECTOR EyePosition = XMVectorSet(x, y, z, 1);
XMVECTOR FocusPosition = XMVectorZero();
XMVECTOR UpDirection = XMVectorSet(0, 1, 0, 0);
mView = XMMatrixLookAtLH(EyePosition, FocusPosition, UpDirection);
}
And here is how I update the camera position on mouse move.
glfwSetCursorPosCallback(mMainWindow, [](GLFWwindow* window, double xpos, double ypos)
{
TestApp* app = reinterpret_cast<TestApp*>(glfwGetWindowUserPointer(window));
if (glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_LEFT) == GLFW_PRESS)
{
float dx = 0.25f * XMConvertToRadians(xpos - app->mLastMousePos.x);
float dy = 0.25f * XMConvertToRadians(ypos - app->mLastMousePos.y);
app->mTheta += dx;
app->mPhi += dy;
app->mPhi = std::clamp(app->mPhi, 0.1f, XM_PI - 0.1f);
}
else if (glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_RIGHT) == GLFW_PRESS)
{
float dx = 0.05f * XMConvertToRadians(xpos - app->mLastMousePos.x);
float dy = 0.05f * XMConvertToRadians(ypos - app->mLastMousePos.y);
app->mRadius += (dx - dy);
app->mRadius = std::clamp(app->mRadius, 3.f, 15.f);
}
app->mLastMousePos = XMFLOAT2(xpos, ypos);
});
Thanks.
The root problem here was in the constant buffer vs. CPU update.
HLSL defaults to column-major matrix definitions per Microsoft Docs. DirectXMath uses row-major matrices, so you have to transpose while updating the Constant Buffer.
Alternatively, you can declare the HLSL matrix with the row_major keyword, #pragma pack_matrix, or the /Zpr compiler switch.
I'm trying to get orientation image of a fingerprint using the method proposed in this paper.
I tried implementing the steps described in Section 3.1.1 of the paper, but I don't get the desired result.
Here are my OpenCV code:
Mat calculate_orientation(Mat img, Mat &coherence) {
Mat image = img.clone();
Mat orient_im = Mat::zeros(image.size(), image.type());
Mat grad_x, grad_y;
Sobel(image, grad_x, CV_32F, 1, 0, 3, 1, 0, BORDER_DEFAULT );
Sobel(image, grad_y, CV_32F, 0, 1, 3, 1, 0, BORDER_DEFAULT );
//Iterate per BLOCKSIZE and use BLOCKSIZE/2 as the center
for (int i=BLOCKSIZE/2 ; i<=image.rows-BLOCKSIZE/2 ; i+=BLOCKSIZE) {
for (int j=BLOCKSIZE/2 ; j<=image.cols-BLOCKSIZE/2 ; j+=BLOCKSIZE) {
//Iterate each pixel in the block
float vx = 0.0f, vy = 0.0f, angle;
//Coherence
float gx = 0.0f, gy = 0.0f, gxy = 0.0f;
for (int u=i-BLOCKSIZE/2 ; u<i+BLOCKSIZE/2 ; u++) {
for (int v=j-BLOCKSIZE/2 ; v<j+BLOCKSIZE/2 ; v++) {
gx = 2* grad_x.at<float>(u,v) * grad_y.at<float>(u,v);
gy = pow(grad_x.at<float>(u,v), 2) - pow(grad_y.at<float>(u,v), 2);
vx += gx;
vy += gy;
gxy += sqrt(pow(gx,2)+pow(gy,2));
}
}
if (vy == 0) {
angle = 90;
} else {
angle = 0.5 * atan(vx/vy) * 180.0f/CV_PI;
}
//The angle above is the angle perpendicular to ridge direction
orient_im.at<float>(i,j) = angle + 90;
//Coherence
float coh = sqrt(pow(vx,2)+pow(vy,2))/gxy;
coherence.at<float>(i,j) = coh;
}
}
return orient_im;
}
This is the input image.
And this is the result. The blue lines are orientation with coherence value of more than 0.5, and the red lines are orientation with coherence value of less than 0.5.
Only around half of the orientation seems right.
I know there are already a few questions about this, but I still haven't gotten the correct results, so pardon me for asking. Any help would be appreciated.
I want to rotate a cube using keys. This is a part of the code. When I press LEFT key, cube rotates to left, etc. My goal is to rotate cube all around, so I have to rotate it by x and y axis which causes a problem.
I have defined mat4 rotation; and used it to assign a rotation when I press and hold a key. When I hold the key, it is rotating, for example to left. Then I release the key and the object gets back to initial position (camera gets back to initial position, since object is not moving). I think this problem is causing the auto rotateMat = rotation; line which is defined below the key functions.
What am I doing wrong?
mat4 rotation; //global
if(keysPressed[GLFW_KEY_LEFT]){
timer -= delta;
rotation = rotate(mat4{}, timer * 0.5f, {0, 1, 0});
}
if(keysPressed[GLFW_KEY_RIGHT]){
timer += delta;
rotation = rotate(mat4{}, timer * 0.5f, {0, 1, 0});
}
if(keysPressed[GLFW_KEY_UP]){
timer += delta;
rotation = rotate(mat4{}, timer * 0.5f, {1, 0, 0});
}
if(keysPressed[GLFW_KEY_DOWN]){
timer -= delta;
rotation = rotate(mat4{}, timer * 0.5f, {1, 0, 0});
}
...
program.setUniform("ModelMatrix", rotation* cubeMat);
cube.render();
UPDATE:
So the problem to this was solved when I used matrix variable as global variable, not local.
There are multiple ways how such an interaction can be implemented. One of the easier ones is to create a relative translation in every frame instead of a global one and add it to the current rotation:
For this, one has to store the sum of all rotations in a global varialbe
//Global variable
mat4 total_rotate;
And calculate the relative translation in every frame:
//In the function
mat4 rotation;
if(keysPressed[GLFW_KEY_LEFT]){
rotation = rotate(mat4{}, delta, {0, 1, 0});
}
if(keysPressed[GLFW_KEY_RIGHT]){
rotation = rotate(mat4{}, -delta, {0, 1, 0});
}
if(keysPressed[GLFW_KEY_UP]){
rotation = rotate(mat4{}, delta, {1, 0, 0});
}
if(keysPressed[GLFW_KEY_DOWN]){
rotation = rotate(mat4{}, -delta, {1, 0, 0});
}
total_rotate = total_rotate * rotation;
...
program.setUniform("ModelMatrix", total_rotate * cubeMat);
cube.render();
As an alternative, you could store the two rotation angles instead and calculate the matrix in every frame:
//Global variables
float rot_x = 0.0f, rot_y = 0.0f;
//In every frame
if(keysPressed[GLFW_KEY_LEFT]){
rot_x += delta;
}
if(keysPressed[GLFW_KEY_RIGHT]){
rot_x -= delta;
}
//Same for y
auto rotation = rotate(rotate(mat4{}, rot_y, {0, 1, 0}), rot_x, {1, 0, 0}
...
program.setUniform("ModelMatrix", rotation * cubeMat);
cube.render();
I have a square area on which I have to determine where the mouse pointing.
With D3DXIntersectTri I can tell IF the mouse pointing on it, but I have trouble calculating the x,y,z coordinates.
The drawing from vertex buffer, which initialized with the vertices array:
vertices[0].position = D3DXVECTOR3(-10, 0, -10);
vertices[1].position = D3DXVECTOR3(-10, 0, 10);
vertices[2].position = D3DXVECTOR3( 10, 0, -10);
vertices[3].position = D3DXVECTOR3( 10, 0, -10);
vertices[4].position = D3DXVECTOR3(-10, 0, 10);
vertices[5].position = D3DXVECTOR3( 10, 0, 10);
I have this method so far, this is not giving me the right coordinates (works only on a small part of the area, near two of the edges and more less accurate inside):
BOOL Area::getcoord( Ray& ray, D3DXVECTOR3& coord)
{
D3DXVECTOR3 rayOrigin, rayDirection;
rayDirection = ray.direction;
rayOrigin = ray.origin;
float d;
D3DXMATRIX matInverse;
D3DXMatrixInverse(&matInverse, NULL, &matWorld);
// Transform ray origin and direction by inv matrix
D3DXVECTOR3 rayObjOrigin,rayObjDirection;
D3DXVec3TransformCoord(&rayOrigin, &rayOrigin, &matInverse);
D3DXVec3TransformNormal(&rayDirection, &rayDirection, &matInverse);
D3DXVec3Normalize(&rayDirection,&rayDirection);
float u, v;
BOOL isHit1, isHit2;
D3DXVECTOR3 p1, p2, p3;
p1 = vertices[3].position;
p2 = vertices[4].position;
p3 = vertices[5].position;
isHit1 = D3DXIntersectTri(&p1, &p2, &p3, &rayOrigin, &rayDirection, &u, &v, &d);
isHit2 = FALSE;
if(!isHit1)
{
p1 = vertices[0].position;
p2 = vertices[1].position;
p3 = vertices[2].position;
isHit2 = D3DXIntersectTri(&p1, &p2, &p3, &rayOrigin, &rayDirection, &u, &v, &d);
}
if(isHit1)
{
coord.x = 1 * ((1-u-v)*p3.x + u*p3.y + v*p3.z);
coord.y = 0.2f;
coord.z = -1 * ((1-u-v)*p1.x + u*p1.y + v*p1.z);
D3DXVec3TransformCoord(&coord, &coord, &matInverse);
}
if(isHit2)
{
coord.x = -1 * ((1-u-v)*p3.x + u*p3.y + v*p3.z);
coord.y = 0.2f;
coord.z = 1 * ((1-u-v)*p1.x + u*p1.y + v*p1.z);
D3DXVec3TransformCoord(&coord, &coord, &matWorld);
}
return isHit1 || isHit2;
}
Barycentric coordinates don't work the way you used them. u and v define the weight of the source vectors. So if you want to calculate the hit point, you will have to compute
coord = u * p1 + v * p2 + (1 - u - v) * p3
Alternatively you can use the d ray parameter:
coord = rayOrigin + d * rDirection
Both ways should result in the same coordinate.