I'm using std::thread to launch threads. Also, I need stats for the worker thread available at /proc/[pid]/tasks/[tid]. I need tid to be able to monitor thread stats. I was wondering if there was a way to extract tid from the parent thread. I know that syscall gettid() from the worker returns its id, but I want the threadId from the master and not the slave. Is there a way to extract tid from the thread_id gor from std::thread.get_tid() ?
I believe there might be better ways of doing this, please suggest :)
UPDATE:
How can you get the Linux thread Id of a std::thread() this provides some information on getting tid from the worker, adds an overhead to the thread launch. For instance, std::thread t = std::thread(&wrapper); t.get_id() can be called from the launcher thread. I was/am looking if there was a to do the same thing from the main/launcher thread in a safe way.
All threads have a unique id:
std::thread::id this_id = std::this_thread::get_id();
You can store it in a variable when the program starts and it'll be accessible from the other threads.
I understand what you mean when you say parent thread, but even though one thread gave birth to another, they are siblings.
if you want the master thread to be able to get the /proc path to each worker thread, you could wrap the worker thread object in a class that, when it starts the actual thread, creates a path property that the master can later get.
An example:
#include <unistd.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>
// A base class for thread object wrappers
class abstract_thread {
public:
abstract_thread() {}
abstract_thread(const abstract_thread&) = delete;
abstract_thread(abstract_thread&& rhs) :
m_th(std::move(rhs.m_th)), m_terminated(rhs.m_terminated), m_cv{}, m_mtx{} {}
abstract_thread& operator=(const abstract_thread&) = delete;
abstract_thread& operator=(abstract_thread&& rhs) {
terminate();
join();
m_th = std::move(rhs.m_th);
m_terminated = rhs.m_terminated;
return *this;
}
virtual ~abstract_thread() {
// make sure we don't destroy a running thread object
terminate();
join();
}
virtual void start() {
if(joinable())
throw std::runtime_error("thread already running");
else {
std::unique_lock<std::mutex> lock(m_mtx);
m_terminated = true;
// start thread and wait for it to signal that setup has been done
m_th = std::thread(&abstract_thread::proxy, this);
m_cv.wait(lock, [this] { return m_terminated == false; });
}
}
inline bool joinable() const { return m_th.joinable(); }
inline void join() {
if(joinable()) {
m_th.join();
}
}
inline void terminate() { m_terminated = true; }
inline bool terminated() const { return m_terminated; }
protected:
// override if thread specific setup needs to be done before start() returns
virtual void setup_in_thread() {}
// must be overridden in derived classes
virtual void execute() = 0;
private:
std::thread m_th{};
bool m_terminated{};
std::condition_variable m_cv{};
std::mutex m_mtx{};
void proxy() {
{
std::unique_lock<std::mutex> lock(m_mtx);
setup_in_thread(); // call setup function
m_terminated = false;
m_cv.notify_one();
}
execute(); // run thread code
}
};
// an abstract thread wrapper capable of returning its /proc path
class proc_path_thread : public abstract_thread {
public:
// function to call from master to get the path
const std::string& get_proc_path() const { return m_proc_path; }
protected:
void setup_in_thread() override {
m_proc_path =
std::move(std::string("/proc/")) + std::to_string(syscall(SYS_gettid));
}
private:
std::string m_proc_path{};
};
// two different thread wrapper classes. Just inherit proc_path_thread and implement
// "execute()". Loop until terminated() is true (or you're done with the work)
class AutoStartThread : public proc_path_thread {
public:
AutoStartThread() { start(); }
private:
void execute() override {
while(!terminated()) {
std::this_thread::sleep_for(std::chrono::milliseconds(500));
std::cout << std::this_thread::get_id() << " AutoStartThread running\n";
}
}
};
class ManualStartThread : public proc_path_thread {
void execute() override {
std::this_thread::sleep_for(std::chrono::milliseconds(100));
std::cout << std::this_thread::get_id() << " ManualStartThread running\n";
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
};
int main() {
AutoStartThread a;
std::cout << a.get_proc_path() << "\t// AutoStartThread, will have path\n";
ManualStartThread b;
std::cout << b.get_proc_path()
<< "\t// ManualStartThread not started, no path\n";
b.start();
std::cout << b.get_proc_path()
<< "\t// ManualStartThread will now have a path\n";
b.join();
std::this_thread::sleep_for(std::chrono::milliseconds(1500));
// terminate() + join() is called automatically when abstract_thread descendants
// goes out of scope:
//
// a.terminate();
// a.join();
}
Possible output:
/proc/38207 // AutoStartThread, will have path
// ManualStartThread not started, no path
/proc/38208 // ManualStartThread will now have a path
139642064209664 ManualStartThread running
139642072602368 AutoStartThread running
139642072602368 AutoStartThread running
139642072602368 AutoStartThread running
139642072602368 AutoStartThread running
You can launch the thread through a function whose first task will be to message it's id, e.g., either classically using mutexes and condvars:
#include <stdio.h>
#include <pthread.h>
#include <sys/syscall.h>
#include <unistd.h>
struct tid_msg{
pthread_mutex_t mx;
pthread_cond_t cond;
pid_t tid;
};
void *thr(void*A)
{
struct tid_msg *msg = A;
pid_t tid = syscall(SYS_gettid);
pthread_mutex_lock(&msg->mx);
msg->tid = tid;
pthread_mutex_unlock(&msg->mx);
pthread_cond_signal(&msg->cond);
printf("my tid=%lu\n", (long unsigned)tid);
return 0;
}
int main()
{
struct tid_msg msg = { PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER, -1 };
pthread_t ptid;
pthread_create(&ptid,0,thr,&msg);
pthread_mutex_lock(&msg.mx);
while(-1==msg.tid) pthread_cond_wait(&msg.cond,&msg.mx);
pthread_mutex_unlock(&msg.mx);
printf("their tid=%lu\n", (long unsigned)msg.tid);
pthread_join(ptid,0);
}
or simply via an atomic variable (relaxed memory ordering should be fine here,
but you can play it safe and use the sequentially consistent default):
#include <stdio.h>
#include <pthread.h>
#include <sys/syscall.h>
#include <unistd.h>
#include <stdatomic.h>
void *thr(void*A)
{
_Atomic pid_t *tidp = A;
pid_t tid;
tid = syscall(SYS_gettid);
atomic_store_explicit(tidp, tid, memory_order_relaxed);
printf("my tid=%lu\n", (long unsigned)tid);
return 0;
}
int main()
{
_Atomic pid_t tid=-1;
pthread_t ptid;
pthread_create(&ptid,0,thr,&tid);
while(-1==atomic_load_explicit(&tid,memory_order_relaxed)) ;
printf("their tid=%lu\n", (long unsigned)tid);
pthread_join(ptid,0);
}
Related
#include <iostream>
#include<thread>
#include <initializer_list>
#include <vector>
#include <future>
#include <time.h>
using namespace std;
class Gadget{
public:
Gadget(){
flag_ = false;
cout<<"Creating new Gadgets"<<endl;
}
void wait(){
while(flag_==false){
cout<<"waiting here...."<<endl;
this_thread::sleep_for(chrono::milliseconds(1000));
}
}
void wake(){
flag_ = true;
}
private:
volatile bool flag_;
};
I am trying to make two threads and one thread will sleep for 1 sec after checking the flag value. As i have made flag volatile it should change at some point. But the program is waiting infinitely.
int main() {
Gadget g;
thread t(&Gadget::wait,g);
thread s(&Gadget::wake,g);
t.join();
s.join();
cout<<"Ending the program "<<endl;
return 0;
}
volatile isn't for variables that are changed by the program itself. It's for variables that changes outside the program's control - like if it's directly connected to hardware.
Your main problem is however that you pass g by value so the two threads are working on different copies of your original g.
So, change to
std::atomic<bool> flag_;
and
thread t(&Gadget::wait, &g);
thread s(&Gadget::wake, &g);
Also worth mentioning: The two methods will not necessarily run in the order you start them, so waiting here.... may or may not show up.
Edit:
As mentioned in the comments: When waiting for a condition you should usually use a std::condition_variable. I've made an example of how that could look. I've also moved the starting of the threads into Gadget which makes it more obvious which object the thread is working on.
#include <chrono>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>
#include <vector>
class Gadget {
public:
Gadget() { std::cout << "Creating new Gadget\n"; }
// new interface for starting threads
std::thread start_wait() { return std::thread(&Gadget::wait, this); }
std::thread start_wake() { return std::thread(&Gadget::wake, this); }
private:
void wait() {
std::unique_lock<std::mutex> ul(mutex_);
std::cout << "wait: waiting here...\n";
// Read about "spurious wakeup" to understand the below:
while(not flag_) cond_.wait(ul);
// or:
// cond_.wait(ul, [this] { return flag_; });
std::cout << "wait: done\n";
}
void wake() {
// simulate some work being done for awhile
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
{ // lock context start
std::lock_guard<std::mutex> lg(mutex_);
flag_ = true;
std::cout << "wake: notifying the waiting threads\n";
} // lock context end
// notify all waiting threads
cond_.notify_all();
}
std::condition_variable cond_;
std::mutex mutex_;
bool flag_ = false; // now guarded by a mutex instead
};
int main() {
Gadget g;
// start some waiting threads
std::vector<std::thread> threads(16);
for(auto& th : threads) th = g.start_wait();
// and one that wakes them up
auto th_wake = g.start_wake();
for(auto& th : threads) th.join();
th_wake.join();
std::cout << "Ending the program\n";
}
I have a simple program below where some long running process someFn works, sets a state, works sets a state, works and sets a state.
While someFn is running, I want the main thread to query the state it's setting for the lifetime of someFn.
Obviously this code is incorrect because T is joinable until it actually joins and this program does not halt.
How do I correctly get the main thread to loop for the lifetime of T and stop looping as soon as T has terminated?
#include <iostream>
#include <thread>
#include <chrono>
int STATE = 0;
static std::mutex mtx;
void setState(int newState) {
std::lock_guard<std::mutex> lg(mtx);
STATE = newState;
}
int getState() {
std::lock_guard<std::mutex> lg(mtx);
return STATE;
}
void someFn() {
std::this_thread::sleep_for(std::chrono::seconds(1));
setState(0);
std::this_thread::sleep_for(std::chrono::seconds(1));
setState(1);
std::this_thread::sleep_for(std::chrono::seconds(1));
setState(2);
}
int main()
{
std::thread T(someFn);
while (T.joinable()) {
std::this_thread::sleep_for(std::chrono::milliseconds(500));
std::cout << getState() << std::endl;
}
T.join();
return 0;
}
Thanks!
Just with std::thread you can't.
But you can easily craft your own signal. For example:
#include <atomic>
#include <chrono>
#include <iostream>
#include <mutex>
#include <thread>
int STATE = 0;
static std::mutex mtx;
void setState(int newState) {
std::lock_guard<std::mutex> lg(mtx);
STATE = newState;
}
int getState() {
std::lock_guard<std::mutex> lg(mtx);
return STATE;
}
void someFn(std::atomic<bool>& isDone) {
std::this_thread::sleep_for(std::chrono::seconds(1));
setState(0);
std::this_thread::sleep_for(std::chrono::seconds(1));
setState(1);
std::this_thread::sleep_for(std::chrono::seconds(1));
setState(2);
isDone.store(true);
}
int main() {
std::atomic<bool> isDone{false};
std::thread T(someFn, std::ref(isDone));
while(!isDone.load()) {
std::this_thread::sleep_for(std::chrono::milliseconds(500));
std::cout << getState() << std::endl;
}
T.join();
return 0;
}
You don't need a mutex or other synchronization for std::atomic because it is already thread safe.
I've implemented thread pooling following the answer of Kerrek SB in this question.
I've implemented MPMC queue for the functions and vector threads for the threads.
Everything worked perfectly, except that I don't know how to terminate the program, in the end if I just do thread.join since the thread is still waiting for more tasks to do, it will not join and the main thread will not continue.
Any idea how to end the program correctly?
For completeness, this is my code:
function_pool.h
#pragma once
#include <queue>
#include <functional>
#include <mutex>
#include <condition_variable>
class Function_pool
{
private:
std::queue<std::function<void()>> m_function_queue;
std::mutex m_lock;
std::condition_variable m_data_condition;
public:
Function_pool();
~Function_pool();
void push(std::function<void()> func);
std::function<void()> pop();
};
function_pool.cpp
#include "function_pool.h"
Function_pool::Function_pool() : m_function_queue(), m_lock(), m_data_condition()
{
}
Function_pool::~Function_pool()
{
}
void Function_pool::push(std::function<void()> func)
{
std::unique_lock<std::mutex> lock(m_lock);
m_function_queue.push(func);
// when we send the notification immediately, the consumer will try to
get the lock , so unlock asap
lock.unlock();
m_data_condition.notify_one();
}
std::function<void()> Function_pool::pop()
{
std::unique_lock<std::mutex> lock(m_lock);
m_data_condition.wait(lock, [this]() {return !m_function_queue.empty();
});
auto func = m_function_queue.front();
m_function_queue.pop();
return func;
// Lock will be released
}
main.cpp
#include "function_pool.h"
#include <string>
#include <iostream>
#include <mutex>
#include <functional>
#include <thread>
#include <vector>
Function_pool func_pool;
void example_function()
{
std::cout << "bla" << std::endl;
}
void infinite_loop_func()
{
while (true)
{
std::function<void()> func = func_pool.pop();
func();
}
}
int main()
{
std::cout << "stating operation" << std::endl;
int num_threads = std::thread::hardware_concurrency();
std::cout << "number of threads = " << num_threads << std::endl;
std::vector<std::thread> thread_pool;
for (int i = 0; i < num_threads; i++)
{
thread_pool.push_back(std::thread(infinite_loop_func));
}
//here we should send our functions
func_pool.push(example_function);
for (int i = 0; i < thread_pool.size(); i++)
{
thread_pool.at(i).join();
}
int i;
std::cin >> i;
}
Your problem is located in infinite_loop_func, which is an infinite loop and by result doesn't terminate. I've read the previous answer which suggests throwing an exception, however, I don't like it since exceptions should not be used for the regular control flow.
The best way to solve this is to explicitly deal with the stop condition. For example:
std::atomic<bool> acceptsFunctions;
Adding this to the function pool allows you to clearly have state and to assert that no new functions being added when you destruct.
std::optional<std::function<void()>> Function_pool::pop()
Returning an empty optional (or function in C++14 and before), allows you to deal with an empty queue. You have to, as condition_variable can do spurious wakeups.
With this, m_data_condition.notify_all() can be used to wake all threads.
Finally we have to fix the infinite loop as it doesn't cover overcommitment and at the same time allows you to execute all functions still in the queue:
while (func_pool.acceptsFunctions || func_pool.containsFunctions())
{
auto f = func_pool.pop();
If (!f)
{
func_pool.m_data_condition.wait_for(1s);
continue;
}
auto &function = *f;
function ();
}
I'll leave it up to you to implement containsFunctions() and clean up the code (infinite_loop_func as member function?) Note that with a counter, you could even deal with background task being spawned.
You can always use a specific exception type to signal to infinite_loop_func that it should return...
class quit_worker_exception: public std::exception {};
Then change infinite_loop_func to...
void infinite_loop_func ()
{
while (true) {
std::function<void()> func = func_pool.pop();
try {
func();
}
catch (quit_worker_exception &ex) {
return;
}
}
}
With the above changes you could then use (in main)...
/*
* Enqueue `thread_pool.size()' function objects whose sole job is
* to throw an instance of `quit_worker_exception' when invoked.
*/
for (int i = 0; i < thread_pool.size(); i++)
func_pool.push([](){ throw quit_worker_exception(); });
/*
* Now just wait for each worker to terminate having received its
* quit_worker_exception.
*/
for (int i = 0; i < thread_pool.size(); i++)
thread_pool.at(i).join();
Each instance of infinite_loop_func will dequeue one function object which, when called, throws a quit_worker_exception causing it to return.
Follwoing [JVApen](https://stackoverflow.com/posts/51382714/revisions) suggestion, I copy my code in case anyone will want a working code:
function_pool.h
#pragma once
#include <queue>
#include <functional>
#include <mutex>
#include <condition_variable>
#include <atomic>
#include <cassert>
class Function_pool
{
private:
std::queue<std::function<void()>> m_function_queue;
std::mutex m_lock;
std::condition_variable m_data_condition;
std::atomic<bool> m_accept_functions;
public:
Function_pool();
~Function_pool();
void push(std::function<void()> func);
void done();
void infinite_loop_func();
};
function_pool.cpp
#include "function_pool.h"
Function_pool::Function_pool() : m_function_queue(), m_lock(), m_data_condition(), m_accept_functions(true)
{
}
Function_pool::~Function_pool()
{
}
void Function_pool::push(std::function<void()> func)
{
std::unique_lock<std::mutex> lock(m_lock);
m_function_queue.push(func);
// when we send the notification immediately, the consumer will try to get the lock , so unlock asap
lock.unlock();
m_data_condition.notify_one();
}
void Function_pool::done()
{
std::unique_lock<std::mutex> lock(m_lock);
m_accept_functions = false;
lock.unlock();
// when we send the notification immediately, the consumer will try to get the lock , so unlock asap
m_data_condition.notify_all();
//notify all waiting threads.
}
void Function_pool::infinite_loop_func()
{
std::function<void()> func;
while (true)
{
{
std::unique_lock<std::mutex> lock(m_lock);
m_data_condition.wait(lock, [this]() {return !m_function_queue.empty() || !m_accept_functions; });
if (!m_accept_functions && m_function_queue.empty())
{
//lock will be release automatically.
//finish the thread loop and let it join in the main thread.
return;
}
func = m_function_queue.front();
m_function_queue.pop();
//release the lock
}
func();
}
}
main.cpp
#include "function_pool.h"
#include <string>
#include <iostream>
#include <mutex>
#include <functional>
#include <thread>
#include <vector>
Function_pool func_pool;
class quit_worker_exception : public std::exception {};
void example_function()
{
std::cout << "bla" << std::endl;
}
int main()
{
std::cout << "stating operation" << std::endl;
int num_threads = std::thread::hardware_concurrency();
std::cout << "number of threads = " << num_threads << std::endl;
std::vector<std::thread> thread_pool;
for (int i = 0; i < num_threads; i++)
{
thread_pool.push_back(std::thread(&Function_pool::infinite_loop_func, &func_pool));
}
//here we should send our functions
for (int i = 0; i < 50; i++)
{
func_pool.push(example_function);
}
func_pool.done();
for (unsigned int i = 0; i < thread_pool.size(); i++)
{
thread_pool.at(i).join();
}
}
pthreads has undefined behavior if multiple threads try to join the same thread:
If multiple threads simultaneously try to join with the same thread,
the results are undefined.
Is the same true for boost::threads? The documentation does not appears to specify this.
If it is undefined, then what would be a clean way for multiple threads to wait on one thread completing?
If it is undefined, then what would be a clean way for multiple threads to wait on one thread completing?
The clean way would be for that one thread to inform the others that it is complete. A packaged_task contains a future which can be waited on, which can help us here.
Here's one way of doing that. I have used std::thread and std::packaged_task, but you could use the boost equivalents just as well.
#include <thread>
#include <mutex>
#include <future>
#include <vector>
#include <iostream>
void emit(const char* msg) {
static std::mutex m;
std::lock_guard<std::mutex> l(m);
std::cout << msg << std::endl;
std::cout.flush();
}
int main()
{
using namespace std;
auto one_task = std::packaged_task<void()>([]{
emit("waiting...");
std::this_thread::sleep_for(std::chrono::microseconds(500));
emit("wait over!");
});
// note: convert future to a shared_future so we can pass it
// to two subordinate threads simultaneously
auto one_done = std::shared_future<void>(one_task.get_future());
auto one = std::thread(std::move(one_task));
std::vector<std::thread> many;
many.emplace_back([one_done] {
one_done.wait();
// do my thing here
emit("starting thread 1");
});
many.emplace_back([one_done] {
one_done.wait();
// do my thing here
emit("starting thread 2");
});
one.join();
for (auto& t : many) {
t.join();
}
cout << "Hello, World" << endl;
return 0;
}
expected output:
waiting...
wait over!
starting thread 2
starting thread 1
Hello, World
I ended up using a boost::condition_variable... roughly:
class thread_wrapper {
boost::mutex mutex;
boost::condition_variable thread_done_condition;
bool thread_done = false;
void the_func() {
// ...
// end of the thread
{
boost:unique_lock<boost::mutex> lock(mutex);
thread_done = true;
}
thread_done_condition.notify_all();
}
void wait_until_done() {
boost::unique_lock<boost::mutex> lock(mutex);
thread_done_condition.wait(lock, [this]{ return thread_done; });
}
}
Then multiple callers can safely call wait_until_done().
It strikes me now that something like the following would also have worked:
class thread_wrapper {
public:
thread_wrapper() : thread([this]() { this->the_func(); }) { }
void wait_until_done() {
boost::unique_lock<boost::mutex> lock(join_mutex);
thread.join();
}
private:
void the_func() {
// ...
}
boost::mutex join_mutex;
boost::thread thread;
}
I am using VS2012 and I want to set thread priority from within a running thread. The goal is to initialize all threads with the highest priority state. To do this I want to get a HANDLE to the thread.
I am having some trouble accessing the pointer that corresponds to the thread object.
Is this possible?
From the calling main thread, the pointer is valid and from the C++11 thread it is set to CCCCCCCC. Predictably dereferencing some nonsense memory location causes a crash.
The code below is a simplified version showing the problem.
#include "stdafx.h"
#include <Windows.h>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <iostream>
#include <atomic>
using namespace std;
class threadContainer
{
thread* mT;
condition_variable* con;
void lockMe()
{
mutex m;
unique_lock<std::mutex> lock(m);
con->wait(lock);//waits for host thread
cout << mT << endl;//CCCCCCCC
auto h = mT->native_handle();//causes a crash
con->wait(lock);//locks forever
}
public:
void run()
{
con = new condition_variable();
mT = new thread(&threadContainer::lockMe,*this);
cout << mT << endl; //00326420
con->notify_one();// Without this line everything locks as expected
mT->join();
}
};
int _tmain(int argc, _TCHAR* argv[])
{
threadContainer mContainer;
mContainer.run();
return 0;
}
#include <mutex>
#include <condition_variable>
#include <iostream>
#include <atomic>
#include <thread>
class threadContainer {
std::thread* mT;
std::mutex m;
void lockMe() {
// wait for mT to be assigned:
{
std::unique_lock<std::mutex> lock(m);
}
std::cout << "lockMe():" << mT << "\n";
auto h = mT->native_handle();//causes a crash
std::cout << "Done lockMe!\n";
}
public:
void run() {
// release lock only after mT assigned:
{
std::unique_lock<std::mutex> lock(m);
mT = new std::thread( [&](){ this->lockMe(); } );
}
std::cout << "run():" << mT << "\n"; //00326420
mT->join();
}
};
int main() {
threadContainer mContainer;
mContainer.run();
return 0;
}
Try that.
0xcccccccc means "variable not initialized". You have a threading race bug in your code. The thread starts running before the "mT" variable is assigned. You will need additional synchronization to block the thread until the assignment is completed so you can safely use mT. This will then also ensure that the new thread can see the updated value of mT, a memory barrier is required on a multi-core machine.
This is an example code with condition_variable and mutex.
class threadContainer
{
std::thread* mT;
std::mutex m;
std::condition_variable cv;
bool flag;
void lockMe() {
// 1. you must acquire lock of mutex.
unique_lock<std::mutex> lk(m);
// 2. and wait on `cv` for `flag==true`
cv.wait(lk, [&]{ return flag; });
cout << mT << endl;
auto h = mT->native_handle();
}
public:
void run()
{
flag = false;
mT = new std::thread( [&](){ this->lockMe(); } );
{
// 3. set `flag` and signal `cv`
lock_guard<decltype(m)> lk(m);
cout << mT << endl;
flag = true;
cv.notify_one();
}
mT->join();
}
};
If what you really want to do is "initialize all threads with the highest priority state", how about this simplified code?
Anyway, changing thread priority is platform dependent and out of C++ Standard library.
class threadContainer
{
std::thread thd;
void work() {
// (1) change thread priority itself
::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST);
// do something...
}
public:
void run()
{
thd = std::thread( [&](){ this->work(); } );
// (2) or change thread priority from outside
::SetThreadPriority(thd.native_handle(), THREAD_PRIORITY_HIGHEST);
thd.join();
}
};