I think the time complexity of below code should be O(1) as worst case can be log 1000 base 2 or something definite. But I am not sure as it's time does vary with input and the given answer is O(n), which I am very confused about how they got that. If we increase n, function gets called fewer times so is it O(1/n)? Is it even possible?
#define LIMIT 1000
void fun2(int n)
{
if (n <= 0)
return;
if (n > LIMIT)
return;
cout<<n<<" ";
fun2(2*n);
cout<<n<<" ";
}
#define LIMIT 1000 along with the base case of if (n > LIMIT) return; guarantees O(1) because it puts a ceiling on the number of iterations the function can run.
Even if this was #define LIMIT 10e50, it'd still be O(1).
Recall that Big O is concerned with theoretical growth, not with how much work is to be done in practice. If you have a cap on how much the function can grow, regardless of how large that cap may be, it's a constant time operation from a complexity perspective.
Is Big O necessarily a realistic reflection of the work the algorithm does? No. Big O is a scalability heuristic, not the final word on efficiency. All O(1) says here is that once n > LIMIT, you can increase n indefinitely with no additional cost. In the real world, constant factors often matter.
To respond to the individual points you've raised:
I think the time complexity of below code should be O(1) as worst case can be log 1000 base 2 or something definite.
Yep, that's exactly right!
But I am not sure as it's time does vary with input
You are correct that the runtime varies with the input size. However, that does not necessarily mean that the runtime is not O(1). If an algorithm's runtime is always bounded from above by some constant, regardless of what the input size is, then its runtime is O(1). Stated differently, an O(1) runtime means "without even looking at your input, I can bound how long the algorithm is going to take to run." (Technically that isn't 100% accurate, since big-O notation talks about what happens for sufficiently large inputs, but it's true in this case.)
Here's another example of this:
void sillyFunction(int n) {
for (int i = 0; i < 137 && i < n; i++) {
cout << '*' << endl;
}
}
We can guarantee that the loop will run at most 137 times regardless of what n is. However, for small values of n, we may do less work than this. But the runtime here is still O(1), since we have that bound of "at most 137 iterations."
Here's another example:
void amusingFunction(int n) {
for (int i = 137; i >= 0 && i >= n; i++) {
cout << '*' << endl;
}
}
Again, this loop is guaranteed to run at most 137 times. Here, though, the work decreases as we increase n, to the point where the loop never runs when n ≥ 137. But since we can bound the total number of loop iterations at at most 137 without even looking at n, the runtime is O(1).
Here's a trickier example:
void deviousFunction(int n) {
if (n <= 137) {
while (true) { // infinite loop!
cout << '*';
}
}
cout << "Yup." << endl;
}
This function will go into an infinite loop for any n ≤ 137. However, for sufficiently large values of n (namely, when n > 137), the algorithm always terminates immediately. This algorithm therefore has a runtime of O(1): there's a constant amount of work where, for any sufficiently large n, the algorithm does at most that much work. (This is highly contrived and I've never seen anything like this before, but you get the picture.)
and the given answer is O(n), which I am very confused about how they got that.
The runtime bound here of O(n) to me seems incorrect. It's technically not wrong to say the runtime is O(n) because that does provide a correct bound on the runtime, but it's not tight. You should ask whoever gave you this bound to explain their reasoning; perhaps there's a typo in the code or in the explanation?
If we increase n, function gets called fewer times so is it O(1/n)? Is it even possible?
As n increases, the number of recursive calls is nonincreasing, but it doesn't necessarily decrease. For example, fun2(1000) and fun2(10000000) each result in a total of one call being made.
It's not possible for an algorithm to have a runtime of O(1 / n) because all algorithms do at least a constant amount of work, even if that work is "set up the stack frame." A runtime bound of O(1 / n) means that, for sufficiently large n, you would be doing less than one unit of work. So in that sense, there's a difference between "the runtime drops as n gets bigger, to the point where it flattens out at a constant" and "the runtime is O(1 / n)."
I have gone through Google and Stack Overflow search, but nowhere I was able to find a clear and straightforward explanation for how to calculate time complexity.
What do I know already?
Say for code as simple as the one below:
char h = 'y'; // This will be executed 1 time
int abc = 0; // This will be executed 1 time
Say for a loop like the one below:
for (int i = 0; i < N; i++) {
Console.Write('Hello, World!!');
}
int i=0; This will be executed only once.
The time is actually calculated to i=0 and not the declaration.
i < N; This will be executed N+1 times
i++ This will be executed N times
So the number of operations required by this loop are {1+(N+1)+N} = 2N+2. (But this still may be wrong, as I am not confident about my understanding.)
OK, so these small basic calculations I think I know, but in most cases I have seen the time complexity as O(N), O(n^2), O(log n), O(n!), and many others.
How to find time complexity of an algorithm
You add up how many machine instructions it will execute as a function of the size of its input, and then simplify the expression to the largest (when N is very large) term and can include any simplifying constant factor.
For example, lets see how we simplify 2N + 2 machine instructions to describe this as just O(N).
Why do we remove the two 2s ?
We are interested in the performance of the algorithm as N becomes large.
Consider the two terms 2N and 2.
What is the relative influence of these two terms as N becomes large? Suppose N is a million.
Then the first term is 2 million and the second term is only 2.
For this reason, we drop all but the largest terms for large N.
So, now we have gone from 2N + 2 to 2N.
Traditionally, we are only interested in performance up to constant factors.
This means that we don't really care if there is some constant multiple of difference in performance when N is large. The unit of 2N is not well-defined in the first place anyway. So we can multiply or divide by a constant factor to get to the simplest expression.
So 2N becomes just N.
This is an excellent article: Time complexity of algorithm
The below answer is copied from above (in case the excellent link goes bust)
The most common metric for calculating time complexity is Big O notation. This removes all constant factors so that the running time can be estimated in relation to N as N approaches infinity. In general you can think of it like this:
statement;
Is constant. The running time of the statement will not change in relation to N.
for ( i = 0; i < N; i++ )
statement;
Is linear. The running time of the loop is directly proportional to N. When N doubles, so does the running time.
for ( i = 0; i < N; i++ ) {
for ( j = 0; j < N; j++ )
statement;
}
Is quadratic. The running time of the two loops is proportional to the square of N. When N doubles, the running time increases by N * N.
while ( low <= high ) {
mid = ( low + high ) / 2;
if ( target < list[mid] )
high = mid - 1;
else if ( target > list[mid] )
low = mid + 1;
else break;
}
Is logarithmic. The running time of the algorithm is proportional to the number of times N can be divided by 2. This is because the algorithm divides the working area in half with each iteration.
void quicksort (int list[], int left, int right)
{
int pivot = partition (list, left, right);
quicksort(list, left, pivot - 1);
quicksort(list, pivot + 1, right);
}
Is N * log (N). The running time consists of N loops (iterative or recursive) that are logarithmic, thus the algorithm is a combination of linear and logarithmic.
In general, doing something with every item in one dimension is linear, doing something with every item in two dimensions is quadratic, and dividing the working area in half is logarithmic. There are other Big O measures such as cubic, exponential, and square root, but they're not nearly as common. Big O notation is described as O ( <type> ) where <type> is the measure. The quicksort algorithm would be described as O (N * log(N )).
Note that none of this has taken into account best, average, and worst case measures. Each would have its own Big O notation. Also note that this is a VERY simplistic explanation. Big O is the most common, but it's also more complex that I've shown. There are also other notations such as big omega, little o, and big theta. You probably won't encounter them outside of an algorithm analysis course. ;)
Taken from here - Introduction to Time Complexity of an Algorithm
1. Introduction
In computer science, the time complexity of an algorithm quantifies the amount of time taken by an algorithm to run as a function of the length of the string representing the input.
2. Big O notation
The time complexity of an algorithm is commonly expressed using big O notation, which excludes coefficients and lower order terms. When expressed this way, the time complexity is said to be described asymptotically, i.e., as the input size goes to infinity.
For example, if the time required by an algorithm on all inputs of size n is at most 5n3 + 3n, the asymptotic time complexity is O(n3). More on that later.
A few more examples:
1 = O(n)
n = O(n2)
log(n) = O(n)
2 n + 1 = O(n)
3. O(1) constant time:
An algorithm is said to run in constant time if it requires the same amount of time regardless of the input size.
Examples:
array: accessing any element
fixed-size stack: push and pop methods
fixed-size queue: enqueue and dequeue methods
4. O(n) linear time
An algorithm is said to run in linear time if its time execution is directly proportional to the input size, i.e. time grows linearly as input size increases.
Consider the following examples. Below I am linearly searching for an element, and this has a time complexity of O(n).
int find = 66;
var numbers = new int[] { 33, 435, 36, 37, 43, 45, 66, 656, 2232 };
for (int i = 0; i < numbers.Length - 1; i++)
{
if(find == numbers[i])
{
return;
}
}
More Examples:
Array: Linear Search, Traversing, Find minimum etc
ArrayList: contains method
Queue: contains method
5. O(log n) logarithmic time:
An algorithm is said to run in logarithmic time if its time execution is proportional to the logarithm of the input size.
Example: Binary Search
Recall the "twenty questions" game - the task is to guess the value of a hidden number in an interval. Each time you make a guess, you are told whether your guess is too high or too low. Twenty questions game implies a strategy that uses your guess number to halve the interval size. This is an example of the general problem-solving method known as binary search.
6. O(n2) quadratic time
An algorithm is said to run in quadratic time if its time execution is proportional to the square of the input size.
Examples:
Bubble Sort
Selection Sort
Insertion Sort
7. Some useful links
Big-O Misconceptions
Determining The Complexity Of Algorithm
Big O Cheat Sheet
Several examples of loop.
O(n) time complexity of a loop is considered as O(n) if the loop variables is incremented / decremented by a constant amount. For example following functions have O(n) time complexity.
// Here c is a positive integer constant
for (int i = 1; i <= n; i += c) {
// some O(1) expressions
}
for (int i = n; i > 0; i -= c) {
// some O(1) expressions
}
O(nc) time complexity of nested loops is equal to the number of times the innermost statement is executed. For example, the following sample loops have O(n2) time complexity
for (int i = 1; i <=n; i += c) {
for (int j = 1; j <=n; j += c) {
// some O(1) expressions
}
}
for (int i = n; i > 0; i += c) {
for (int j = i+1; j <=n; j += c) {
// some O(1) expressions
}
For example, selection sort and insertion sort have O(n2) time complexity.
O(log n) time complexity of a loop is considered as O(log n) if the loop variables is divided / multiplied by a constant amount.
for (int i = 1; i <=n; i *= c) {
// some O(1) expressions
}
for (int i = n; i > 0; i /= c) {
// some O(1) expressions
}
For example, [binary search][3] has _O(log n)_ time complexity.
O(log log n) time complexity of a loop is considered as O(log log n) if the loop variables is reduced / increased exponentially by a constant amount.
// Here c is a constant greater than 1
for (int i = 2; i <=n; i = pow(i, c)) {
// some O(1) expressions
}
//Here fun is sqrt or cuberoot or any other constant root
for (int i = n; i > 0; i = fun(i)) {
// some O(1) expressions
}
One example of time complexity analysis
int fun(int n)
{
for (int i = 1; i <= n; i++)
{
for (int j = 1; j < n; j += i)
{
// Some O(1) task
}
}
}
Analysis:
For i = 1, the inner loop is executed n times.
For i = 2, the inner loop is executed approximately n/2 times.
For i = 3, the inner loop is executed approximately n/3 times.
For i = 4, the inner loop is executed approximately n/4 times.
…………………………………………………….
For i = n, the inner loop is executed approximately n/n times.
So the total time complexity of the above algorithm is (n + n/2 + n/3 + … + n/n), which becomes n * (1/1 + 1/2 + 1/3 + … + 1/n)
The important thing about series (1/1 + 1/2 + 1/3 + … + 1/n) is around to O(log n). So the time complexity of the above code is O(n·log n).
References:
1
2
3
Time complexity with examples
1 - Basic operations (arithmetic, comparisons, accessing array’s elements, assignment): The running time is always constant O(1)
Example:
read(x) // O(1)
a = 10; // O(1)
a = 1,000,000,000,000,000,000 // O(1)
2 - If then else statement: Only taking the maximum running time from two or more possible statements.
Example:
age = read(x) // (1+1) = 2
if age < 17 then begin // 1
status = "Not allowed!"; // 1
end else begin
status = "Welcome! Please come in"; // 1
visitors = visitors + 1; // 1+1 = 2
end;
So, the complexity of the above pseudo code is T(n) = 2 + 1 + max(1, 1+2) = 6. Thus, its big oh is still constant T(n) = O(1).
3 - Looping (for, while, repeat): Running time for this statement is the number of loops multiplied by the number of operations inside that looping.
Example:
total = 0; // 1
for i = 1 to n do begin // (1+1)*n = 2n
total = total + i; // (1+1)*n = 2n
end;
writeln(total); // 1
So, its complexity is T(n) = 1+4n+1 = 4n + 2. Thus, T(n) = O(n).
4 - Nested loop (looping inside looping): Since there is at least one looping inside the main looping, running time of this statement used O(n^2) or O(n^3).
Example:
for i = 1 to n do begin // (1+1)*n = 2n
for j = 1 to n do begin // (1+1)n*n = 2n^2
x = x + 1; // (1+1)n*n = 2n^2
print(x); // (n*n) = n^2
end;
end;
Common running time
There are some common running times when analyzing an algorithm:
O(1) – Constant time
Constant time means the running time is constant, it’s not affected by the input size.
O(n) – Linear time
When an algorithm accepts n input size, it would perform n operations as well.
O(log n) – Logarithmic time
Algorithm that has running time O(log n) is slight faster than O(n). Commonly, algorithm divides the problem into sub problems with the same size. Example: binary search algorithm, binary conversion algorithm.
O(n log n) – Linearithmic time
This running time is often found in "divide & conquer algorithms" which divide the problem into sub problems recursively and then merge them in n time. Example: Merge Sort algorithm.
O(n2) – Quadratic time
Look Bubble Sort algorithm!
O(n3) – Cubic time
It has the same principle with O(n2).
O(2n) – Exponential time
It is very slow as input get larger, if n = 1,000,000, T(n) would be 21,000,000. Brute Force algorithm has this running time.
O(n!) – Factorial time
The slowest!!! Example: Travelling salesman problem (TSP)
It is taken from this article. It is very well explained and you should give it a read.
When you're analyzing code, you have to analyse it line by line, counting every operation/recognizing time complexity. In the end, you have to sum it to get whole picture.
For example, you can have one simple loop with linear complexity, but later in that same program you can have a triple loop that has cubic complexity, so your program will have cubic complexity. Function order of growth comes into play right here.
Let's look at what are possibilities for time complexity of an algorithm, you can see order of growth I mentioned above:
Constant time has an order of growth 1, for example: a = b + c.
Logarithmic time has an order of growth log N. It usually occurs when you're dividing something in half (binary search, trees, and even loops), or multiplying something in same way.
Linear. The order of growth is N, for example
int p = 0;
for (int i = 1; i < N; i++)
p = p + 2;
Linearithmic. The order of growth is n·log N. It usually occurs in divide-and-conquer algorithms.
Cubic. The order of growth is N3. A classic example is a triple loop where you check all triplets:
int x = 0;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
x = x + 2
Exponential. The order of growth is 2N. It usually occurs when you do exhaustive search, for example, check subsets of some set.
Loosely speaking, time complexity is a way of summarising how the number of operations or run-time of an algorithm grows as the input size increases.
Like most things in life, a cocktail party can help us understand.
O(N)
When you arrive at the party, you have to shake everyone's hand (do an operation on every item). As the number of attendees N increases, the time/work it will take you to shake everyone's hand increases as O(N).
Why O(N) and not cN?
There's variation in the amount of time it takes to shake hands with people. You could average this out and capture it in a constant c. But the fundamental operation here --- shaking hands with everyone --- would always be proportional to O(N), no matter what c was. When debating whether we should go to a cocktail party, we're often more interested in the fact that we'll have to meet everyone than in the minute details of what those meetings look like.
O(N^2)
The host of the cocktail party wants you to play a silly game where everyone meets everyone else. Therefore, you must meet N-1 other people and, because the next person has already met you, they must meet N-2 people, and so on. The sum of this series is x^2/2+x/2. As the number of attendees grows, the x^2 term gets big fast, so we just drop everything else.
O(N^3)
You have to meet everyone else and, during each meeting, you must talk about everyone else in the room.
O(1)
The host wants to announce something. They ding a wineglass and speak loudly. Everyone hears them. It turns out it doesn't matter how many attendees there are, this operation always takes the same amount of time.
O(log N)
The host has laid everyone out at the table in alphabetical order. Where is Dan? You reason that he must be somewhere between Adam and Mandy (certainly not between Mandy and Zach!). Given that, is he between George and Mandy? No. He must be between Adam and Fred, and between Cindy and Fred. And so on... we can efficiently locate Dan by looking at half the set and then half of that set. Ultimately, we look at O(log_2 N) individuals.
O(N log N)
You could find where to sit down at the table using the algorithm above. If a large number of people came to the table, one at a time, and all did this, that would take O(N log N) time. This turns out to be how long it takes to sort any collection of items when they must be compared.
Best/Worst Case
You arrive at the party and need to find Inigo - how long will it take? It depends on when you arrive. If everyone is milling around you've hit the worst-case: it will take O(N) time. However, if everyone is sitting down at the table, it will take only O(log N) time. Or maybe you can leverage the host's wineglass-shouting power and it will take only O(1) time.
Assuming the host is unavailable, we can say that the Inigo-finding algorithm has a lower-bound of O(log N) and an upper-bound of O(N), depending on the state of the party when you arrive.
Space & Communication
The same ideas can be applied to understanding how algorithms use space or communication.
Knuth has written a nice paper about the former entitled "The Complexity of Songs".
Theorem 2: There exist arbitrarily long songs of complexity O(1).
PROOF: (due to Casey and the Sunshine Band). Consider the songs Sk defined by (15), but with
V_k = 'That's the way,' U 'I like it, ' U
U = 'uh huh,' 'uh huh'
for all k.
For the mathematically-minded people: The master theorem is another useful thing to know when studying complexity.
O(n) is big O notation used for writing time complexity of an algorithm. When you add up the number of executions in an algorithm, you'll get an expression in result like 2N+2. In this expression, N is the dominating term (the term having largest effect on expression if its value increases or decreases). Now O(N) is the time complexity while N is dominating term.
Example
For i = 1 to n;
j = 0;
while(j <= n);
j = j + 1;
Here the total number of executions for the inner loop are n+1 and the total number of executions for the outer loop are n(n+1)/2, so the total number of executions for the whole algorithm are n + 1 + n(n+1/2) = (n2 + 3n)/2.
Here n^2 is the dominating term so the time complexity for this algorithm is O(n2).
Other answers concentrate on the big-O-notation and practical examples. I want to answer the question by emphasizing the theoretical view. The explanation below is necessarily lacking in details; an excellent source to learn computational complexity theory is Introduction to the Theory of Computation by Michael Sipser.
Turing Machines
The most widespread model to investigate any question about computation is a Turing machine. A Turing machine has a one dimensional tape consisting of symbols which is used as a memory device. It has a tapehead which is used to write and read from the tape. It has a transition table determining the machine's behaviour, which is a fixed hardware component that is decided when the machine is created. A Turing machine works at discrete time steps doing the following:
It reads the symbol under the tapehead.
Depending on the symbol and its internal state, which can only take finitely many values, it reads three values s, σ, and X from its transition table, where s is an internal state, σ is a symbol, and X is either Right or Left.
It changes its internal state to s.
It changes the symbol it has read to σ.
It moves the tapehead one step according to the direction in X.
Turing machines are powerful models of computation. They can do everything that your digital computer can do. They were introduced before the advent of digital modern computers by the father of theoretical computer science and mathematician: Alan Turing.
Time Complexity
It is hard to define the time complexity of a single problem like "Does white have a winning strategy in chess?" because there is a machine which runs for a single step giving the correct answer: Either the machine which says directly 'No' or directly 'Yes'. To make it work we instead define the time complexity of a family of problems L each of which has a size, usually the length of the problem description. Then we take a Turing machine M which correctly solves every problem in that family. When M is given a problem of this family of size n, it solves it in finitely many steps. Let us call f(n) the longest possible time it takes M to solve problems of size n. Then we say that the time complexity of L is O(f(n)), which means that there is a Turing machine which will solve an instance of it of size n in at most C.f(n) time where C is a constant independent of n.
Isn't it dependent on the machines? Can digital computers do it faster?
Yes! Some problems can be solved faster by other models of computation, for example two tape Turing machines solve some problems faster than those with a single tape. This is why theoreticians prefer to use robust complexity classes such as NL, P, NP, PSPACE, EXPTIME, etc. For example, P is the class of decision problems whose time complexity is O(p(n)) where p is a polynomial. The class P do not change even if you add ten thousand tapes to your Turing machine, or use other types of theoretical models such as random access machines.
A Difference in Theory and Practice
It is usually assumed that the time complexity of integer addition is O(1). This assumption makes sense in practice because computers use a fixed number of bits to store numbers for many applications. There is no reason to assume such a thing in theory, so time complexity of addition is O(k) where k is the number of bits needed to express the integer.
Finding The Time Complexity of a Class of Problems
The straightforward way to show the time complexity of a problem is O(f(n)) is to construct a Turing machine which solves it in O(f(n)) time. Creating Turing machines for complex problems is not trivial; one needs some familiarity with them. A transition table for a Turing machine is rarely given, and it is described in high level. It becomes easier to see how long it will take a machine to halt as one gets themselves familiar with them.
Showing that a problem is not O(f(n)) time complexity is another story... Even though there are some results like the time hierarchy theorem, there are many open problems here. For example whether problems in NP are in P, i.e. solvable in polynomial time, is one of the seven millennium prize problems in mathematics, whose solver will be awarded 1 million dollars.
My code spends 40% of its time searching through unsorted vectors. More specifically, the searching function my_search repeatedly receives a single unsorted vector of length N, where N can take any values between 10 and 100,000. The weights associated with each element have relatively little variance (e.g. [ 0.8, 0.81, 0.85, 0.78, 0.8, 0.7, 0.84, 0.82, ...]).
The algorithm my_search starts by summing all the weights for each object and then sample an average of N elements (as many as the length of the vector) with replacements. The algorithm is quite similar to
int sum_of_weight = 0;
for(int i=0; i<num_choices; i++) {
sum_of_weight += choice_weight[i];
}
int rnd = random(sum_of_weight);
for(int i=0; i<num_choices; i++) {
if(rnd < choice_weight[i])
return i;
rnd -= choice_weight[i];
}
from this post.
I could sort the vector before searching but takes a time of the order of O(N log N) (depending on the sort algorithm used) and I doubt (but might be wrong as I haven't tried) that I would gain much time especially as the weights have little variance.
Another solution would be to store information of how much weight there is before a series of points. For example, while summing the vector, every N/10 elements, I could store the information of how much weights has been summed yet. Then, I could first compare rnd to these 10 breakpoints and search in only a tenth of the total length of the vector.
Would this be a good solution?
Is there a name for the process I described?
How can I estimate what is the right number of breakpoints to store as a function of N?
Is there a better solution?
log(N) Solution
{
std::vector<double> sums;
double sum_of_weight = 0;
for(int i=0; i<num_choices; i++) {
sum_of_weight += choice_weight[i];
sums.push_back(sum_of_weight);
}
std::vector<double>::iterator high = std::upper_bound(sums.begin(), sums.end(), random(sum_of_weight));
return std::distance(sums.begin(), high);
}
Essentially the same idea you have for a better way to solve it, but rather than store only a 10th of the elements, store all of them and use binary search to find the index of the one closest to your value.
Analysis
Even though this solution is O(logN), you really have to ask yourself if it's worth it. Is it worth it to have to create an extra vector, thus accumulating extra clock cycles to store things in the vector, the time it takes for vectors to resize, the time it takes to call a function to perform binary search, etc?
As I was writing the above, I realised you can use a deque instead and that will almost get rid of the performance hit from having to resize and copy contents of vectors without affecting the O(1) lookup of vectors.
So I guess the question remains, is it worth it to copy over the elements into another container and then only do an O(logN) search?
Conclusion
TBH, I don't think you've gained much from this optimization. In fact I think you gained an overhead of O(logN).
int maxValue = m[0][0];
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if ( m[i][j] >maxValue )
{
maxValue = m[i][j];
}
}
}
cout<<maxValue<<endl;
int sum = 0;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
sum = sum + m[i][j];
}
}
cout<< sum <<endl;
For the above mentioned code I got O(n2) as the execution time growth
They way I got it was by:
MAX [O(1) , O(n2), O(1) , O(1) , O(n2), O(1)]
both O(n2) is for for loops. Is this calculation correct?
If I change this code as:
int maxValue = m[0][0];
int sum = 0;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if ( m[i][j] > maxValue )
{
maxValue = m[i][j];
}
sum += m[i][j];
}
}
cout<<maxValue<<endl;
cout<< sum <<endl;
Still Big O would be O(n2) right?
So does that mean Big O just an indication on how time will grow according to the input data size? and not how algorithm written?
This feels a bit like a homework question to me, but...
Big-Oh is about the algorithm, and specifically how the number of steps performed (or the amount of memory used) by the algorithm grows as the size of the input data grows.
In your case, you are taking N to be the size of the input, and it's confusing because you have a two-dimensional array, NxN. So really, since your algorithm only makes one or two passes over this data, you could call it O(n), where in this case n is the size of your two-dimensional input.
But to answer the heart of your question, your first code makes two passes over the data, and your second code does the same work in a single pass. However, the idea of Big-Oh is that it should give you the order of growth, which means independent of exactly how fast a particular computer runs. So, it might be that my computer is twice as fast as yours, so I can run your first code in about the same time as you run the second code. So we want to ignore those kinds of differences and say that both algorithms make a fixed number of passes over the data, so for the purposes of "order of growth", one pass, two passes, three passes, it doesn't matter. It's all about the same as one pass.
It's probably easier to think about this without thinking about the NxN input. Just think about a single list of N numbers, and say you want to do something to it, like find the max value, or sort the list. If you have 100 items in your list, you can find the max in 100 steps, and if you have 1000 items, you can do it in 1000 steps. So the order of growth is linear with the size of the input: O(n). On the other hand, if you want to sort it, you might write an algorithm that makes roughly a full pass over the data each time it finds the next item to be inserted, and it has to do that roughly once for each element in the list, so that's making n passes over your list of length n, so that's O(n^2). If you have 100 items in your list, that's roughly 10^4 steps, and if you have 1000 items in your list that's roughly 10^6 steps. So the idea is that those numbers grow really fast in comparison to the size of your input, so even if I have a much faster computer (e.g., a model 10 years better than yours), I might be able to to beat you in the max problem even with a list 2 or 10 or even 100 or 1000 times as long. But for the sorting problem with a O(n^2) algorithm, I won't be able to beat you when I try to take on a list that's 100 or 1000 times as long, even with a computer 10 or 20 years better than yours. That's the idea of Big-Oh, to factor out those "relatively unimportant" speed differences and be able to see what amount of work, in a more general/theoretical sense, a given algorithm does on a given input size.
Of course, in real life, it may make a huge difference to you that one computer is 100 times faster than another. If you are trying to solve a particular problem with a fixed maximum input size, and your code is running at 1/10 the speed that your boss is demanding, and you get a new computer that runs 10 times faster, your problem is solved without needing to write a better algorithm. But the point is that if you ever wanted to handle larger (much larger) data sets, you couldn't just wait for a faster computer.
The big O notation is an upper bound to the maximum amount of time taken to execute the algorithm based on the input size. So basically two algorithms can have slightly varying maximum running time but same big O notation.
what you need to understand is that for a running time function that is linear based on input size will have big o notation as o(n) and a quadratic function will always have big o notation as o(n^2).
so if your running time is just n, that is one linear pass, big o notation stays o(n) and if your running time is 6n+c that is 6 linear passes and a constant time c it still is o(n).
Now in the above case the second code is more optimized as the number of times you need to make the skip to memory locations for the loop is less. and hence this will give a better execution. but both the code would still have the asymptotic running time as o(n^2).
Yes, it's O(N^2) in both cases. Of course O() time complexity depends on how you have written your algorithm, but both the versions above are O(N^2). However, note that actually N^2 is the size of your input data (it's an N x N matrix), so this would be better characterized as a linear time algorithm O(n) where n is the size of the input, i.e. n = N x N.
#include<iostream.h>
int main()
{
int a[10]={1,2,3,5,2,3,1,5,3,1};
int i;
int c[10]={0};
for(i = 0 ; i < 10 ; i++)
c[a[i]]++;
for(i=0;i<10;i++)
cout<<i<<": "<<c[i]<<endl;
return 0;
}
The running time of the Algorithm is O(n) but its taking an extra space of O(n). Can I do better?
Thanks!
Depends on what is important to you - you can create an algorithm taking O(n^2) time, but O(1) space (using two loops, see code below), but you can't improve time complexity below O(n).
for(i=0;i<10;i++) {
count = 0;
for(j=0;j<10;j++)
if (c[j] == i) count++;
cout<<i<<": "<<count<<endl;
}
Another possiblity for O(1) space would be an in-place sort of the array and then traversing this once, which should have time complexity O(n log n) using in-place merge sort.
No you can't. That's the best you can do.
What is "efficient"? Show us you performance requirements and performance measurements. Then we can tell you if it's efficient. Until then this is a wide open question with lots of wrong answers and no right answer.
The answers thus far are correct only the word 'efficient' means 'runs as fast possible'.
Maybe you have a fast computer with little RAM.
You can always make a piece of code run faster or use less memory of less disk space or less.... if it is not 'efficient' enough, I have seen guys hand craft assembly to make it faster. Usually it's a waste of time and effort. Optimizing code that has not been profiled is a fools game.
If all the numbers are in range 1 to n then in can be done in O(n) time complexity and O(1) space complexity.
if there is an index X and array A such that A[X]=Y then add N to the value present at index Y.So A[Y] becomes A[Y]=original+N. Continuing this ,values will be of form (original+KN) where k>=0.To retrieve original element we can do (original+KN)%N since (x+kn)%n=x and count can be found by (original+KN)/N.