Function template won't work with string literals - c++

Background:
I'm working on a query DSL that'll parse expressions with ==, <, etc., and return filter objects via operator overloading.
Problem:
My template method is failing when used with a string literal. I've tried providing specific instantiations of the template taking both std::string, and char but neither seems to work.
The code is below. The line causing the problem in main is marked with a comment. Alternative solutions I've tried are commented out within the code.
A runnable repl of the same code can be found here.
I do know that manually wrapping the string literal with std::string("text") will work, but I want to be able to use plain string literals, if at all possible.
#include <iostream>
template<typename T>
struct Filter;
struct Field
{
Field(const std::string &val): name(val) { }
Field(std::string &&val): name(std::move(val)) { }
std::string name;
// template <signed N>
// Filter<std::string> operator==(const char (&val) [N]);
template <typename T>
Filter<T> operator==(const T &val);
};
template <typename T>
Filter<T> Field::operator==(const T &val)
{
return Filter<T>{ *this, val, "==" };
}
// template <signed N>
// Filter<std::string> Field::operator==(const char (&val) [N])
// {
// return Filter<std::string>{ *this, std::string(val), "==" };
// }
// template <>
// Filter<std::string> Field::operator==<std::string>(const std::string &val)
// {
// return Filter<std::string>{ *this, val, "==" };
// }
template<typename T>
struct Filter
{
Field f;
T val;
std::string op;
};
int main() {
Field f1 { "field1" };
Field f2 { "field1" };
std::cout << (f1 == 1).val;
std::cout << (f1 == "Hello").val; // <--- the source of my problems
}

Issue is that c-array is not copyable, so
Filter<char [6]>{ *this, val, "==" }; // Error
Your overload is correct, but Filter needs to reordered and defined before your operator== overload. The overload returning Filter<T> is dependent on T, and so in that case Filter's definition can be postponed. But when you return Filter<std::string> the compiler needs an actual definition of Filter up front.
#include <iostream>
template<typename T>
struct Filter;
struct Field
{
Field(const std::string &val): name(val) { }
Field(std::string &&val): name(std::move(val)) { }
std::string name;
template <std::size_t N> Filter<std::string> operator==(const char (&val) [N]);
template <typename T>
Filter<T> operator==(const T &val);
};
template<typename T>
struct Filter
{
Field f;
T val;
std::string op;
};
template <typename T>
Filter<T> Field::operator==(const T &val)
{
return Filter<T>{ *this, val, "==" };
}
template <std::size_t N>
Filter<std::string> Field::operator==(const char (&val) [N])
{
return Filter<std::string>{ *this, std::string(val), "==" };
}
int main() {
Field f1 { "field1" };
Field f2 { "field1" };
std::cout << (f1 == 1).val;
std::cout << (f1 == "Hello").val;
}
Demo

What you can do is specialize Filter for the case when T gets deduced to a char[N]. Adding
template<std::size_t N>
struct Filter<char[N]>
{
Field f;
std::string val;
std::string op;
};
Will cause Filter<T>{ *this, val, "==" } to call the above specialization and it will use a std::string to store val.

Since you have the C++17 tag, here is yet another option to solve this problem: deduction guides
#include <iostream>
template<typename T>
struct Filter;
struct Field
{
Field(const std::string &val): name(val) { }
Field(std::string &&val): name(std::move(val)) { }
std::string name;
// note the use of auto here
template <typename T>
auto operator==(const T &val);
};
template <typename T>
auto Field::operator==(const T &val)
{
// do not use Filter<T> here, or the deduction guide won't kick in
return Filter{ *this, val, "==" };
}
template<typename T>
struct Filter
{
Field f;
T val;
std::string op;
};
// ------- Deduction Guides -----------
template<typename T>
Filter(Field, T, std::string) -> Filter<T>;
// will tell the compiler to create a Filter<string> with a c-array argument
template<std::size_t N>
Filter(Field, const char(&)[N], std::string) -> Filter<std::string>;
// ------------------------------------
int main() {
Field f1 { "field1" };
Field f2 { "field1" };
std::cout << (f1 == 1).val;
// creates a Filter<string> instead of trying to
// create a Filter<const char(&)[6]> due to the deduction guide
std::cout << (f1 == "Hello").val;
}

Related

Compiler differences with use of templated overloads

I have a pretty specific situation where I'm feeding a bunch of data to a hasher-like class. In particular, one data type that I use has a member whose type depends on the supertype's type parameter. Long story short, here's a piece of code that illustrates this behaviour :
#include <assert.h>
#include <iostream>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
// Some dummy priority structs to select overloads
struct priority0 { };
struct priority1 : priority0 { };
// This is the hasher-like function
struct Catcher
{
// Ideally we feed everything to this object through here
template <typename T> Catcher& operator<<(const T& v)
{
add(v, priority1{}); // always attempt to call the highest-priority overload
return *this;
}
// For floating-point data types
template <typename T> auto add(const T& v, priority1) -> std::enable_if_t<std::is_floating_point_v<T>, void>
{
std::cout << "caught float/double : " << v << std::endl;
}
// For ranges
template <class T> auto add(const T& range, priority1) -> decltype(begin(range), end(range), void())
{
for(auto const& v : range)
*this << v;
}
// For chars
void add(char c, priority1)
{
std::cout << c;
std::cout.flush();
}
// When everything else fails ; ideally should never happen
template <typename T> void add(const T& v, priority0)
{
assert(false && "should never happen");
}
};
// The one data type. Notice how the primary template and the
// specialization have a `range` member of different types
template <class T> struct ValueOrRange
{
struct Range
{
T min;
T max;
};
Range range;
T value;
};
template <> struct ValueOrRange<std::string>
{
std::vector<std::string> range;
std::string value;
};
// Overload operator<< for Catcher outside of the
// class to allow for processing of the new data type
// Also overload that for `ValueOrRange<T>::Range`. SFINAE should make sure
// that this behaves correctly (?)
template <class T> Catcher& operator<<(Catcher& c, const typename ValueOrRange<T>::Range& r)
{
return c << r.min << r.max;
}
template <class T> Catcher& operator<<(Catcher& c, const ValueOrRange<T>& v)
{
return c << v.range << v.value;
}
int main(int argc, char *argv[])
{
ValueOrRange<std::string> vor1{{}, "bleh"};
ValueOrRange<float> vor2{{0.f, 1.f}, 0.5f};
Catcher c;
c << vor1; // works fine, displays "bleh"
c << vor2; // fails the assert in Catcher::add(const T&, priority0) with T = ValueOrRange<float>::Range
return 0;
}
While the line c << vor1 gets resolved correctly through the various overloads and has the intended effect, the second line c << vor2 fails the assert.
What I want to happen : c << vor2 calls Catcher& operator<<(Catcher& s, const ValueOrRange<float>& v), which in turn calls Catcher& operator<<(Catcher& s, const typename ValueOrRange<float>::Range& r)
What does happen : instead of Catcher& operator<<(Catcher& s, const typename ValueOrRange<float>::Range& r), it is Catcher& Catcher::operator<<(const T& v) with T = typename ValueOrRange<float>::Range that is called, and thus the assert fails.
Worthy of note is that this same code has the intended effect on MSVC, and fails the assert on GCC.
Any idea on how I should fix that ?
Thanks to feedback from Igor Tandetnik, I got rid of the ::Range-specific overload and simply went for checking std::is_same_v<T, std::string>. A little less modular than I'd like, but it'll do the trick.
// A single function will do the trick
template <class T> Catcher& operator<<(Catcher& c, const ValueOrRange<T>& v)
{
if constexpr (std::is_same_v<T, std::string>)
c << v.range;
else
c << v.range.min << v.range.max;
return c << v.value;
}
In Catcher& operator<<(Catcher& c, const typename ValueOrRange<T>::Range& r), T in non deducible.
One work around would be friend function:
template <class T> struct ValueOrRange
{
struct Range
{
T min;
T max;
friend Catcher& operator<<(Catcher& c, const Range& r)
{
return c << r.min << r.max;
}
};
Range range;
T value;
};
Demo

Check for function existance on other type using C++ concepts

Does anybody know how to make a C++ concept T such that the function g is only defined for arguments t with type T if there exist an overload of f in B that accepts an argument t?
struct A1 {};
struct A2 {};
struct B {
void f(A1 a1) {}
};
void g(T t) {
B b;
b.f(t);
}
As an example, I want to define a to_string for everything that std::stringstream accepts, and define something like
std::string to_string(T t) {
std::stringstream ret;
ret << t;
return ret.str();
}
All examples on concepts deal with the easier case of requiring the existance of a function on a type, while in this case we want to check existance of a function on another type.
If you want to check if the type is streamable or not, you can have something like:
#include <iostream>
#include <concepts>
#include <sstream>
template <typename T>
concept Streamable = requires (T x, std::ostream &os) { os << x; };
struct Foo {};
struct Bar {};
std::ostream& operator<<(std::ostream& os, Foo const& obj) {
// write obj to stream
return os;
}
template <Streamable T>
std::string to_string(T t) {
std::stringstream ret;
ret << t;
return ret.str();
}
int main() {
Foo f;
Bar b;
to_string(f);
to_string(b); // error
return 0;
}
Demo
You can use two different type placeholders in a single concept, to require both the existence of a member function for an instance of one of the type placeholders, as well as the argument to said member function to match the type of another placeholder. E.g.:
#include <iostream>
template<typename T, typename U>
concept HasMemFnConstFoo = requires(const T t, const U u) {
t.foo(u);
};
template<typename U>
struct Bar {
template <typename T>
static void bar(const T& t)
{
if constexpr (HasMemFnConstFoo<T, U>) { t.foo(U{}); }
else { std::cout << "foo() not defined\n"; }
}
};
struct A1 {};
struct A2 {};
struct B1 {
void foo(const A1&) const { std::cout << "B1::foo()\n"; }
};
struct B2 {
void foo(const A1&) { std::cout << "B2::foo()\n"; }
};
struct B3 {
void foo(A1&) const { std::cout << "B3::foo()\n"; }
};
int main() {
Bar<A1>::bar(B1{}); // B1::foo()
Bar<A2>::bar(B1{}); // foo() not defined
Bar<A1>::bar(B2{}); // foo() not defined [note: method constness]
Bar<A2>::bar(B2{}); // foo() not defined
Bar<A1>::bar(B3{}); // foo() not defined [note: argument constness]
Bar<A2>::bar(B3{}); // foo() not defined
}

C++ method with multiple parameter packs

Consider the following simplified piece of code for a variant class. Most of it is for informational purposes, the question is about the conditional_invoke method.
// Possible types in variant.
enum class variant_type { empty, int32, string };
// Actual data store.
union variant_data {
std::int32_t val_int32;
std::string val_string;
inline variant_data(void) { /* Leave uninitialised */ }
inline ~variant_data(void) { /* Let variant do clean up. */ }
};
// Type traits which allow inferring which type to use (these are actually generated by a macro).
template<variant_type T> struct variant_type_traits { };
template<class T> struct variant_reverse_traits { };
template<> struct variant_type_traits<variant_type::int32> {
typedef std::int32_t type;
inline static type *get(variant_data& d) { return &d.val_int32; }
};
template<> struct variant_reverse_traits<std::int32_t> {
static const variant_type type = variant_type::int32;
inline static std::int32_t *get(variant_data& d) { return &d.val_int32; }
};
template<> struct variant_type_traits<variant_type::string> {
typedef std::string type;
inline static type *get(variant_data& d) { return &d.val_string; }
};
template<> struct variant_reverse_traits<std::string> {
static const variant_type type = variant_type::string;
inline static std::string *get(variant_data& d) { return &d.val_string; }
};
// The actual variant class.
class variant {
public:
inline variant(void) : type(variant_type::empty) { }
inline ~variant(void) {
this->conditional_invoke<destruct>();
}
template<class T> inline variant(const T value) : type(variant_type::empty) {
this->set<T>(value);
}
template<class T> void set(const T& value) {
this->conditional_invoke<destruct>();
std::cout << "Calling data constructor ..." << std::endl;
::new (variant_reverse_traits<T>::get(this->data)) T(value);
this->type = variant_reverse_traits<T>::type;
}
variant_data data;
variant_type type;
private:
template<variant_type T> struct destruct {
typedef typename variant_type_traits<T>::type type;
static void invoke(type& v) {
std::cout << "Calling data destructor ..." << std::endl;
v.~type();
}
};
template<template<variant_type> class F, class... P>
inline void conditional_invoke(P&&... params) {
this->conditional_invoke0<F, variant_type::int32, variant_type::string, P...>(std::forward<P>(params)...);
}
template<template<variant_type> class F, variant_type T, variant_type... U, class... P>
void conditional_invoke0(P&&... params) {
if (this->type == T) {
F<T>::invoke(*variant_type_traits<T>::get(this->data), std::forward<P>(params)...);
}
this->conditional_invoke0<F, U..., P...>(std::forward<P>(params)...);
}
template<template<variant_type> class F, class... P>
inline void conditional_invoke0(P&&... params) { }
};
The code works this way, i.e. it works as long as the parameter list P... for the functor is empty. If I add another functor like
template<variant_type T> struct print {
typedef typename variant_type_traits<T>::type type;
static void invoke(type& v, std::ostream& stream) {
stream << v;
}
};
and try to invoke it
friend inline std::ostream& operator <<(std::ostream& lhs, variant& rhs) {
rhs.conditional_invoke<print>(lhs);
return lhs;
}
the compiler VS 20115 complains
error C2672: 'variant::conditional_invoke0': no matching overloaded function found
or gcc respectively
error: no matching function for call to 'variant::conditional_invoke0 >&>(std::basic_ostream&)'
I guess the compiler cannot decide when U... ends and when P... starts. Is there any way to work around the issue?
You'll have to make both parameter packs deducible. That is, let the type and non-type template parameters be part of a function parameter list. For that, introduce a dummy structure:
template <variant_type...>
struct variant_type_list {};
and let the compiler deduce the variant_type... pack from a function call:
template <template <variant_type> class F
, variant_type T
, variant_type... U
, typename... P>
void conditional_invoke0(variant_type_list<T, U...> t
, P&&... params)
{
if (this->type == T)
{
F<T>::invoke(*variant_type_traits<T>::get(this->data)
, std::forward<P>(params)...);
}
this->conditional_invoke0<F>(variant_type_list<U...>{}
, std::forward<P>(params)...);
}
To break recursive calls, introduce an overload with an empty variant_type_list:
template <template <variant_type> class F, typename... P>
void conditional_invoke0(variant_type_list<>, P&&... params) {}
When calling the invoker for the first time, provide variant_types as an argument:
this->conditional_invoke0<F>(variant_type_list<variant_type::int32, variant_type::string>{}
, std::forward<P>(params)...);
DEMO

template function to handle class and class*

The code below allows me to template a function
taking a parameter which is a vector of one of three different pointer types to Box objects:
const std::vector<std::shared_ptr<Box>>&
const std::vector<std::weak_ptr<Box>>&
const std::vector<Box*>&
Is there a way to extend this to support:
const vector<Box>&
const vector<std::reference_wrapper<Box>>
perhaps something in boost?
#include <vector>
#include <iostream>
class Box{
public:
Box (unsigned int id, unsigned int side): id(id), side(side){}
int volume(){
return side * side * side;
}
unsigned int id;
unsigned int side;
};
template <typename T>
struct is_box_containter {
enum { value = false };
};
template <>
struct is_box_containter <std::vector<std::shared_ptr<Box>>> {
enum { value = true };
};
template <>
struct is_box_containter <std::vector<std::weak_ptr<Box>>> {
enum { value = true };
};
template <>
struct is_box_containter <std::vector<Box*>> {
enum { value = true };
};
template <typename T>
typename std::enable_if<is_box_containter<T>::value>::type
measure(T const& boxes )
{
for (auto& box : boxes) {
std::cout << box->id << " has volume " << box->volume() << std::endl;
}
}
int main (){
std::vector<std::shared_ptr<Box>> some_boxes;
some_boxes.push_back(std::shared_ptr<Box>(new Box(1,4)));
some_boxes.emplace_back(new Box(2, 12));
Box * box_3 = new Box(3, 8);
Box * box_4 = new Box(4, 9);
std::vector<Box*> more_boxes;
more_boxes.emplace_back(box_3);
more_boxes.emplace_back(box_4);
measure(some_boxes);
measure(more_boxes);
return 0;
}
Why I am asking this question:
I have an application with two functions which implement near identical logic. One takes a list of SomeClass, the other takes a vector of pointers to SomeClass.
I am currently planning on refactoring the code to replace the list of SomeClass with a list of shared pointers to SomeClass. But the only reason I am doing this is to move the logic to a common implementation. I don't want to do that if there is a perfectly reasonable way to avoid it.
If I understood your question correctly, you could use a dereferencing mechanism like below:
template<typename T>
T& dereference(T &v) {
return v;
}
template<typename T>
const T& dereference(const T& v) {
return v;
}
template<typename T>
typename std::enable_if<!std::is_function<T>::value, T&>::type dereference(T* v) {
return dereference(*v);
}
template<typename T>
const T& dereference(const std::shared_ptr<T>& v) {
return dereference(*v);
}
template<typename T>
const T& dereference(const std::weak_ptr<T>& v) {
return dereference(*v);
}
template<typename T>
const T& dereference(const std::reference_wrapper<T>& v) {
return v;
}
and then call your data like:
template <typename T>
typename std::enable_if<is_box_containter<T>::value>::type
measure(T const& boxes )
{
for (auto& box : boxes) {
std::cout << dereference(box).id
<< " has volume " << dereference(box).volume() << std::endl;
}
}
LIVE DEMO
P.S You'll also have to define:
template <>
struct is_box_containter <std::vector<Box>> {
enum { value = true };
};
template <>
struct is_box_containter <std::vector<std::reference_wrapper<Box>>> {
enum { value = true };
};

Overriding return type in function template specialization

I would like to specialize a function template such that the return type changes depending on the type of the template argument.
class ReturnTypeSpecialization
{
public:
template<typename T>
T Item();
};
// Normally just return the template type
template<typename T>
T ReturnTypeSpecialization::Item() { ... }
// When a float is specified, return an int
// This doesn't work:
template<float>
int ReturnTypeSpecialization::Item() { ... }
Is this possible? I can't use C++11.
Since the specialization has to agree with the base template on the return type, you can make it so by adding a "return type trait", a struct you can specialize and draw the true return type from:
// in the normal case, just the identity
template<class T>
struct item_return{ typedef T type; };
template<class T>
typename item_return<T>::type item();
template<>
struct item_return<float>{ typedef int type; };
template<>
int item<float>();
Live example.
Note that you might want to stick to the following, so you only need to update the return-type in the item_return specialization.
template<>
item_return<float>::type foo<float>(){ ... }
// note: No `typename` needed, because `float` is not a dependent type
Do all of the specialization in a worker class and use a simple function as a wrapper that will be specialized implicitly.
#include <iostream>
using std::cout;
// worker class -- return a reference to the given value
template< typename V > struct worker
{
typedef V const & type;
static type get( V const & v ) { return v; }
};
// worker class specialization -- convert 'unsigned char' to 'int'
template<> struct worker<unsigned char>
{
typedef int type;
static type get( unsigned char const & v ) { return v; }
};
// mapper function
template< typename V > typename worker<V>::type mapper( V const & v )
{
return worker<V>::get(v);
}
int main()
{
char a='A';
unsigned char b='B';
cout << "a=" << mapper(a) << ", b=" << mapper(b) << "\n";
}
In this example, the specialization of unsigned char causes it to be converted to an int so that cout will display it as a number instead of as a character, generating the following output...
a=A, b=66
Perhaps you could use the following hack. Given these simple type traits:
template<bool b, typename T, typename U>
struct conditional { typedef T type; };
template<typename T, typename U>
struct conditional<false, T, U> { typedef U type; };
template<typename T, typename U>
struct is_same { static const bool value = false; };
template<typename T>
struct is_same<T, T> { static const bool value = true; };
You could write your class and specialized member function as follows:
class ReturnTypeSpecialization
{
public:
template<typename T>
typename conditional<is_same<T, float>::value, int, T>::type
Item();
};
// Normally just return the template type
template<typename T>
typename conditional<is_same<T, float>::value, int, T>::type
ReturnTypeSpecialization::Item() { return T(); }
// When a float is specified, return an int
template<>
int ReturnTypeSpecialization::Item<float>() { return 1.0f; }
Simple test program (uses C++11 just for verification):
int main()
{
ReturnTypeSpecialization obj;
static_assert(std::is_same<decltype(obj.Item<bool>()), bool>::value, "!");
static_assert(std::is_same<decltype(obj.Item<float>()), int>::value, "!");
}
Here is a live example.
You can do template specializations like so:
template<typename T>
T item() {
return T();
}
template<>
float item<float>() {
return 1.0f;
}
Hi I tried to use the template specialization for returning the parameter value for primitives as well as std::string data, while doing so I was getting lot of unresolved external, redefinition kind of errors.
so if any one face something like this, he/she can use something like below when want to return different data types including string,
NOTE: both the Template function must be the part of the Header file (*.h)...
so we are using template specialization string data type here...
inside class as a inline member we have to use template specialize method and in the same file we can define the template as well.
class ConfigFileParser
{
public:
bool ParseConfigFile(const std::string& file_name);
template <typename T>
T GetParameterValue(const std::string key);
template <>
std::string GetParameterValue<std::string>(const std::string key)
{
std::string param_val = "";
//do logical operation here...
return param_val;
}
private:
// private functions...
// private data...
};
template <typename T>
T ConfigFileParser::GetParameterValue(const std::string key)
{
T param_val = 0;
std::stringstream ss;
std::string val_str;
// do some operation here...
ss << val_str.c_str();
ss >> param_val;
return param_val;
}