Retrieve correct camera-object coordinates with billboarding effect - opengl

I am working to display text on world space with a billboarding effect in OpenGL.
Normal display:
With billboarding effect, the text quad doesn't follow the red dot. Strangely, it does follow when the dots are along the x axis. I think changing the top three columns in the viewModel matrix distorts the camera-object position.
How can I extract the correct quad's coordinates from the viewModel matrix?
//billboard code
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoord;
out vec2 TexCoord;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
//gl_Position = projection * view * model * vec4(aPos, 1.0f);
mat4 mv = view*model; //viewModel matrix
mv[0][0] = 1.0;
mv[0][1] = 0.0;
mv[0][2] = 0.0;
mv[1][0] = 0.0;
mv[1][1] = 1.0;
mv[1][2] = 0.0;
mv[2][0] = 0.0;
mv[2][1] = 0.0;
mv[2][2] = 1.0;
//mv[3][0] = model[3][0];
//mv[3][1] = model[3][1];
//mv[3][2] = model[3][2];
gl_Position = projection * mv * vec4(aPos, 1.0f);
TexCoord = vec2(aTexCoord.x, aTexCoord.y);
}

Related

Rendering using normal maps causes rotation-dependent lighting

The normal mapping looks great when the objects aren't rotated from the origin, and spot lights and directional lights work, but when I spin an object on the spot it darkens and then lightens again, just on the top face.
I'm testing using a cube. I've used a geometry shader to visualise my calculated normals (after multiplying by a TBN matrix), and they appear to be in the correct places. If I take the normal map out of the equation then the lighting is fine.
Here's where the TBN is calculated:
void calculateTBN()
{
//get the normal matrix
mat3 model = mat3(transpose(inverse(mat3(transform))));
vec3 T = normalize(vec3(model * tangent.xyz ));
vec3 N = normalize(vec3(model * normal ));
vec3 B = cross(N, T);
mat3 TBN = mat3( T , B , N);
outputVertex.TBN =TBN;
}
And the normal is sampled and transformed:
vec3 calculateNormal()
{
//Sort the input so that the normal is between 1 and minus 1 instead of 0 and 1
vec3 input = texture2D(normalMap, inputFragment.textureCoord).xyz;
input = 2.0 * input - vec3(1.0, 1.0, 1.0);
vec3 newNormal = normalize(inputFragment.TBN* input);
return newNormal;
}
My Lighting is in world space (as far as I understand the term, it takes into account the transform matrix but not the camera or projection matrix)
I did try the technique where I pass down the TBN as inverse (or transpose) and then multiplied every vector apart from the normal by it. That had the same effect. I'd rather work in world space anyway as apparently this is better for deffered lighting? Or so I've heard.
If you'd like to see any of the lighting code and so on I'll add it in but I didn't think it was necessary as it works apart from this.
EDIT::
As requested, here is vertex and part of frag shader
#version 330
uniform mat4 T; // Translation matrix
uniform mat4 S; // Scale matrix
uniform mat4 R; // Rotation matrix
uniform mat4 camera; // camera matrix
uniform vec4 posRelParent; // the position relative to the parent
// Input vertex packet
layout (location = 0) in vec4 position;
layout (location = 2) in vec3 normal;
layout (location = 3) in vec4 tangent;
layout (location = 4) in vec4 bitangent;
layout (location = 8) in vec2 textureCoord;
// Output vertex packet
out packet {
vec2 textureCoord;
vec3 normal;
vec3 vert;
mat3 TBN;
vec3 tangent;
vec3 bitangent;
vec3 normalTBN;
} outputVertex;
mat4 transform;
mat3 TBN;
void calculateTBN()
{
//get the model matrix, the transform of the object with scaling and transform removeds
mat3 model = mat3(transpose(inverse(transform)));
vec3 T = normalize(model*tangent.xyz);
vec3 N = normalize(model*normal);
//I used to retrieve the bitangents by crossing the normal and tangent but now they are calculated independently
vec3 B = normalize(model*bitangent.xyz);
TBN = mat3( T , B , N);
outputVertex.TBN = TBN;
//Pass though TBN vectors for colour debugging in the fragment shader
outputVertex.tangent = T;
outputVertex.bitangent = B;
outputVertex.normalTBN = N;
}
void main(void) {
outputVertex.textureCoord = textureCoord;
// Setup local variable pos in case we want to modify it (since position is constant)
vec4 pos = vec4(position.x, position.y, position.z, 1.0) + posRelParent;
//Work out the transform matrix
transform = T * R * S;
//Work out the normal for lighting
mat3 normalMat = transpose(inverse(mat3(transform)));
outputVertex.normal = normalize(normalMat* normal);
calculateTBN();
outputVertex.vert =(transform* pos).xyz;
//Work out the final pos of the vertex
gl_Position = camera * transform * pos;
}
And Lighting vector of fragment:
vec3 applyLight(Light thisLight, vec3 baseColor, vec3 surfacePos, vec3 surfaceToCamera)
{
float attenuation = 1.0f;
vec3 lightPos = (thisLight.finalLightMatrix*thisLight.position).xyz;
vec3 surfaceToLight;
vec3 coneDir = normalize(thisLight.coneDirection);
if (thisLight.position.w == 0.0f)
{
//Directional Light (all rays same angle, use position as direction)
surfaceToLight = normalize( (thisLight.position).xyz);
attenuation = 1.0f;
}
else
{
//Point light
surfaceToLight = normalize(lightPos - surfacePos);
float distanceToLight = length(lightPos - surfacePos);
attenuation = 1.0 / (1.0f + thisLight.attenuation * pow(distanceToLight, 2));
//Work out the Cone restrictions
float lightToSurfaceAngle = degrees(acos(dot(-surfaceToLight, normalize(coneDir))));
if (lightToSurfaceAngle > thisLight.coneAngle)
{
attenuation = 0.0;
}
}
}
Here's the main of the frag shader too:
void main(void) {
//get the base colour from the texture
vec4 tempFragColor = texture2D(textureImage, inputFragment.textureCoord).rgba;
//Support for objects with and without a normal map
if (useNormalMap == 1)
{
calcedNormal = calculateNormal();
}
else
{
calcedNormal = inputFragment.normal;
}
vec3 surfaceToCamera = normalize((cameraPos_World) - (inputFragment.vert));
vec3 tempColour = vec3(0.0, 0.0, 0.0);
for (int count = 0; count < numLights; count++)
{
tempColour += applyLight(allLights[count], tempFragColor.xyz, inputFragment.vert, surfaceToCamera);
}
vec3 gamma = vec3(1.0 / 2.2);
fragmentColour = vec4(pow(tempColour,gamma), tempFragColor.a);
//fragmentColour = vec4(calcedNormal, 1);
}
Edit 2:
The geometry shader used to visualize "sampled" normals by the TBN matrix as shown here:
void GenerateLineAtVertex(int index)
{
vec3 testSampledNormal = vec3(0, 0, 1);
vec3 bitangent = cross(gs_in[index].normal, gs_in[index].tangent);
mat3 TBN = mat3(gs_in[index].tangent, bitangent, gs_in[index].normal);
testSampledNormal = TBN * testSampledNormal;
gl_Position = gl_in[index].gl_Position;
EmitVertex();
gl_Position =
gl_in[index].gl_Position
+ vec4(testSampledNormal, 0.0) * MAGNITUDE;
EmitVertex();
EndPrimitive();
}
And it's vertex shader
void main(void) {
// Setup local variable pos in case we want to modify it (since position is constant)
vec4 pos = vec4(position.x, position.y, position.z, 1.0);
mat4 transform = T* R * S;
// Apply transformation to pos and store result in gl_Position
gl_Position = projection* camera* transform * pos;
mat3 normalMatrix = mat3(transpose(inverse(camera * transform)));
vs_out.tangent = normalize(vec3(projection * vec4(normalMatrix * tangent.xyz, 0.0)));
vs_out.normal = normalize(vec3(projection * vec4(normalMatrix * normal , 0.0)));
}
Here is the TBN vectors visualized. The slight angles on the points are due to an issue with how I'm applying the projection matrix, rather than mistakes in the actual vectors. The red lines just show where the arrows I've drawn on the texture are, they're not very clear from that angle that's all.
Problem Solved!
Actually nothing to do with the code above, although thanks to everyone that helped.
I was importing the texture using my own texture loader, which uses by default non-gamma corrected, SRGB colour in 32 bit. I switched it to 24bit and just RGB colour and it worked straight away. Typical developer problems....

Incorrect tracing with SSLR (Screen Space Local Reflections)

While implementing SSLR, I ran into the problem of incorrectly displaying objects: they are infinitely projected "down" and displayed in no way at all in the mirror. I give the code and screenshot below.
Fragment SSLR shader:
#version 330 core
uniform sampler2D normalMap; // in view space
uniform sampler2D depthMap; // in view space
uniform sampler2D colorMap;
uniform sampler2D reflectionStrengthMap;
uniform mat4 projection;
uniform mat4 inv_projection;
in vec2 texCoord;
layout (location = 0) out vec4 fragColor;
vec3 calcViewPosition(in vec2 texCoord) {
// Combine UV & depth into XY & Z (NDC)
vec3 rawPosition = vec3(texCoord, texture(depthMap, texCoord).r);
// Convert from (0, 1) range to (-1, 1)
vec4 ScreenSpacePosition = vec4(rawPosition * 2 - 1, 1);
// Undo Perspective transformation to bring into view space
vec4 ViewPosition = inv_projection * ScreenSpacePosition;
// Perform perspective divide and return
return ViewPosition.xyz / ViewPosition.w;
}
vec2 rayCast(vec3 dir, inout vec3 hitCoord, out float dDepth) {
dir *= 0.25f;
for (int i = 0; i < 20; i++) {
hitCoord += dir;
vec4 projectedCoord = projection * vec4(hitCoord, 1.0);
projectedCoord.xy /= projectedCoord.w;
projectedCoord.xy = projectedCoord.xy * 0.5 + 0.5;
float depth = calcViewPosition(projectedCoord.xy).z;
dDepth = hitCoord.z - depth;
if(dDepth < 0.0) return projectedCoord.xy;
}
return vec2(-1.0);
}
void main() {
vec3 normal = texture(normalMap, texCoord).xyz * 2.0 - 1.0;
vec3 viewPos = calcViewPosition(texCoord);
// Reflection vector
vec3 reflected = normalize(reflect(normalize(viewPos), normalize(normal)));
// Ray cast
vec3 hitPos = viewPos;
float dDepth;
float minRayStep = 0.1f;
vec2 coords = rayCast(reflected * max(minRayStep, -viewPos.z), hitPos, dDepth);
if (coords != vec2(-1.0)) fragColor = mix(texture(colorMap, texCoord), texture(colorMap, coords), texture(reflectionStrengthMap, texCoord).r);
else fragColor = texture(colorMap, texCoord);
}
Screenshot:
Also, the lamp is not reflected at all
I will grateful for help
UPDATE:
colorMap:
normalMap:
depthMap:
UPDATE: I solved the problem with the wrong reflection, but there are still problems.
I solved it as follows: ViewPosition.y *= -1
Now, as you can see in the screenshot, the lower parts of the objects are not reflected for some reason.
The question still remains open.
I m struggling to get a fine ssr too. I found two things that could help.
To get the view space normals you have to keep only the rotation of the camera and remove the translation, because if you dont, you will get the normals stretched to the opposite direction of the camera movement and will no longer have the right direction even if you normalize them again, for column major mat4 you can do it like:
mat4 viewNoTranslation = view;
viewNoTranslation[3] = vec4(0.0, 0.0, 0.0, 1.0);
The depth sampling from the depth image is logarithmic and if you linearize it you will get indeed the values from 0 to 1 but they will be inaccurate as to the needed precision. I tried to get the depth value straight from the vertex shader:
gl_Position = ubo.projection * ubo.view * ubo.model * inPos;
depth = gl_Position.z;
I dont know if it is right but the depth now is more accurate.
If you make proggress, please update :)

SSAO shading moves weird with camera (calculating gbuffer wrong)

I'm trying to implement this version of ssao with this tutorial:
http://www.learnopengl.com/#!Advanced-Lighting/SSAO
Here is what I end up with for my render textures.
When I move the camera the shadows seem to follow
Seems like I am missing some kind of matrix multiplication with the camera.
CODE
gBuffer Vertex
#version 330 core
layout (location = 0) in vec3 vertexPosition;
layout (location = 1) in vec3 vertexNormal;
out vec3 position;
out vec3 normal;
uniform mat4 m;
uniform mat4 v;
uniform mat4 p;
uniform mat4 n;
void main()
{
vec4 viewPos = v * m * vec4(vertexPosition, 1.0f);
position = viewPos.xyz;
gl_Position = p * viewPos;
normal = vec3(n * vec4(vertexNormal, 0.0f));
}
gBuffer Fragment
#version 330 core
layout (location = 0) out vec4 gPosition;
layout (location = 1) out vec3 gNormal;
layout (location = 2) out vec4 gColor;
in vec3 position;
in vec3 normal;
const float NEAR = 0.1f;
const float FAR = 50.0f;
float LinearizeDepth(float depth)
{
float z = depth * 2.0f - 1.0f;
return (2.0 * NEAR * FAR) / (FAR + NEAR - z * (FAR - NEAR));
}
void main()
{
gPosition.xyz = position;
gPosition.a = LinearizeDepth(gl_FragCoord.z);
gNormal = normalize(normal);
gColor.rgb = vec3(1.0f);
}
SSAO Vertex
#version 330 core
layout (location = 0) in vec3 vertexPosition;
layout (location = 1) in vec2 texCoords;
out vec2 UV;
void main(){
gl_Position = vec4(vertexPosition, 1.0f);
UV = texCoords;
}
SSAO Fragment
#version 330 core
out float FragColor;
in vec2 UV;
uniform sampler2D gPositionDepth;
uniform sampler2D gNormal;
uniform sampler2D texNoise;
uniform vec3 samples[32];
uniform mat4 projection;
// parameters (you'd probably want to use them as uniforms to more easily tweak the effect)
int kernelSize = 32;
float radius = 1.0;
// tile noise texture over screen based on screen dimensions divided by noise size
const vec2 noiseScale = vec2(1024.0f/4.0f, 1024.0f/4.0f);
void main()
{
// Get input for SSAO algorithm
vec3 fragPos = texture(gPositionDepth, UV).xyz;
vec3 normal = texture(gNormal, UV).rgb;
vec3 randomVec = texture(texNoise, UV * noiseScale).xyz;
// Create TBN change-of-basis matrix: from tangent-space to view-space
vec3 tangent = normalize(randomVec - normal * dot(randomVec, normal));
vec3 bitangent = cross(normal, tangent);
mat3 TBN = mat3(tangent, bitangent, normal);
// Iterate over the sample kernel and calculate occlusion factor
float occlusion = 0.0;
for(int i = 0; i < kernelSize; ++i)
{
// get sample position
vec3 sample = TBN * samples[i]; // From tangent to view-space
sample = fragPos + sample * radius;
// project sample position (to sample texture) (to get position on screen/texture)
vec4 offset = vec4(sample, 1.0);
offset = projection * offset; // from view to clip-space
offset.xyz /= offset.w; // perspective divide
offset.xyz = offset.xyz * 0.5 + 0.5; // transform to range 0.0 - 1.0
// get sample depth
float sampleDepth = -texture(gPositionDepth, offset.xy).w; // Get depth value of kernel sample
// range check & accumulate
float rangeCheck = smoothstep(0.0, 1.0, radius / abs(fragPos.z - sampleDepth ));
occlusion += (sampleDepth >= sample.z ? 1.0 : 0.0) * rangeCheck;
}
occlusion = 1.0 - (occlusion / kernelSize);
FragColor = occlusion;
}
I've read around and saw someone had a similar issue and passed the view matrix into the ssao shader and multiplied the sampleDepth:
float sampleDepth = (viewMatrix * -texture(gPositionDepth, offset.xy)).w;
But seems like it just makes things worse.
Heres another view from up top where you can see the shadows move with the camera
If I position my camera in certain ways things line up
Although I can only assume the value of your normal matrix n in the gBuffer vertex shader, it seems like you don't store your normals in view space but in world space. Since the SSAO calculations are done in screen space, this could (at least partially) explain the unexpected behavior. In that case, you either need to multiply your view matrix v to your normals before storing them to the gBuffer (potentially more efficient, but may interfere with your other shading calculations) or after retrieving them.

GLSL When using an in variable the fragment shader causes an unexpected output

I am busy implementing a deferred lighting system and have gotten all the way to having the bound position, diffuse and normal textures in my fragment shader in which I am to calculate the lighting specifications for each fragment.
#version 400 core
in vec3 fs_position;
in vec3 fs_color;
in vec4 fs_attenuation;
layout (location = 0) out vec4 outColor;
uniform sampler2D diffuseSampler;
uniform sampler2D positionSampler;
uniform sampler2D normalSampler;
const float cutOffFactor = 200;
const float reflectivity = 0.15;
const float shineDamper = 1;
void main(void){
vec2 frag = gl_PointCoord.xy;
frag.x = (frag.x+1)/2f;
frag.y = ((frag.y+1)/2f);
vec4 texDiffuse = texture(diffuseSampler,frag);
vec4 texPosition = texture(positionSampler,frag);
vec4 texNormal = texture(normalSampler,frag);
vec3 p = vec3(fs_position.xyz);
vec3 ePosition = texPosition.xyz;
ePosition = ePosition*200;
vec3 eNormal = texNormal.xyz;
vec3 unitNormal = normalize(eNormal);
outColor = vec4(texNormal.xyz,1.0);
}
That is literally all that my Fragment Shader contains.
The probem lies at "vec3 p = vec3(fs_position.xyz);".
When I remove it the program renders a perfect normal map, but when I add it a blank screen in which I can rotate and eventually a certain color flickers.
fs_position has nothing to do with color and was inputted from the geometry shader (all references are correct) yet it somehow causes a massive malfunction.
Same thing happens as well with all in variables (fs_color and fs_attenuation).
Whats being rendered is a non-blended quad of equal per-vertex properties that covers the viewport that renders to a color_attachment that exists(as said without that line everything works).
(blending does nothing, and I will put additive blending on when I get a result worthy of allowing me to continue)
Any help will be appreciated, the engine and shaders have never acted this way for me before and no errors are popping up.
Extra code:
Vertex shader
#version 400 core
in vec3 position;
in vec3 color;
in vec4 attenuation;
out vec3 gs_position;
out vec3 gs_color;
out vec4 gs_attenuation;
uniform mat4 projectionMatrix;
uniform mat4 viewMatrix;
void main(void){
vec4 worldPosition = vec4(position,1.0);
vec4 viewPosition = viewMatrix * worldPosition;
gl_Position = projectionMatrix * viewPosition;
gs_position = viewPosition.xyz;
gs_color = color;
gs_attenuation = attenuation;
}
GeometryShader
#version 150
layout (points) in;
layout (triangle_strip,max_vertices = 4) out;
in vec3 gs_position[];
in vec3 gs_color[];
in vec4 gs_attenuation[];
out vec3 fs_position;
out vec3 fs_color;
out vec4 fs_attenuation;
void main(void){
gl_Position = vec4(-1,1,0,1);
fs_position = gs_position[0];
fs_color = gs_color[0];
fs_attenuation = gs_attenuation[0];
EmitVertex();
gl_Position = vec4(-1,-1,0,1);
fs_position = gs_position[0];
fs_color = gs_color[0];
fs_attenuation = gs_attenuation[0];
EmitVertex();
gl_Position = vec4(1,1,0,1);
fs_position = gs_position[0];
fs_color = gs_color[0];
fs_attenuation = gs_attenuation[0];
EmitVertex();
gl_Position = vec4(1,-1,0,1);
fs_position = gs_position[0];
fs_color = gs_color[0];
fs_attenuation = gs_attenuation[0];
EmitVertex();
EndPrimitive();
}
Example of light values:
Position: -1, 0.5, -1
Color: 0, 0.5 ,0
Attenuation: 1, 0.1, 0.2, 0
As for the requested screenshots, basically without referencing an in variable I get something like this:
And with it I get a black screen, which is pretty easy to visualise.
(Although when rotating the view matrix (y-axis) there is a certain point at which the quad gets colored green, although I cant get values for it)

Calculate tangent space in C++

I am trying to render a scene using normal mapping
Therefore I am calculating the tangent space in C++ and store the binormal and tanget seperately in an array which will be uploaded to my shader using vertexattribpointer.
Here is how I calculate the space
void ObjLoader::computeTangentSpace(MeshData &meshData) {
GLfloat* tangents = new GLfloat[meshData.vertex_position.size()]();
GLfloat* binormals = new GLfloat[meshData.vertex_position.size()]();
std::vector<glm::vec3 > tangent;
std::vector<glm::vec3 > binormal;
for(unsigned int i = 0; i < meshData.indices.size(); i = i+3){
glm::vec3 vertex0 = glm::vec3(meshData.vertex_position.at(meshData.indices.at(i)), meshData.vertex_position.at(meshData.indices.at(i)+1),meshData.vertex_position.at(meshData.indices.at(i)+2));
glm::vec3 vertex1 = glm::vec3(meshData.vertex_position.at(meshData.indices.at(i+1)), meshData.vertex_position.at(meshData.indices.at(i+1)+1),meshData.vertex_position.at(meshData.indices.at(i+1)+2));
glm::vec3 vertex2 = glm::vec3(meshData.vertex_position.at(meshData.indices.at(i+2)), meshData.vertex_position.at(meshData.indices.at(i+2)+1),meshData.vertex_position.at(meshData.indices.at(i+2)+2));
glm::vec3 normal = glm::cross((vertex1 - vertex0),(vertex2 - vertex0));
glm::vec3 deltaPos;
if(vertex0 == vertex1)
deltaPos = vertex2 - vertex0;
else
deltaPos = vertex1 - vertex0;
glm::vec2 uv0 = glm::vec2(meshData.vertex_texcoord.at(meshData.indices.at(i)), meshData.vertex_texcoord.at(meshData.indices.at(i)+1));
glm::vec2 uv1 = glm::vec2(meshData.vertex_texcoord.at(meshData.indices.at(i+1)), meshData.vertex_texcoord.at(meshData.indices.at(i+1)+1));
glm::vec2 uv2 = glm::vec2(meshData.vertex_texcoord.at(meshData.indices.at(i+2)), meshData.vertex_texcoord.at(meshData.indices.at(i+2)+1));
glm::vec2 deltaUV1 = uv1 - uv0;
glm::vec2 deltaUV2 = uv2 - uv0;
glm::vec3 tan; // tangents
glm::vec3 bin; // binormal
// avoid divion with 0
if(deltaUV1.s != 0)
tan = deltaPos / deltaUV1.s;
else
tan = deltaPos / 1.0f;
tan = glm::normalize(tan - glm::dot(normal,tan)*normal);
bin = glm::normalize(glm::cross(tan, normal));
// write into array - for each vertex of the face the same value
tangents[meshData.indices.at(i)] = tan.x;
tangents[meshData.indices.at(i)+1] = tan.y;
tangents[meshData.indices.at(i)+2] = tan.z;
tangents[meshData.indices.at(i+1)] = tan.x;
tangents[meshData.indices.at(i+1)+1] = tan.y;
tangents[meshData.indices.at(i+1)+2] = tan.z;
tangents[meshData.indices.at(i+2)] = tan.x;
tangents[meshData.indices.at(i+2)+1] = tan.y;
tangents[meshData.indices.at(i+2)+1] = tan.z;
binormals[meshData.indices.at(i)] = bin.x;
binormals[meshData.indices.at(i)+1] = bin.y;
binormals[meshData.indices.at(i)+2] = bin.z;
binormals[meshData.indices.at(i+1)] = bin.x;
binormals[meshData.indices.at(i+1)+1] = bin.y;
binormals[meshData.indices.at(i+1)+2] = bin.z;
binormals[meshData.indices.at(i+2)] = bin.x;
binormals[meshData.indices.at(i+2)+1] = bin.y;
binormals[meshData.indices.at(i+2)+1] = bin.z;
}
// Copy the tangent and binormal to meshData
for(unsigned int i = 0; i < meshData.vertex_position.size(); i++){
meshData.vertex_tangent.push_back(tangents[i]);
meshData.vertex_binormal.push_back(binormals[i]);
}
}
And here are my vertex and fragment shader
Vertex Shader
#version 330
layout(location = 0) in vec3 vertex;
layout(location = 1) in vec3 vertex_normal;
layout(location = 2) in vec2 vertex_texcoord;
layout(location = 3) in vec3 vertex_tangent;
layout(location = 4) in vec3 vertex_binormal;
struct LightSource {
vec3 ambient_color;
vec3 diffuse_color;
vec3 specular_color;
vec3 position;
};
uniform vec3 lightPos;
out vec3 vertexNormal;
out vec3 eyeDir;
out vec3 lightDir;
out vec2 textureCoord;
uniform mat4 view;
uniform mat4 modelview;
uniform mat4 projection;
out vec4 myColor;
void main() {
mat4 normalMatrix = transpose(inverse(modelview));
gl_Position = projection * modelview * vec4(vertex, 1.0);
vec4 binormal = modelview * vec4(vertex_binormal,1);
vec4 tangent = modelview * vec4(vertex_tangent,1);
vec4 normal = vec4(vertex_normal,1);
mat3 tangentMatrix = mat3(tangent.xyz,binormal.xyz,normal.xyz);
vec3 vertexInCamSpace = (modelview * vec4(vertex, 1.0)).xyz;
eyeDir = tangentMatrix * normalize( -vertexInCamSpace);
vec3 lightInCamSpace = (view * vec4(lightPos, 1.0)).xyz;
lightDir = tangentMatrix * normalize((lightInCamSpace - vertexInCamSpace));
textureCoord = vertex_texcoord;
}
Fragment Shader
#version 330
struct LightSource {
vec3 ambient_color;
vec3 diffuse_color;
vec3 specular_color;
vec3 position;
};
struct Material {
vec3 ambient_color;
vec3 diffuse_color;
vec3 specular_color;
float specular_shininess;
};
uniform LightSource light;
uniform Material material;
in vec3 vertexNormal;
in vec3 eyeDir;
in vec3 lightDir;
in vec2 textureCoord;
uniform sampler2D texture;
uniform sampler2D normals;
out vec4 color;
in vec4 myColor;
in vec3 bin;
in vec3 tan;
void main() {
vec3 diffuse = texture2D(texture,textureCoord).rgb;
vec3 E = normalize(eyeDir);
vec3 N = texture2D(normals,textureCoord).xyz;
N = (N - 0.5) * 2.0;
vec3 ambientTerm = vec3(0);
vec3 diffuseTerm = vec3(0);
vec3 specularTerm = vec3(0);
vec3 L, H;
L = normalize(lightDir);
H = normalize(E + L);
ambientTerm += light.ambient_color;
diffuseTerm += light.diffuse_color * max(dot(L, N), 0);
specularTerm += light.specular_color * pow(max(dot(H, N), 0), material.specular_shininess);
ambientTerm *= material.ambient_color;
diffuseTerm *= material.diffuse_color;
specularTerm *= material.specular_color;
color = vec4(diffuse, 1) * vec4(ambientTerm + diffuseTerm + specularTerm, 1);
}
The problem is that sometimes I dont have values for tangent and binormal in the shader.. Here are three screenshots which I hope will clearify my problem:
This is how the scene currently looks like when I render it with the code above:
This is how the scene looks like, when I use lightDir as color
And the third shows the scene with eyeDir as color
All the pictures are taken from the same angle without moving camera or rotating anything.
I've already compared my code to several different sources in the www but I didn't found the error I've done...
Additional information:
I am iterating over all current faces. Three indices will give me one triangle. The UV values for each vertex are stored at the same index. having a lot of debugging there, I am very sure that this are the correct values as I can find the right values in the .obj file when searching using gedit.
After calculating tangent and binormal I am storing the normal at the same index as the vertex position is in the array. For my understanding this should give me the correct position and I am calculating this for each vertex. For each vertex in a face I am using the same tangent basis, which is maybe later overwritten when another face is using this vertex, this could mess up my final result but only in very small details...
EDIT:
For any other questions, here is the whole project:
http://www.incentivelabs.de/Sourcecode/normal_mapping.zip
In your vertex shader you have:
vec4 binormal = modelview * vec4(vertex_binormal,1);
vec4 tangent = modelview * vec4(vertex_tangent,1);
vec4 normal = vec4(vertex_normal,1);
This should be:
vec4 binormal = modelview * vec4(vertex_binormal,0);
vec4 tangent = modelview * vec4(vertex_tangent,0);
vec4 normal = modelview * vec4(vertex_normal,0);
Note the '0' instead of '1' (also I'm assuming you meant to transform your normal too). You use '0' here because you want to ignore the translation part of the modelview transformation (you're transforming a vector not a point).