Overloading operator << , os gets a string - c++

so I have problem with my code, I want to overload operator <<, all the functions are in abstract class Employee so
friend std::ostream &operator<<(std::ostream &os, const Employee &employee) {
os<<employee.print();
return os;
}
That's a function print:
virtual const std::string& print() const {
return "description: "+this->description+ " id: "+ std::to_string(this->getID()); }
Description and ID just a variables in class Employee
And it just doesn't work and I get exception E0317, I understand it like what print returns it's not a string.
Also, if I change return type to
std::basic_string<char, std::char_traits<char>, std::allocator<char>>
it magically works, but I don't understand why I can't use standard string.

const std::string& print() const
This returns a reference to a temporary string, which goes out of scope as soon as it's created and the reference you use outside the function is therefore invalid.
To make it work in the situation you currently use the function, you need to change it to:
const std::string print() const
An even better solution would be to also drop const on the return value since making changes to the returned std::string can not affect the Employee object. There's no reason to try to restrict future users of the print() function if they want to std::move the returned string or make changes to it in other ways.
So, this would be a better signature:
std::string print() const
As formerlyknownas_463035818 implied in a comment, this function doesn't really have anything to do with printing. It returns a string representation of the object so to_string would indeed be a more appropriate name.

Related

Can I delete function for an rvalue version of object?

For legacy reasons, there's a lot of usage of const char* in the code I'm working on. I am trying to limit that, and stumbled on something I'd like to know. I have something like:
class AClass {
public:
const char* getValue() { return _value.c_str(); }
private:
std::string _value;
}
But this class now may be returned by copy, eg. by function:
AClass getAClass();
We also might wanna pass that to something like this:
void functionFromOtherLibrary(const char* value);
Now thinking about that, this might cause an error:
functionFromOtherLibrary(getAClass().getValue());
since the intermediate is eligible to be destroyed at that point. Even if the above goes OK, because it's one statement, this probably won't:
const char* str = getAClass().getValue();
functionFromOtherLibrary(str);
So I was thinking of writing something like:
class AClass {
public:
const char* getValue() { return _value.c_str(); }
const char* getValue() && = delete;
}
to forbid calls for that method on rvalues. Just trying that gave me:
error C2560: cannot overload a member function with ref-qualifier with a member function without ref-qualifier
I'm not sure if this:
is valid construct and
is ever necessary. I've seen a lot of code that returns const char*s and it always seems to rely on the fact that the object returning the value will still exist and hold the source std::string.
I would really appreciate a more detailed explanation what happens when code uses std::strings to hold strings but only communicates with C strings.
And if you want to suggest removing C strings - that's what I'm trying to do right now. I still want an answer though.
You can't overload a function with a ref-qualifier with a function without a ref-qualifier. The MSVC error text is nice and clear on this point.
But you can just add the ref-qualifier to the other one:
class AClass {
public:
const char* getValue() & { return _value.c_str(); }
const char* getValue() && = delete;
};
Whether this is the right design or not is a separate question - but if you decide that it is, this is how you would do it.

Return value in a get function

This is a question to understand the correct way to implement a get function in the below scenario.
I got the below class:
class A
{
string m_sName;
public:
A(): m_sName ("this") {}
const string& getName() const
{
return m_sName;
}
};
The problem with the above implementation of the get function is, it allows the client to modify the data member. That's:
int main ()
{
A a;
const string& data_mem = a.getName();
string& s = const_cast<string&> (data_mem);
s += " Pointer";
cout << a.getName().c_str () << endl;
return 0;
}
The output would be: this Pointer
I know we can use reference parameter for get function or simply return string. But both will create new object.
Is there a better way to do this? Or prohibit const_cast (on a user defined class)?
C++ gives you the ability to shoot yourself in the foot.
Programmers should use const_cast with extreme caution: being aware that the behaviour on using it to cast away the const on an object that was initially declared as const is undefined.
Code analysis tools could help you.
You could avoid the problem completely by simply returning by value
string getName() const
Add another version of getName() that isn't marked as a const method and returns a non-const string&:
string& getName() { return m_sName; }
That will return a reference to the string in the instance of A, and won't create a copy. It will however amend the string in the class.
I should point out this is the wrong way to do things in OO terms, both in terms of encapsulation and data hiding. Your class's abstraction for how the name is stored is leaking to the outside world. The correct approach would be to add an UpdateName or AppendToName method.

Best practices on making c++ class "Showable" (string, ostream)

I have a value-semantic class that I'd like to be "showable" in the same sense as Haskells Show class, or Python provides a universal __str__() function.
In c++:
I could overload operator<<(ostream&, ...) so I can output my class to e.g. cout
I could overload operator std::string() so my class converts to std::string
I could overload operator const char*() so my class converts to const char *.
I could write a str() member, or a to_string(...) free function
Each of these functions could be defined in terms of the other. Is one option better over the others? Are these all the options? What would the most elegant way be to do this given c++11/14/17?
The question is going to be put in hold in a very few minutes, but I will still share my thoughts here.
First, of all, we can remove const char* / std::string() operator overloads from the list. If the class is not a string, it should not be convertible to string, and serialization enablement does not make your class a string.
As for str(), to_string and operator << they a pretty equivalent. However, since for any complex class to_string() and str() are very likely to use ostreams internally, I believe, operator << is the best option.
I don't know whether it's best practice or not but...
for debugging I always define operator<< which gives a summarised output in text form (this means it's easy to stream objects to log files)
for formatted output I would probably choose to implement this in terms of free functions: detail::x_detail_writer write_details(const X&) and then give detail::x_detail_writer (which is a functor) an operator<< overload
for anything but the most trivial object I implement to_string in terms of operator<< if at all.
for aiding with debugging output we have a helper class which goes something like this:
template<class T>
struct make_writeable {
friend std::ostream& operator<<(std::ostream& os, const T& t) {
// example prefix...
os << demangle(typeid(T).name()) << "{";
t.write(os);
// example postfix:
os << " }";
return os;
}
};
then derive some class from this and give it a member function called write:
struct X : make_writeable<X>
{
void write(std::ostream& os) const {
// write out members here. they will appear within the prefix and postfix
}
};

overloading operator .

Ok, I know that operator. is not overloadable but I need something like that.
I have a class MyClass that indirectly embeds (has a) a std::string and need to behave exactly like a std::string but unfortunately cannot extend std::string.
Any idea how to achieve that ?
Edit: I want that the lines below to compile fine
MyClass strHello1("Hello word");
std::string strValue = strHello1;
const char* charValue = strHello1.c_str();
As per your later edit, that:
MyClass strHello1("Hello word");
std::string strValue = strHello1;
const charValue = strHello1.c_str();
should compile fine, the only solution is to write a wrapper over std::string:
class MyClass
{
private:
std::string _str;
public:
MyClass(const char*);
//... all other constructors of string
operator std::string& ();
//... all other operators of string
const char* c_str();
//... all other methods of string
friend std::string& operator + ( std::string str, Foo f);
};
//+ operator, you can add 2 strings
std::string& operator + ( std::string str, Foo f);
This however is tedious work and must be tested thoroughly. Best of luck!
You can overload the conversion operator to implicitly convert it to a std::string:
class MyClass
{
std::string m_string;
public:
operator std::string& ()
{
return m_string;
}
};
If you're not interested in polymorphic deletion of a string*, you can derived from std::string, just getting the behavior of your class behaving "as-a" std::string. No more, no less.
The "you cannot derived from classes that don't have a virtual destructor" litany (if that's the reason you say you cannot extend it) it like the "dont use goto", "dont'use do-while" "don't multiple return" "don't use this or that feature".
All good recommendation from and for people that don't know what they are doing.
std::string doesn't have a virtual destructor so don't assign new yourcalss to a std::string*. That's it.
Just make your class not having a virtual destructor itself and leave in peace.
Embedding a string and rewriting all its interface just to avoid inheritance is simply stupid.
Like it is stupid writing dozens of nested if to avoid a multiple return, just as its stupid introduce dozens of state flags to avoid a goto or a break.
There are cases where the commonly considered weird things must be used. That's why those things exist.
You can extend an interface without publically deriving from it. This prevents the case of problematic polymorphic destruction (aka no virtual destructor):
#include <iostream>
#include <string>
using namespace std;
class MyClass
: private std::string
{
public:
MyClass(const char* in)
: std::string(in)
{}
// expose any parts of the interface you need
// as publically accessible
using std::string::c_str;
using std::string::operator+=;
};
int main()
{
MyClass c("Hello World");
cout << c.c_str() << "\n";
c += "!";
cout << c.c_str() << "\n";
// Using private inheritance prevents casting, so
// it's not possible (easily, that is) to get a
// base class pointer
// MyClass* c2 = new MyClass("Doesn't work");
// this next line will give a compile error
// std::string* pstr = static_cast<MyClass*>(c2);
// delete c2;
}
Trying to sum-up all the discussions, it looks like you will never find a suitable dolution because ... your requirements are in cotraddiction.
You want you class to behave as ats::string
std::string behave as a value but
a value does not "change" when accessed but (think to c = a+b: do you expect a and b to change their value ??) ...
when accessing your "value" you want to change it.
If what I summed up collecting all the peaces (suggestion: edit your question otherwise all the answerer will risk to be lost) is correct you are in trouble with 3 & 4 (note the 3. derives from the concept of "assignment", and you can do noting to change it, while 4. comes from you directly)
Now, I can try to reverse-engineer your psychology (because you didn't provide good information about what your class represent and why you cannot "extend" a string) I can find
two possibility neither of which will fit all the above requirements.
Store a string into your class and make your class to behave as a std::string. There are threee ways to come to this point:
a. embed a string and make your class to decay to it:
essentially your class must contain
.
operator std::string&() { return my_string; } //will allow l-value assignments
operator const std::string&() const { return my_string; } //will allow r-value usage
const char* c_str() const { return my_string.c_str(); }
b. derive from std::string. In fact that's like having an anonymous my_string in it, which "decay" operations implicit. Not that different as above.
c. embed or privately derive, and rewrite the std::string interface delegating the std::string functions. It's just a long typing to get exactly the b. result. so what the f..k? (this last question is dedicated to all the ones that believe a. or b. will break encapsulation. c. will break it as well, it will only take longer!)
Don't store a string, but just get it as a result from a calculation (the "lookup" you talk about, not clarifying what it is).
In this last case, what you need is a class that decay automatically into std::string as a value.
So you need, in your class
operator std::string() const { return your_lookup_here; }
note that const is necessary, but there is no need to modify your class inner state, since the resulting string is not stored.
But this last solution has a problem with const char*: since the string is temporary, until you don't assign it, its buffer is temporary as well (will be destroyed) so decaying into const char* to assign the pointer is clueless (the pointer will point to a dead buffer).
You can have a
const char* c_str() const { return std::string(*this).c_str(); } //will call the previous one
but you can use this only into expressions or a pass-through parameter in function calls (since the temporary will exist until the evaluating expression is fully evaluated), not in an assignment towards an l-value (like const char* p; p = myclassinstace.c_str(); )
In all of the above cases (all 1.) you also need:
myclass() {}
myclass(const std::string& s) :my_string(s) { ... }
myclass(const char* s) :my_string(s) { ... }
or - in C++11, just
template<class ...Args>
myclass(Args&&... args) :my_string(std::forward<Args...>(args...)) {}
In case 2., instead of initialize the not existent my_sting, you should use the arguments to set what you will look up (we don't know what it is, since you did not tell us)
Hope in all these option you can find something useful.
You can add an operator const reference to string, as follows:
class C
{
public:
// Implicit conversion to const reference to string (not advised)
operator const std::string &() const
{
return s_;
}
// Explicit conversion to a const reference to string (much better)
const std::string &AsString() const
{
return s_;
}
private:
std::string s_;
};
As you can see from the comments, it would be much better to add an explicit conversion function if you really need this behavior. You can read about why this is bad in the Programming in C++ Rules and Recommendations article.

C++ Singleton class returning const reference

I have an a class which is singleton as defined follows
class myData {
private:
myData (void); // singleton class.
// Copy and assignment is prohibted.
myData (const myData &);
myData & operator=(const myData &);
static myData* s_pInstance;
public:
~myData (void);
static const myData & Instance();
static void Terminate();
void myFunc() { cout << "my function..." ;}
};
// In cpp file.
myData* myData::s_pInstance(NULL);
myData::myData(){}
myData::~myData()
{
s_pInstance = NULL;
}
const myData& myData::Instance()
{
if (s_pInstance == NULL)
{
s_pInstance = new myData();
}
return *(s_pInstance); // want to avoid pointer as user may deallocate it, so i used const referense
}
void main() {
(myData::Instance()).myFunc();
}
I am getting following error
error C2662: 'myData::myFunc' : cannot convert 'this' pointer from 'const myData' to 'myData&'
how to avoid above problem and call a function from Instance function which is returning const reference?
Thanks!
You'd want to declare func() as a constant member function, so the compiler knows it won't violate the const'd return value from the instance() function.
You could instead also make the instance() function return a 'regular' reference as apposed to a const one.
So either turn:
void myFunc() into void myFunc() const
Or turn:
const myData& myData::Instance() into myData& myData::Instance()
If you are calling a function on a const reference, the function you call must also be const, in your case void myFunc() const.
Otherwise you might return a non-const reference, if that works better.
The error says that myData::Instance() is a const instance of the class, and it can't call myFunc() on that, because myFunc() might change the instance, and you can't change a const instance.
Of course, you know that myFunc() can't really change the instance, but you must advertise this fact, as follows:
void myFunc() const { cout << "my function..." ;}
Avoiding the whole discussion of whether Singleton is a good to have pattern or the source of all evil, if you are actually implementing a singleton, chances are that const correctness will not work there as you expect it, so you should be aware of some pitfalls.
First your error: your Instance() static member returns a const reference, and that means that you can only perform operations that do not modify the object, i.e. call member functions marked as const, or use public members if present in a way that do not modify their values. My suggested solution is modify Instance() to return a non-const reference, rather than making func() const as others suggest.
Now for a longer explanation to the problem of const-correctness in general when applied to your particular Singleton problem. The basic problem is that when you implement a type, you divide those members that modify the object from those that don't, and you mark the latter as const member functions so that the compiler knows of your promise (allows you to call that method on a constant object) and helps you not break it (complains if you try to modify the state in the definition of the method). A method that is marked as const can be applied to both a constant and non constant object, but a method that is not marked const can only be applied to an object that is not const.
Back to the original piece of code, if you implement a singleton and the only way of accessing the object is by an Instance() method that returns a const reference, you are basically limiting all user code to use only const methods implemented in your interface. That means that effectively either all methods are non-mutating, or they are useless (const_cast should never be used). That in turn means that if you have any non-const operation you want to provide an Instance() method that returns a non-const reference.
You could consider implementing two variants of Instance(), but that will not be really helpful. Overload resolution will not help in user code to determine which version to use, so you will end up having to different methods: Instance(), ConstInstance() (choose your names), which means that it is up to user code to determine which one to use. The small advantage is that in their code, the choice of accessor will help documenting their intended usage, and maybe even catch some errors, but more often than not they will just call the non-const version because it works.