Code to find peak index of mountain array - c++

You may recall that an array A is a mountain array if and only if: A.length >= 3
There exists some i with 0 < i < A.length - 1 such that:
A[0] < A[1] < ... A[i-1] < A[i]
A[i] > A[i+1] > ... > A[A.length - 1]
NOTES:
Array can be accessed using arr.get(index) function and its length = arr.length().
Test case it is failing is : (3,5,3,2,0).
Error : control reaches end of non void function.
My take:
I want to use binary search (with some modifications) to find the peak. Keeping in mind the above given conditions of mountain array, only 3 possibilities are there i.e. (point of increasing slope, point on peak, point on decreasing slope)
CODE:
int getPeak(MountainArray &arr, int left, int right)
{
int mid;
int mid_num;
int after_mid, before_mid;
mid = (left + right) / 2;
if (mid == 0)
{
return getPeak(arr, mid + 1, right);
} // to make sure i dont violate the range of array by calculating before_mid.mid_num = arr.get(mid);
after_mid = arr.get(mid + 1);
before_mid = arr.get(mid - 1);
if (before_mid < mid_num && mid_num < after_mid)
{
return getPeak(arr, mid + 1, right);
}
else if (mid_num > after_mid && mid_num > before_mid)
{
return mid;
}
else if (mid_num > after_mid && mid_num < before_mid)
{
return getPeak(arr, left, mid - 1);
}
}

You don't initialize mid_num, which causes undefined behavior. Add:
mid_num = arr.get(mid); // missing
after_mid = ...
...
BTW, when you find the local peak (second branch), you might want to additionally check that it is a global peak as well. As written, it would return index 2 for this array: {5,2,4,2,5}, which is not a mountain according to your definition.

Related

Improving the performance of this search?

Is there way to do the following search using a faster way? The items on A array are sorted in DESC order.
int find_pos(int A[], int value, int items_no, bool only_exact_match)
{
for(int i = 0; i < items_no; i++)
if(value == A[i] || (value > A[i] && !only_exact_match))
return i;
return -1;
}
You can use std::lower_bound algorithm in your case. It performs binary search with O(log N), as other people wrote. It will be something like this:
int find_pos(int A[], int value, int items_no, bool only_exact_match)
{
const int *pos_ptr = std::lower_bound(A, A + items_no, value, std::greater<int>());
const ptrdiff_t pos = pos_ptr - A;
if (pos >= items_no)
return -1;
if (*pos_ptr != value && only_exact_match)
return -1;
return pos;
}
A binary search
int left = 0;
int right = items_no; // Exclusive
while (left < right) {
int mid = (left + right) / 2;
if (value == A[mid])
return mid;
if (value < A[mid]) {
left = mid + 1;
} else {
right = mid;
}
}
return only_exact_match ? -1 : right - 1; // The greater
Because your array is sorted, you can search in steps, akin to a bisection. First, check the midpoint against your value. If it's equal, you have your answer. If it's greater, your value is in the lower half of the array. If not, your value is on the upper half. Repeat this process by bisecting the remaining elements of the array until you find your value, or run out of elements. As for your second if clause, if no matching value is found, the closest smaller element is element i+1, if that exists (i.e. you are not at the end of the array).

Meximum Subarray Sum using Divide-And-Conquer

Working on an implementation of finding the Greatest Contiguous Sum of a sequence using the Divide and Conquer method as seen here.
My return value is often incorrect.
For example:
{5, 3} returns 5 instead of 8.
{-5, 3} returns 0 instead of 3.
{ 6, -5, 7 } returns 7 instead of 8.
Other notes:
decrementing or incrementing AT the first or last iterators throws an exception, saying that I either can't increment, decrement, or dereference at that point. There's a bug somewhere in GCSMid, I think, but I haven't been able to solve it.
this implementation uses random-access iterators, signified as RAIter
//function max- finds greatest number given 3 size_ts
size_t max(size_t a, size_t b, size_t c)
{
if (a >= b && a >= c)
{
return a;
}
else if (b >= a && b >= c)
{
return b;
}
else
{
return c;
}
}
//function gcsMid
//main algorithm to find subsequence if it spans across the center line
template<typename RAIter>
size_t gcsMid(RAIter first, RAIter center, RAIter last)
{
size_t sum = 0;
size_t leftSum = 0;
size_t rightSum = 0;
//to the left of center
for (RAIter i = center; i > first; i--)
{
sum += *i;
if(sum > leftSum)
{
leftSum = sum;
}
}
//to right of center
sum = 0;
for (RAIter j = (center + 1); j < last; j++)
{
sum += *j;
if (sum > rightSum)
{
rightSum = sum;
}
}
//return the sums from mid
return leftSum + rightSum;
}
//main function to call
template<typename RAIter>
int gcs(RAIter first, RAIter last)
{
size_t size = distance(first, last);
//base case is when the subarray only has 1 element. when first == last
if (first == last || size == 1)
{
if (size < 1)
{
return 0;
}
if (*first < 0)
{
return 0;
}
return *first;
}
//middle point
RAIter center = first + (size/2);
//return max of leftsum, rightsum, and midsum
return max(gcs(first, center),
gcs(center + 1, last),
gcsMid(first, center, last));
}
You have two problems with your code:
A. This loop:
for (RAIter i = center; i > first; i--)
does not include first in the loop. The reference algorithm does. You can't just use >= as the reference algorithm does as it doesn't work for iterators. Either add an extra bit of code to check first at the end, or change your loop so it somehow includes first (maybe a do while loop would suit better).
B. These definitions:
size_t sum = 0;
size_t leftSum = 0;
size_t rightSum = 0;
should not be size_t as size_t is unsigned. This means that when the sum goes negative, checks like if(sum > leftSum) no longer work, as the negative value (which underflows) is bigger than the positive value.
Change them to int.
The best way to find these kinds of errors is to run the code through a debugger. You can then step through each line of your code and see what the variable values are. This makes it easy to spot things like negative numbers becoming large positive numbers as above.

Algorithm: Modified Binary Search

I am trying to tackle a classical interview problem which is basically performing a binary search on a list which first increases then decreases. Even though it's obvious that we can achieve O(log n) I couldn't figure out what is wrong the code below that I've written:
#include <iostream>
using namespace std;
int binarySearch(int *A, int low, int high, int key)
{
while(low < high)
{
int mid = (low + high) / 2;
if(key < A[mid])
{
if(A[mid - 1] < A[mid] && A[mid] < A[mid + 1])
high = mid - 1;
else
low = mid + 1;
}
else if(key > A[mid])
{
if(A[mid - 1] < A[mid] && A[mid] < A[mid + 1])
low = mid + 1;
else
high = mid - 1;
}
else
return mid;
}
return -(low + 1);
}
int main()
{
const int SIZE = 8;
int A[SIZE] = {3,5,7,14,9,8,2,1};
cout<<binarySearch(A, 0, SIZE, 14);
return 0;
}
The reason why I ask this question is because I wonder two things. 1) What is wrong with the code since it fails for some values such as "14". 2) Can it be improved?
I think your code does not handle well the increasing and decreasing part of the array.
Instead of telling you exactly how to do this, here is some tip and I hope you are able to finish it :)
One solution is to first find the point where the array goes from increasing order to decreasing order in O(logn), then based on that, perform a special version of binary search in O(logn).
Let me know in case you don't know how to to this, I will explain more on my answer.
Here is a more complete solution (served only as a reference)
One solution is to first find the point where the array goes from increasing order to decreasing order in O(logn), then based on that, perform a special version of binary search in O(logn).
The first part can be achieved by finding the last point where array[i-1] <= array[i] using a specialized binary search where the mid index moving condition is whether array[mid-1] <= array[mid] instead of whether array[mid] <= target.
Sample Code
To prevent me from being an interview hacker, below only shows how to handle an array without any duplicates. The code will soon removed if necessary:
#include <stdio.h>
#include <stdlib.h>
int find_change_point(int array[], int low, int high, int array_size) {
int mid;
for (mid = (low + high) / 2; low <= high; mid = (low + high) / 2) {
// if true, it implies the point is on the higher side
if (array[mid - 1] <= array[mid]) {
if (mid == array_size - 1) {
return mid;
}
// since we already handles equality, only > is needed.
if (array[mid] > array[mid + 1]) {
return mid;
}
low = mid + 1;
} else {
// then simply imply the point is on the lower part
high = mid - 1;
}
}
return mid;
}
int main() {
const int SIZE_1 = 8;
int array_1[SIZE_1] = {3,5,7,14,9,8,2,1};
int change_point = find_change_point(array_1, 0, SIZE_1 - 1, SIZE_1);
printf("change_point_1 = %d\n", change_point);
const int SIZE_2 = 9;
int array_2[SIZE_2] = {3,5,7,14,15,16,17,19, 20};
change_point = find_change_point(array_2, 0, SIZE_2 - 1, SIZE_2);
printf("change_point_2 = %d\n", change_point);
const int SIZE_3 = 9;
int array_3[SIZE_3] = {9, 8, 7, 6, 5, 4, 3, 2, 1};
change_point = find_change_point(array_3, 0, SIZE_3 - 1, SIZE_3);
printf("change_point_3 = %d\n", change_point);
}
and the output is:
change_point_1 = 3
change_point_2 = 8
change_point_3 = 0
For handling duplications, you need to find its left-end and right-end of the duplication sequence and verify whether they are increasing or decreasing sequence.
The second part has many varieties. One simple solution is to treat them as two arrays, and perform one binary search for each subarray to find your target element.
For your code i think to many branch like "if" operation .
Following is simple pseudocode for your reference:
while(1 < (high - low)){
int mid = (low + high) >> 1;
(key < A[mid]) ? high = mid : lo = mid;
}
return (key == A[lo]) ? lo : -1;
Hope this can be help you.

Substring comparision with one mismatch

The following is code for comparing a String A and String B with atmost one mismatch
i.e.,
ABC is same as ABX or AXC or XBC but, not same as AXZ
I did check several cases but, the website says it provides wrong answer. Could someone help to figure out where does this code fail?
Also, I'd be glad if someone could provide a better algorithm for the same problem.
TY
int compare(string a, int pos, string b) {
int count = 0;
int length = b.length()-1;
int mid = b.length() /2;
if(pos+length >= a.length())
return 0;
for(int i=0,j=pos;i<=mid;i++,j++) {
if(i == mid) {
if(a[j] != b[i])
count ++;
}
else {
if(a[j] != b[i])
count ++;
if(a[pos+length - i] != b[length -i])
count ++;
}
if(count >= 2) return 0;
}
return 1;
}
One problem is that if b.length() is even, then you compare a[pos + b.length() / 2] to b[b.length() / 2] twice: once when i == mid - 1, and once when i == mid. So something like compare("abcd", 0, "abbd") returns 0, because it counts the 'c'-vs.-'b' discrepancy as two separate mismatches.
I recommend that you simply strip out all logic related to mid. It serves no purpose other than massively complicating your code. If you iterate straight from 0 to b.length() - 1, you'll be much better off.

Searching in a sorted and rotated array

While preparing for an interview I stumbled upon this interesting question:
You've been given an array that is sorted and then rotated.
For example:
Let arr = [1,2,3,4,5], which is sorted
Rotate it twice to the right to give [4,5,1,2,3].
Now how best can one search in this sorted + rotated array?
One can unrotate the array and then do a binary search. But that is no better than doing a linear search in the input array, as both are worst-case O(N).
Please provide some pointers. I've googled a lot on special algorithms for this but couldn't find any.
I understand C and C++.
This can be done in O(logN) using a slightly modified binary search.
The interesting property of a sorted + rotated array is that when you divide it into two halves, atleast one of the two halves will always be sorted.
Let input array arr = [4,5,6,7,8,9,1,2,3]
number of elements = 9
mid index = (0+8)/2 = 4
[4,5,6,7,8,9,1,2,3]
^
left mid right
as seem right sub-array is not sorted while left sub-array is sorted.
If mid happens to be the point of rotation them both left and right sub-arrays will be sorted.
[6,7,8,9,1,2,3,4,5]
^
But in any case one half(sub-array) must be sorted.
We can easily know which half is sorted by comparing start and end element of each half.
Once we find which half is sorted we can see if the key is present in that half - simple comparison with the extremes.
If the key is present in that half we recursively call the function on that half
else we recursively call our search on the other half.
We are discarding one half of the array in each call which makes this algorithm O(logN).
Pseudo code:
function search( arr[], key, low, high)
mid = (low + high) / 2
// key not present
if(low > high)
return -1
// key found
if(arr[mid] == key)
return mid
// if left half is sorted.
if(arr[low] <= arr[mid])
// if key is present in left half.
if (arr[low] <= key && arr[mid] >= key)
return search(arr,key,low,mid-1)
// if key is not present in left half..search right half.
else
return search(arr,key,mid+1,high)
end-if
// if right half is sorted.
else
// if key is present in right half.
if(arr[mid] <= key && arr[high] >= key)
return search(arr,key,mid+1,high)
// if key is not present in right half..search in left half.
else
return search(arr,key,low,mid-1)
end-if
end-if
end-function
The key here is that one sub-array will always be sorted, using which we can discard one half of the array.
The accepted answer has a bug when there are duplicate elements in the array. For example, arr = {2,3,2,2,2} and 3 is what we are looking for. Then the program in the accepted answer will return -1 instead of 1.
This interview question is discussed in detail in the book 'Cracking the Coding Interview'. The condition of duplicate elements is specially discussed in that book. Since the op said in a comment that array elements can be anything, I am giving my solution as pseudo code in below:
function search( arr[], key, low, high)
if(low > high)
return -1
mid = (low + high) / 2
if(arr[mid] == key)
return mid
// if the left half is sorted.
if(arr[low] < arr[mid]) {
// if key is in the left half
if (arr[low] <= key && key <= arr[mid])
// search the left half
return search(arr,key,low,mid-1)
else
// search the right half
return search(arr,key,mid+1,high)
end-if
// if the right half is sorted.
else if(arr[mid] < arr[high])
// if the key is in the right half.
if(arr[mid] <= key && arr[high] >= key)
return search(arr,key,mid+1,high)
else
return search(arr,key,low,mid-1)
end-if
else if(arr[mid] == arr[low])
if(arr[mid] != arr[high])
// Then elements in left half must be identical.
// Because if not, then it's impossible to have either arr[mid] < arr[high] or arr[mid] > arr[high]
// Then we only need to search the right half.
return search(arr, mid+1, high, key)
else
// arr[low] = arr[mid] = arr[high], we have to search both halves.
result = search(arr, low, mid-1, key)
if(result == -1)
return search(arr, mid+1, high, key)
else
return result
end-if
end-function
You can do 2 binary searches: first to find the index i such that arr[i] > arr[i+1].
Apparently, (arr\[1], arr[2], ..., arr[i]) and (arr[i+1], arr[i+2], ..., arr[n]) are both sorted arrays.
Then if arr[1] <= x <= arr[i], you do binary search at the first array, else at the second.
The complexity O(logN)
EDIT:
the code.
My first attempt would be to find using binary search the number of rotations applied - this can be done by finding the index n where a[n] > a[n + 1] using the usual binary search mechanism.
Then do a regular binary search while rotating all indexes per shift found.
int rotated_binary_search(int A[], int N, int key) {
int L = 0;
int R = N - 1;
while (L <= R) {
// Avoid overflow, same as M=(L+R)/2
int M = L + ((R - L) / 2);
if (A[M] == key) return M;
// the bottom half is sorted
if (A[L] <= A[M]) {
if (A[L] <= key && key < A[M])
R = M - 1;
else
L = M + 1;
}
// the upper half is sorted
else {
if (A[M] < key && key <= A[R])
L = M + 1;
else
R = M - 1;
}
}
return -1;
}
If you know that the array has been rotated s to the right, you can simply do a binary search shifted s to the right. This is O(lg N)
By this, I mean, initialize the left limit to s and the right to (s-1) mod N, and do a binary search between these, taking a bit of care to work in the correct area.
If you don't know how much the array has been rotated by, you can determine how big the rotation is using a binary search, which is O(lg N), then do a shifted binary search, O(lg N), a grand total of O(lg N) still.
Reply for the above mentioned post "This interview question is discussed in detail in the book 'Cracking the Coding Interview'. The condition of duplicate elements is specially discussed in that book. Since the op said in comment that array elements can be anything, I am giving my solution as pseudo code in below:"
Your solution is O(n) !! (The last if condition where you check both halves of the array for a single condition makes it a sol of linear time complexity )
I am better off doing a linear search than getting stuck in a maze of bugs and segmentation faults during a coding round.
I dont think there is a better solution than O(n) for a search in a rotated sorted array (with duplicates)
If you know how (far) it was rotated you can still do a binary search.
The trick is that you get two levels of indices: you do the b.s. in a virtual 0..n-1 range and then un-rotate them when actually looking up a value.
You don't need to rotate the array first. You can use binary search on the rotated array (with some modifications).
Let N be the number you are searching for:
Read the first number (arr[start]) and the number in the middle of the array (arr[end]):
if arr[start] > arr[end] --> the first half is not sorted but the second half is sorted:
if arr[end] > N --> the number is in index: (middle + N - arr[end])
if N repeat the search on the first part of the array (see end to be the middle of the first half of the array etc.)
(the same if the first part is sorted but the second one isn't)
public class PivotedArray {
//56784321 first increasing than decreasing
public static void main(String[] args) {
// TODO Auto-generated method stub
int [] data ={5,6,7,8,4,3,2,1,0,-1,-2};
System.out.println(findNumber(data, 0, data.length-1,-2));
}
static int findNumber(int data[], int start, int end,int numberToFind){
if(data[start] == numberToFind){
return start;
}
if(data[end] == numberToFind){
return end;
}
int mid = (start+end)/2;
if(data[mid] == numberToFind){
return mid;
}
int idx = -1;
int midData = data[mid];
if(numberToFind < midData){
if(midData > data[mid+1]){
idx=findNumber(data, mid+1, end, numberToFind);
}else{
idx = findNumber(data, start, mid-1, numberToFind);
}
}
if(numberToFind > midData){
if(midData > data[mid+1]){
idx = findNumber(data, start, mid-1, numberToFind);
}else{
idx=findNumber(data, mid+1, end, numberToFind);
}
}
return idx;
}
}
short mod_binary_search( int m, int *arr, short start, short end)
{
if(start <= end)
{
short mid = (start+end)/2;
if( m == arr[mid])
return mid;
else
{
//First half is sorted
if(arr[start] <= arr[mid])
{
if(m < arr[mid] && m >= arr[start])
return mod_binary_search( m, arr, start, mid-1);
return mod_binary_search( m, arr, mid+1, end);
}
//Second half is sorted
else
{
if(m > arr[mid] && m < arr[start])
return mod_binary_search( m, arr, mid+1, end);
return mod_binary_search( m, arr, start, mid-1);
}
}
}
return -1;
}
First, you need to find the shift constant, k.
This can be done in O(lgN) time.
From the constant shift k, you can easily find the element you're looking for using
a binary search with the constant k. The augmented binary search also takes O(lgN) time
The total run time is O(lgN + lgN) = O(lgN)
To find the constant shift, k. You just have to look for the minimum value in the array. The index of the minimum value of the array tells you the constant shift.
Consider the sorted array
[1,2,3,4,5].
The possible shifts are:
[1,2,3,4,5] // k = 0
[5,1,2,3,4] // k = 1
[4,5,1,2,3] // k = 2
[3,4,5,1,2] // k = 3
[2,3,4,5,1] // k = 4
[1,2,3,4,5] // k = 5%5 = 0
To do any algorithm in O(lgN) time, the key is to always find ways to divide the problem by half.
Once doing so, the rest of the implementation details is easy
Below is the code in C++ for the algorithm
// This implementation takes O(logN) time
// This function returns the amount of shift of the sorted array, which is
// equivalent to the index of the minimum element of the shifted sorted array.
#include <vector>
#include <iostream>
using namespace std;
int binarySearchFindK(vector<int>& nums, int begin, int end)
{
int mid = ((end + begin)/2);
// Base cases
if((mid > begin && nums[mid] < nums[mid-1]) || (mid == begin && nums[mid] <= nums[end]))
return mid;
// General case
if (nums[mid] > nums[end])
{
begin = mid+1;
return binarySearchFindK(nums, begin, end);
}
else
{
end = mid -1;
return binarySearchFindK(nums, begin, end);
}
}
int getPivot(vector<int>& nums)
{
if( nums.size() == 0) return -1;
int result = binarySearchFindK(nums, 0, nums.size()-1);
return result;
}
// Once you execute the above, you will know the shift k,
// you can easily search for the element you need implementing the bottom
int binarySearchSearch(vector<int>& nums, int begin, int end, int target, int pivot)
{
if (begin > end) return -1;
int mid = (begin+end)/2;
int n = nums.size();
if (n <= 0) return -1;
while(begin <= end)
{
mid = (begin+end)/2;
int midFix = (mid+pivot) % n;
if(nums[midFix] == target)
{
return midFix;
}
else if (nums[midFix] < target)
{
begin = mid+1;
}
else
{
end = mid - 1;
}
}
return -1;
}
int search(vector<int>& nums, int target) {
int pivot = getPivot(nums);
int begin = 0;
int end = nums.size() - 1;
int result = binarySearchSearch(nums, begin, end, target, pivot);
return result;
}
Hope this helps!=)
Soon Chee Loong,
University of Toronto
For a rotated array with duplicates, if one needs to find the first occurrence of an element, one can use the procedure below (Java code):
public int mBinarySearch(int[] array, int low, int high, int key)
{
if (low > high)
return -1; //key not present
int mid = (low + high)/2;
if (array[mid] == key)
if (mid > 0 && array[mid-1] != key)
return mid;
if (array[low] <= array[mid]) //left half is sorted
{
if (array[low] <= key && array[mid] >= key)
return mBinarySearch(array, low, mid-1, key);
else //search right half
return mBinarySearch(array, mid+1, high, key);
}
else //right half is sorted
{
if (array[mid] <= key && array[high] >= key)
return mBinarySearch(array, mid+1, high, key);
else
return mBinarySearch(array, low, mid-1, key);
}
}
This is an improvement to codaddict's procedure above. Notice the additional if condition as below:
if (mid > 0 && array[mid-1] != key)
There is a simple idea to solve this problem in O(logN) complexity with binary search.
The idea is,
If the middle element is greater than the left element, then the left part is sorted. Otherwise, the right part is sorted.
Once the sorted part is determined, all you need is to check if the value falls under that sorted part or not. If not, you can divide the unsorted part and find the sorted part from that (the unsorted part) and continue binary search.
For example, consider the image below. An array can be left rotated or right rotated.
Below image shows the relation of the mid element compared with the left most one and how this relates to which part of the array is purely sorted.
If you see the image, you find that the mid element is >= the left element and in that case, the left part is purely sorted.
An array can be left rotated by number of times, like once, twice, thrice and so on. Below image shows that for each rotation, the property of if mid >= left, left part is sorted still prevails.
More explanation with images can be found in below link. (Disclaimer: I am associated with this blog)
https://foolishhungry.com/search-in-rotated-sorted-array/.
Hope this will be helpful.
Happy coding! :)
Here is a simple (time,space)efficient non-recursive O(log n) python solution that doesn't modify the original array. Chops down the rotated array in half until I only have two indices to check and returns the correct answer if one index matches.
def findInRotatedArray(array, num):
lo,hi = 0, len(array)-1
ix = None
while True:
if hi - lo <= 1:#Im down to two indices to check by now
if (array[hi] == num): ix = hi
elif (array[lo] == num): ix = lo
else: ix = None
break
mid = lo + (hi - lo)/2
print lo, mid, hi
#If top half is sorted and number is in between
if array[hi] >= array[mid] and num >= array[mid] and num <= array[hi]:
lo = mid
#If bottom half is sorted and number is in between
elif array[mid] >= array[lo] and num >= array[lo] and num <= array[mid]:
hi = mid
#If top half is rotated I know I need to keep cutting the array down
elif array[hi] <= array[mid]:
lo = mid
#If bottom half is rotated I know I need to keep cutting down
elif array[mid] <= array[lo]:
hi = mid
print "Index", ix
Try this solution
bool search(int *a, int length, int key)
{
int pivot( length / 2 ), lewy(0), prawy(length);
if (key > a[length - 1] || key < a[0]) return false;
while (lewy <= prawy){
if (key == a[pivot]) return true;
if (key > a[pivot]){
lewy = pivot;
pivot += (prawy - lewy) / 2 ? (prawy - lewy) / 2:1;}
else{
prawy = pivot;
pivot -= (prawy - lewy) / 2 ? (prawy - lewy) / 2:1;}}
return false;
}
This code in C++ should work for all cases, Although It works with duplicates, please let me know if there's bug in this code.
#include "bits/stdc++.h"
using namespace std;
int searchOnRotated(vector<int> &arr, int low, int high, int k) {
if(low > high)
return -1;
if(arr[low] <= arr[high]) {
int p = lower_bound(arr.begin()+low, arr.begin()+high, k) - arr.begin();
if(p == (low-high)+1)
return -1;
else
return p;
}
int mid = (low+high)/2;
if(arr[low] <= arr[mid]) {
if(k <= arr[mid] && k >= arr[low])
return searchOnRotated(arr, low, mid, k);
else
return searchOnRotated(arr, mid+1, high, k);
}
else {
if(k <= arr[high] && k >= arr[mid+1])
return searchOnRotated(arr, mid+1, high, k);
else
return searchOnRotated(arr, low, mid, k);
}
}
int main() {
int n, k; cin >> n >> k;
vector<int> arr(n);
for(int i=0; i<n; i++) cin >> arr[i];
int p = searchOnRotated(arr, 0, n-1, k);
cout<<p<<"\n";
return 0;
}
In Javascript
var search = function(nums, target,low,high) {
low= (low || low === 0) ? low : 0;
high= (high || high == 0) ? high : nums.length -1;
if(low > high)
return -1;
let mid = Math.ceil((low + high) / 2);
if(nums[mid] == target)
return mid;
if(nums[low] < nums[mid]) {
// if key is in the left half
if (nums[low] <= target && target <= nums[mid])
// search the left half
return search(nums,target,low,mid-1);
else
// search the right half
return search(nums,target,mid+1,high);
} else {
// if the key is in the right half.
if(nums[mid] <= target && nums[high] >= target)
return search(nums,target,mid+1,high)
else
return search(nums,target,low,mid-1)
}
};
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
import java.util.*;
class Main{
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
int n=sc.nextInt();
int arr[]=new int[n];
int max=Integer.MIN_VALUE;
int min=Integer.MAX_VALUE;
int min_index=0,max_index=n;
for(int i=0;i<n;i++){
arr[i]=sc.nextInt();
if(arr[i]>max){
max=arr[i];
max_index=i;
}
if(arr[i]<min){
min=arr[i];
min_index=i;
}
}
int element=sc.nextInt();
int index;
if(element>arr[n-1]){
index=Arrays.binarySearch(arr,0,max_index+1,element);
}
else {
index=Arrays.binarySearch(arr,min_index,n,element);
}
if(index>=0){
System.out.println(index);
}
else{
System.out.println(-1);
}
}
}
Here are my two cents:
If the array does not contain duplicates, one can find the solution in O(log(n)). As many people have shown it the case, a tweaked version of binary search can be used to find the target element.
However, if the array contains duplicates, I think there is no way to find the target element in O(log(n)). Here is an example shows why I think O(log(n)) is not possible. Consider the two arrays below:
a = [2,.....................2...........3,6,2......2]
b = [2.........3,6,2........2......................2]
All the dots are filled with the number 2. You can see that both arrays are sorted and rotated. If one wants to consider binary search, then they have to cut the search domain by half every iteration -- this is how we get O(log(n)). Let us assume we are searching for the number 3. In the frist case, we can see it hiding in the right side of the array, and on the second case it is hiding in the second side of the array. Here is what we know about the array at this stage:
left = 0
right = length - 1;
mid = left + (right - left) / 2;
arr[mid] = 2;
arr[left] = 2;
arr[right] = 2;
target = 3;
This is all the information we have. We can clearly see it is not enough to make a decision to exclude one half of the array. As a result of that, the only way is to do linear search. I am not saying we can't optimize that O(n) time, all I am saying is that we can't do O(log(n)).
There is something i don't like about binary search because of mid, mid-1 etc that's why i always use binary stride/jump search
How to use it on a rotated array?
use twice(once find shift and then use a .at() to find the shifted index -> original index)
Or compare the first element, if it is less than first element, it has to be near the end
do a backwards jump search from end, stop if any pivot tyoe leement is found
if it is > start element just do a normal jump search :)
Implemented using C#
public class Solution {
public int Search(int[] nums, int target) {
if (nums.Length == 0) return -1;
int low = 0;
int high = nums.Length - 1;
while (low <= high)
{
int mid = (low + high) / 2;
if (nums[mid] == target) return mid;
if (nums[low] <= nums[mid]) // 3 4 5 6 0 1 2
{
if (target >= nums[low] && target <= nums[mid])
high = mid;
else
low = mid + 1;
}
else // 5 6 0 1 2 3 4
{
if (target >= nums[mid] && target <= nums[high])
low= mid;
else
high = mid - 1;
}
}
return -1;
}
}
Search An Element In A Sorted And Rotated Array In Java
package yourPackageNames;
public class YourClassName {
public static void main(String[] args) {
int[] arr = {3, 4, 5, 1, 2};
// int arr[]={16,19,21,25,3,5,8,10};
int key = 1;
searchElementAnElementInRotatedAndSortedArray(arr, key);
}
public static void searchElementAnElementInRotatedAndSortedArray(int[] arr, int key) {
int mid = arr.length / 2;
int pivotIndex = 0;
int keyIndex = -1;
boolean keyIndexFound = false;
boolean pivotFound = false;
for (int rightSide = mid; rightSide < arr.length - 1; rightSide++) {
if (arr[rightSide] > arr[rightSide + 1]) {
pivotIndex = rightSide;
pivotFound = true;
System.out.println("1st For Loop - PivotFound: " + pivotFound + ". Pivot is: " + arr[pivotIndex] + ". Pivot Index is: " + pivotIndex);
break;
}
}
if (!pivotFound) {
for (int leftSide = 0; leftSide < arr.length - mid; leftSide++) {
if (arr[leftSide] > arr[leftSide + 1]) {
pivotIndex = leftSide;
pivotFound = true;
System.out.println("2nd For Loop - PivotFound: " + pivotFound + ". Pivot is: " + arr[pivotIndex] + ". Pivot Index is: " + pivotIndex);
break;
}
}
}
for (int i = 0; i <= pivotIndex; i++) {
if (arr[i] == key) {
keyIndex = i;
keyIndexFound = true;
break;
}
}
if (!keyIndexFound) {
for (int i = pivotIndex; i < arr.length; i++) {
if (arr[i] == key) {
keyIndex = i;
break;
}
}
}
System.out.println(keyIndex >= 0 ? key + " found at index: " + keyIndex : key + " was not found in the array.");
}
}
Another approach that would work with repeated values is to find the rotation and then do a regular binary search applying the rotation whenever we access the array.
test = [3, 4, 5, 1, 2]
test1 = [2, 3, 2, 2, 2]
def find_rotated(col, num):
pivot = find_pivot(col)
return bin_search(col, 0, len(col), pivot, num)
def find_pivot(col):
prev = col[-1]
for n, curr in enumerate(col):
if prev > curr:
return n
prev = curr
raise Exception("Col does not seem like rotated array")
def rotate_index(col, pivot, position):
return (pivot + position) % len(col)
def bin_search(col, low, high, pivot, num):
if low > high:
return None
mid = (low + high) / 2
rotated_mid = rotate_index(col, pivot, mid)
val = col[rotated_mid]
if (val == num):
return rotated_mid
elif (num > val):
return bin_search(col, mid + 1, high, pivot, num)
else:
return bin_search(col, low, mid - 1, pivot, num)
print(find_rotated(test, 2))
print(find_rotated(test, 4))
print(find_rotated(test1, 3))
My simple code :-
public int search(int[] nums, int target) {
int l = 0;
int r = nums.length-1;
while(l<=r){
int mid = (l+r)>>1;
if(nums[mid]==target){
return mid;
}
if(nums[mid]> nums[r]){
if(target > nums[mid] || nums[r]>= target)l = mid+1;
else r = mid-1;
}
else{
if(target <= nums[r] && target > nums[mid]) l = mid+1;
else r = mid -1;
}
}
return -1;
}
Time Complexity O(log(N)).
Question: Search in Rotated Sorted Array
public class SearchingInARotatedSortedARRAY {
public static void main(String[] args) {
int[] a = { 4, 5, 6, 0, 1, 2, 3 };
System.out.println(search1(a, 6));
}
private static int search1(int[] a, int target) {
int start = 0;
int last = a.length - 1;
while (start + 1 < last) {
int mid = start + (last - start) / 2;
if (a[mid] == target)
return mid;
// if(a[start] < a[mid]) => Then this part of the array is not rotated
if (a[start] < a[mid]) {
if (a[start] <= target && target <= a[mid]) {
last = mid;
} else {
start = mid;
}
}
// this part of the array is rotated
else {
if (a[mid] <= target && target <= a[last]) {
start = mid;
} else {
last = mid;
}
}
} // while
if (a[start] == target) {
return start;
}
if (a[last] == target) {
return last;
}
return -1;
}
}
Swift Solution 100% working tested
func searchInArray(A:[Int],key:Int)->Int{
for i in 0..<A.count{
if key == A[i] {
print(i)
return i
}
}
print(-1)
return -1
}