Scaling png font down - c++

Is there a way to scale down with highest quality a font which is png image in opengl at startup? I tried gluScaleImage but there are many artefacts. Is there anything that uses lanczos or something like that? I don't want to write a shader or anything that does the scaling runtime.

This is based on an algorithm, I copied decades ago from the German c't Magazin, and still use it from time to time for similar issues like described by OP.
bool scaleDown(
const Image &imgSrc,
Image &imgDst,
int w, int h,
int align)
{
const int wSrc = imgSrc.w(), hSrc = imgSrc.h();
assert(w > 0 && w <= wSrc && h > 0 && h <= hSrc);
// compute scaling factors
const double sx = (double)wSrc / (double)w;
const double sy = (double)hSrc / (double)h;
const double sxy = sx * sy;
// prepare destination image
imgDst.resize(w, h, (w * 3 + align - 1) / align * align);
// cache some data
const uint8 *const dataSrc = imgSrc.data();
const int bPRSrc = imgSrc.bPR();
// perform scaling
for (int y = 0; y < h; ++y) {
const double yStart = sy * y;
const double yEnd = std::min(sy * (y + 1), (double)hSrc);
const int yStartInt = (int)yStart;
const int yEndInt = (int)yEnd - (yEndInt == yEnd);
const double tFrm = 1 + yStartInt - yStart, bFrm = yEnd - yEndInt;
for (int x = 0; x < w; ++x) {
const double xStart = sx * x;
const double xEnd = std::min(sx * (x + 1), (double)wSrc);
const int xStartInt = (int)xStart;
const int xEndInt = (int)xEnd - (xEndInt == xEnd);
double lFrm = 1 + xStartInt - xStart, rFrm = xEnd - xEndInt;
double pixel[3] = { 0.0, 0.0, 0.0 }; // values of target pixel
for (int i = yStartInt; i <= yEndInt; ++i) {
int jData = i * bPRSrc + xStartInt * 3;
for (int j = xStartInt; j <= xEndInt; ++j) {
double pixelAdd[3];
for (int k = 0; k < 3; ++k) {
pixelAdd[k] = (double)dataSrc[jData++] / sxy;
}
if (j == xStartInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= lFrm;
} else if (j == xEndInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= rFrm;
}
if (i == yStartInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= tFrm;
} else if (i == yEndInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= bFrm;
}
for (int k = 0; k < 3; ++k) pixel[k] += pixelAdd[k];
}
}
imgDst.setPixel(x, y,
(uint8)pixel[0], (uint8)pixel[1], (uint8)pixel[2]);
}
}
// done
return true;
}
If I got it right, this implements a bilinear interpolation.
I don't dare to call it a Minimal Complete Verifiable Example although this is what I intended to do.
The complete sample application:
A simplified class Image
image.h:
#ifndef IMAGE_H
#define IMAGE_H
#include <vector>
// convenience type for bytes
typedef unsigned char uint8;
// image helper class
class Image {
private: // variables:
int _w, _h; // image size
size_t _bPR; // bytes per row
std::vector<uint8> _data; // image data
public: // methods:
// constructor.
Image(): _w(0), _h(0), _bPR(0) { }
// destructor.
~Image() = default;
// copy constructor.
Image(const Image&) = delete; // = default; would work as well.
// copy assignment.
Image& operator=(const Image&) = delete; // = default; would work as well.
// returns width of image.
int w() const { return _w; }
// returns height of image.
int h() const { return _h; }
// returns bytes per row.
size_t bPR() const { return _bPR; }
// returns pointer to image data.
const uint8* data(
int y = 0) // row number
const {
return &_data[y * _bPR];
}
// returns data size (in bytes).
size_t size() const { return _data.size(); }
// clears image.
void clear();
// resizes image.
uint8* resize( // returns allocated buffer
int w, // image width
int h, // image height
int bPR); // bytes per row
// returns pixel.
int getPixel(
int x, // column
int y) // row
const;
// sets pixel.
void setPixel(
int x, // column
int y, // row
uint8 r, uint8 g, uint8 b);
// sets pixel.
void setPixel(
int x, // column
int y, // row
int value) // RGB value
{
setPixel(x, y, value & 0xff, value >> 8 & 0xff, value >> 16 & 0xff);
}
};
// helper functions:
inline uint8 getR(int value) { return value & 0xff; }
inline uint8 getG(int value) { return value >> 8 & 0xff; }
inline uint8 getB(int value) { return value >> 16 & 0xff; }
#endif // IMAGE_H
image.cc:
#include <cassert>
#include "image.h"
// clears image.
void Image::clear()
{
_data.clear(); _w = _h = _bPR = 0;
}
// allocates image data.
uint8* Image::resize( // returns allocated buffer
int w, // image width
int h, // image height
int bPR) // bits per row
{
assert(w >= 0 && 3 * w <= bPR);
assert(h >= 0);
_w = w; _h = h; _bPR = bPR;
const size_t size = h * bPR;
_data.resize(size);
return _data.data();
}
// returns pixel.
int Image::getPixel(
int x, // column
int y) // row
const {
assert(x >= 0 && x < _w);
assert(y >= 0 && y < _h);
const size_t offs = y * _bPR + 3 * x;
return _data[offs + 0]
| _data[offs + 1] << 8
| _data[offs + 2] << 16;
}
// sets pixel.
void Image::setPixel(
int x, // column
int y, // row
uint8 r, uint8 g, uint8 b) // R, G, B values
{
assert(x >= 0 && x < _w);
assert(y >= 0 && y < _h);
const size_t offs = y * _bPR + 3 * x;
_data[offs + 0] = r;
_data[offs + 1] = g;
_data[offs + 2] = b;
}
Image Scaling
imageScale.h:
#ifndef IMAGE_SCALE_H
#define IMAGE_SCALE_H
#include "image.h"
/* scales an image to a certain width and height.
*
* Note:
* imgSrc and imgDst may not be identical.
*/
bool scaleTo( // returns true if successful
const Image &imgSrc, // source image
Image &imgDst, // destination image
int w, int h, // destination width and height
int align = 4); // row alignment
/* scales an image about a certain horizontal/vertical scaling factor.
*
* Note:
* imgSrc and imgDst may not be identical.
*/
inline bool scaleXY( // returns true if successful
const Image &imgSrc, // source image
Image &imgDst, // destination image
double sX, // horizontal scaling factor (must be > 0 but not too large)
double sY, // vertical scaling factor (must be > 0 but not too large)
int align = 4) // row alignment
{
return sX > 0.0 && sY > 0.0
? scaleTo(imgSrc, imgDst,
(int)(sX * imgSrc.w()), (int)(sY * imgSrc.h()), align)
: false;
}
/* scales an image about a certain scaling factor.
*
* Note:
* imgSrc and imgDst may not be identical.
*/
inline bool scale( // returns true if successful
const Image &imgSrc, // source image
Image &imgDst, // destination image
double s, // scaling factor (must be > 0 but not too large)
int align = 4) // row alignment
{
return scaleXY(imgSrc, imgDst, s, s, align);
}
#endif // IMAGE_SCALE_H
imageScale.cc:
#include <cassert>
#include <algorithm>
#include "imageScale.h"
namespace {
template <typename VALUE>
VALUE clip(VALUE value, VALUE min, VALUE max)
{
return value < min ? min : value > max ? max : value;
}
bool scaleDown(
const Image &imgSrc,
Image &imgDst,
int w, int h,
int align)
{
const int wSrc = imgSrc.w(), hSrc = imgSrc.h();
assert(w > 0 && w <= wSrc && h > 0 && h <= hSrc);
// compute scaling factors
const double sx = (double)wSrc / (double)w;
const double sy = (double)hSrc / (double)h;
const double sxy = sx * sy;
// prepare destination image
imgDst.resize(w, h, (w * 3 + align - 1) / align * align);
// cache some data
const uint8 *const dataSrc = imgSrc.data();
const int bPRSrc = imgSrc.bPR();
// perform scaling
for (int y = 0; y < h; ++y) {
const double yStart = sy * y;
const double yEnd = std::min(sy * (y + 1), (double)hSrc);
const int yStartInt = (int)yStart;
const int yEndInt = (int)yEnd - (yEndInt == yEnd);
const double tFrm = 1 + yStartInt - yStart, bFrm = yEnd - yEndInt;
for (int x = 0; x < w; ++x) {
const double xStart = sx * x;
const double xEnd = std::min(sx * (x + 1), (double)wSrc);
const int xStartInt = (int)xStart;
const int xEndInt = (int)xEnd - (xEndInt == xEnd);
double lFrm = 1 + xStartInt - xStart, rFrm = xEnd - xEndInt;
double pixel[3] = { 0.0, 0.0, 0.0 }; // values of target pixel
for (int i = yStartInt; i <= yEndInt; ++i) {
int jData = i * bPRSrc + xStartInt * 3;
for (int j = xStartInt; j <= xEndInt; ++j) {
double pixelAdd[3];
for (int k = 0; k < 3; ++k) {
pixelAdd[k] = (double)dataSrc[jData++] / sxy;
}
if (j == xStartInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= lFrm;
} else if (j == xEndInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= rFrm;
}
if (i == yStartInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= tFrm;
} else if (i == yEndInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= bFrm;
}
for (int k = 0; k < 3; ++k) pixel[k] += pixelAdd[k];
}
}
imgDst.setPixel(x, y,
(uint8)pixel[0], (uint8)pixel[1], (uint8)pixel[2]);
}
}
// done
return true;
}
bool scaleUp(
const Image &imgSrc,
Image &imgDst,
int w, int h,
int align)
{
const int wSrc = imgSrc.w(), hSrc = imgSrc.h();
assert(w && w >= wSrc && h && h >= hSrc);
// compute scaling factors
const double sx = (double)wSrc / (double)w;
const double sy = (double)hSrc / (double)h;
// prepare destination image
imgDst.resize(w, h, (w * 3 + align - 1) / align * align);
// cache some data
const uint8 *const dataSrc = imgSrc.data();
const int bPRSrc = imgSrc.bPR();
// perform scaling
for (int y = 0; y < h; ++y) {
const double yStart = sy * y;
const double yEnd = std::min(sy * (y + 1), (double)hSrc - 1);
const int yStartInt = (int)yStart;
const int yEndInt = (int)yEnd;
if (yStartInt < yEndInt) {
const double bFract = clip((double)((yEnd - yEndInt) / sy), 0.0, 1.0);
const double tFract = 1.0 - bFract;
for (int x = 0; x < w; ++x) {
const double xStart = sx * x;
const double xEnd = std::min(sx * (x + 1), (double)wSrc - 1);
const int xStartInt = (int)xStart, xEndInt = (int)xEnd;
double pixel[4];
if (xStartInt < xEndInt) {
const double rFract
= clip((double)((xEnd - xEndInt) / sx), 0.0, 1.0);
const double lFract = 1.0 - rFract;
int jData = yStartInt * bPRSrc + xStartInt * 3;
for (int k = 0; k < 3; ++k) {
pixel[k] = tFract * lFract * dataSrc[jData++];
}
for (int k = 0; k < 3; ++k) {
pixel[k] += tFract * rFract * dataSrc[jData++];
}
jData = yEndInt * bPRSrc + xStartInt * 3;
for (int k = 0; k < 3; ++k) {
pixel[k] += bFract * lFract *dataSrc[jData++];
}
for (int k = 0; k < 3; ++k) {
pixel[k] += bFract * rFract *dataSrc[jData++];
}
} else {
int jData = yStartInt * bPRSrc + xStartInt * 3;
for (int k = 0; k < 3; ++k) {
pixel[k] = tFract * dataSrc[jData++];
}
jData = yEndInt * bPRSrc + xStartInt * 3;
for (int k = 0; k < 3; ++k) {
pixel[k] += bFract * dataSrc[jData++];
}
}
imgDst.setPixel(x, y,
(uint8)pixel[0], (uint8)pixel[1], (uint8)pixel[2]);
}
} else {
for (int x = 0; x < w; ++x) {
const double xStart = sx * x;
const double xEnd = std::min(sx * (x + 1), (double)wSrc - 1);
const int xStartInt = (int)xStart, xEndInt = (int)xEnd;
double pixel[3];
if (xStartInt < xEndInt) {
const double rFract
= clip((double)((xEnd - xEndInt) / sx), 0.0, 1.0);
const double lFract = 1.0 - rFract;
int jData = yStartInt * bPRSrc + xStartInt * 3;
for (int k = 0; k < 3; ++k) {
pixel[k] = lFract * dataSrc[jData++];
}
for (int k = 0; k < 3; ++k) {
pixel[k] += rFract * dataSrc[jData++];
}
} else {
int jData = yStartInt * bPRSrc + xStartInt * 3;
for (int k = 0; k < 3; ++k) pixel[k] = dataSrc[jData++];
}
imgDst.setPixel(x, y,
(uint8)pixel[0], (uint8)pixel[1], (uint8)pixel[2]);
}
}
}
// done
return true;
}
} // namespace
bool scaleTo(const Image &imgSrc, Image &imgDst, int w, int h, int align)
{
Image imgTmp;
return w <= 0 || h <= 0 ? false
: w >= imgSrc.w() && h >= imgSrc.h()
? scaleUp(imgSrc, imgDst, w, h, align)
: w <= imgSrc.w() && h <= imgSrc.h()
? scaleDown(imgSrc, imgDst, w, h, align)
: w >= imgSrc.w()
? scaleUp(imgSrc, imgTmp, w, imgSrc.h(), 1)
&& scaleDown(imgTmp, imgDst, w, h, align)
: scaleDown(imgSrc, imgTmp, w, imgSrc.h(), 1)
&& scaleUp(imgTmp, imgDst, w, h, align);
}
PPM file IO
imagePPM.h:
#ifndef IMAGE_PPM_H
#define IMAGE_PPM_H
#include <iostream>
#include "image.h"
// reads a binary PPM file.
bool readPPM( // returns true if successful
std::istream &in, // input stream (must be opened with std::ios::binary)
Image &img, // image to read into
int align = 4); // row alignment
// writes binary PPM file.
bool writePPM( // returns true if successful
std::ostream &out, // output stream (must be opened with std::ios::binary)
const Image &img); // image to write from
#endif // IMAGE_PPM_H
imagePPM.cc:
#include <sstream>
#include <string>
#include "imagePPM.h"
// reads a binary PPM file.
bool readPPM( // returns true if successful
std::istream &in, // input stream (must be opened with std::ios::binary)
Image &img, // image to read into
int align) // row alignment
{
// parse header
std::string buffer;
if (!getline(in, buffer)) return false;
if (buffer != "P6") {
std::cerr << "Wrong header! 'P6' expected.\n";
return false;
}
int w = 0, h = 0, t = 0;
for (int i = 0; i < 3;) {
if (!getline(in, buffer)) return false;
if (buffer.empty()) continue; // skip empty lines
if (buffer[0] == '#') continue; // skip comments
std::istringstream str(buffer);
switch (i) {
case 0:
if (!(str >> w)) continue;
++i;
case 1:
if (!(str >> h)) continue;
++i;
case 2:
if (!(str >> t)) continue;
++i;
}
}
if (t != 255) {
std::cerr << "Unsupported format! t = 255 expected.\n";
return false;
}
// allocate image buffer
uint8 *data = img.resize(w, h, (w * 3 + align - 1) / align * align);
// read data
for (int i = 0; i < h; ++i) {
if (!in.read((char*)data, 3 * img.w())) return false;
data += img.bPR();
}
// done
return true;
}
// writes binary PPM file.
bool writePPM( // returns true if successful
std::ostream &out, // output stream (must be opened with std::ios::binary)
const Image &img) // image to write from
{
// write header
if (!(out << "P6\n" << img.w() << ' ' << img.h() << " 255\n")) return false;
// write image data
for (size_t y = 0; y < img.h(); ++y) {
const uint8 *const data = img.data(y);
if (!out.write((const char*)data, 3 * img.w())) return false;
}
// done
return true;
}
The main application
scaleRGBImg.cc:
#include <iostream>
#include <fstream>
#include <string>
#include "image.h"
#include "imagePPM.h"
#include "imageScale.h"
int main(int argc, char **argv)
{
// read command line arguments
if (argc <= 3) {
std::cerr << "Missing arguments!\n";
std::cout
<< "Usage:\n"
<< " scaleRGBImg IN_FILE SCALE OUT_FILE\n";
return 1;
}
const std::string inFile = argv[1];
char *end;
const double s = std::strtod(argv[2], &end);
if (end == argv[2] || *end != '\0') {
std::cerr << "Invalid scale factor '" << argv[2] << "'!\n";
return 1;
}
if (s <= 0.0) {
std::cerr << "Invalid scale factor " << s << "!\n";
return 1;
}
const std::string outFile = argv[3];
// read image
Image imgSrc;
{ std::ifstream fIn(inFile.c_str(), std::ios::binary);
if (!readPPM(fIn, imgSrc)) {
std::cerr << "Reading '" << inFile << "' failed!\n";
return 1;
}
}
// scale image
Image imgDst;
if (!scale(imgSrc, imgDst, s)) {
std::cerr << "Scaling failed!\n";
return 1;
}
// write image
{ std::ofstream fOut(outFile.c_str(), std::ios::binary);
if (!writePPM(fOut, imgDst) || (fOut.close(), !fOut.good())) {
std::cerr << "Writing '" << outFile << "' failed!\n";
return 1;
}
}
// done
return 0;
}
Test
Compiled in cygwin64:
$ g++ -std=c++11 -o scaleRGBImg scaleRGBImg.cc image.cc imagePPM.cc imageScale.cc
$
A sample image test.ppm for a test – converted to PPM in GIMP:
Test with the sample image:
$ for I in 0.8 0.6 0.4 0.2 ; do echo ./scaleRGBImg test.ppm $I test.$I.ppm ; done
./scaleRGBImg test.ppm 0.8 test.0.8.ppm
./scaleRGBImg test.ppm 0.6 test.0.6.ppm
./scaleRGBImg test.ppm 0.4 test.0.4.ppm
./scaleRGBImg test.ppm 0.2 test.0.2.ppm
$ for I in 0.8 0.6 0.4 0.2 ; do ./scaleRGBImg test.ppm $I test.$I.ppm ; done
$
This is what came out:
test.0.8.ppm:
test.0.6.ppm:
test.0.4.ppm:
test.0.2.ppm:

Related

Implement bokeh blur with C++

We would like to perform bokeh blur on a image. I have tried to test some code below but could not get Circle of Confusion on bright point.
void bokeh(unsigned char *Input, unsigned char *Output, int Width, int Height, int Stride, int Radius)
{
int Channels = Stride / Width;
int rsq = fmax(1, sqrtf(Radius));
for (int y = 0; y < Height; y++)
{
unsigned char * LinePD = Output + y*Stride;
for (int x = 0; x < Width; x++)
{
unsigned int sum[3] = { 0 };
unsigned int weightsum = 0;
for (int ny = std::max(0, y - Radius); ny < std::min(y + Radius, Height); ny++)
{
const unsigned char * sampleLine = Input + ny*Stride;
for (int nx = std::max(0, x - Radius); nx < std::min(x + Radius, Width); nx++)
{
if (sqrtf(nx - x) + sqrtf(ny - y) < rsq)
{
const unsigned char * sample = sampleLine + nx*Channels;
const unsigned char&R = sample[0];
const unsigned char&G = sample[1];
const unsigned char&B = sample[2];
float weight = sqrtf((unsigned char)((21627 * R + 21627 * G + 21627 * B) >> 16));
for (int c = 0; c < Channels; c++)
{
sum[c] += weight*sample[c];
}
weightsum += weight;
}
}
}
for (int c = 0; c < Channels; c++)
{
LinePD[c] = ClampToByte(sum[c] / weightsum);
}
LinePD += Channels;
}
}
}
The source image is:
The result is:
while I expect effect is which like circular in pictures below
seems that I replace sqrtf(nx - x) + sqrtf(ny - y) < rsq
with
powf(nx - x, 2.0) + powf(ny - y, 2.0) < powf(Radius, 2)
and replace float weight = sqrtf((unsigned char)((21627 * R + 21627 * G + 21627 * B) >> 16));
with
float weight = (R + G + B)*1.0f/3.0f;
I could get bokeh blur effect, so how to set the weight to by brightness?

C++ Blur effect on bit map is working but colors are changed

In relation to my previous question BitMap_blur efect, i have succeeded to make the bit map blurred but the problem is the colors of the blurred picture has been changed:
Original photo: https://ibb.co/eFHg8G
Blurred photo: https://ibb.co/mQDShb
The code of the blurring algorytm is the same as in my previous question:
for (xx = 0; xx < bitmapInfoHeader.biWidth; xx++)
{
for (yy = 0; yy <bitmapInfoHeader.biHeight; yy++)
{
avgB = avgG = avgR = 0;
Counter = 0;
for (x = xx; x < bitmapInfoHeader.biWidth && x < xx + blurSize; x++)
{
for (y = yy; y < bitmapInfoHeader.biHeight && y < yy + blurSize; y++)
{
avgB += bitmapImage[x *3 + y*bitmapInfoHeader.biWidth * 3 + 0]; //bitmapimage[x][y];
avgG += bitmapImage[x *3 + y*bitmapInfoHeader.biWidth * 3 + 1];
avgR += bitmapImage[x *3 + y*bitmapInfoHeader.biWidth * 3 + 2];
Counter++;
}
}
avgB = avgB / Counter;
avgG = avgG / Counter;
avgR = avgR / Counter;
bitmapImage[xx * 3 + yy*bitmapInfoHeader.biWidth * 3 + 0] = avgB;
bitmapImage[xx * 3 + yy*bitmapInfoHeader.biWidth * 3 + 1] = avgG;
bitmapImage[xx * 3 + yy*bitmapInfoHeader.biWidth * 3 + 2] = avgR;
}
}
So what am doing wrong here?
It actually looks like size of each line is padded to be multiple of 4 bytes. To get correct byte offset of each line you will need to replace
* bitmapInfoHeader.biWidth * 3
with
* (bitmapInfoHeader.biWidth * 3 + padding_bytes_count)
where
padding_bytes_count =
(
(
bitmapFileHeader.bfSize - bitmapFileHeader.bfOffBits
-
bitmapInfoHeader.biWidth * bitmapInfoHeader.biHeight * 3
)
/
bitmapInfoHeader.biHeight
);
For your tiger image padding_bytes_count should be 2.
Here, I create a semi-portable bitmap reader/writer.. Works on Windows, Linux Mint, MacOS High Sierra. I didn't test other platforms.. but it should work.
It has:
Portability
Load 24-bit bitmaps.
Load 32-bit bitmaps.
Write 24-bit bitmaps.
Write 32-bit bitmaps.
Convert between 24-bit and 32-bit bitmaps.
Convert between 32-bit and 24-bit bitmaps.
It doesn't have:
Support for Alpha Transparency. Alpha transparency has special fields and flags required to be set in the header. I don't feel like writing them in so it won't support it.
Only part of it that doesn't seem very portable would be the #pragma pack..
#include <iostream>
#include <fstream>
#if defined(_WIN32) || defined(_WIN64)
#include <windows.h>
#endif
typedef struct
{
uint8_t r, g, b, a;
} rgb32;
#if !defined(_WIN32) && !defined(_WIN64)
#pragma pack(2)
typedef struct
{
uint16_t bfType;
uint32_t bfSize;
uint16_t bfReserved1;
uint16_t bfReserved2;
uint32_t bfOffBits;
} BITMAPFILEHEADER;
#pragma pack()
#pragma pack(2)
typedef struct
{
uint32_t biSize;
int32_t biWidth;
int32_t biHeight;
uint16_t biPlanes;
uint16_t biBitCount;
uint32_t biCompression;
uint32_t biSizeImage;
int16_t biXPelsPerMeter;
int16_t biYPelsPerMeter;
uint32_t biClrUsed;
uint32_t biClrImportant;
} BITMAPINFOHEADER;
#pragma pack()
#endif
#pragma pack(2)
typedef struct
{
BITMAPFILEHEADER bfh;
BITMAPINFOHEADER bih;
} BMPINFO;
#pragma pack()
class bitmap
{
private:
BMPINFO bmpInfo;
uint8_t* pixels;
public:
bitmap(const char* path);
~bitmap();
void save(const char* path, uint16_t bit_count = 24);
rgb32* getPixel(uint32_t x, uint32_t y) const;
void setPixel(rgb32* pixel, uint32_t x, uint32_t y);
uint32_t getWidth() const;
uint32_t getHeight() const;
uint16_t bitCount() const;
};
bitmap::bitmap(const char* path) : bmpInfo(), pixels(nullptr)
{
std::ifstream file(path, std::ios::in | std::ios::binary);
if (file)
{
file.read(reinterpret_cast<char*>(&bmpInfo.bfh), sizeof(bmpInfo.bfh));
if (bmpInfo.bfh.bfType != 0x4d42)
{
throw std::runtime_error("Invalid format. Only bitmaps are supported.");
}
file.read(reinterpret_cast<char*>(&bmpInfo.bih), sizeof(bmpInfo.bih));
if (bmpInfo.bih.biCompression != 0)
{
std::cerr<<bmpInfo.bih.biCompression<<"\n";
throw std::runtime_error("Invalid bitmap. Only uncompressed bitmaps are supported.");
}
if (bmpInfo.bih.biBitCount != 24 && bmpInfo.bih.biBitCount != 32)
{
throw std::runtime_error("Invalid bitmap. Only 24bit and 32bit bitmaps are supported.");
}
file.seekg(bmpInfo.bfh.bfOffBits, std::ios::beg);
pixels = new uint8_t[bmpInfo.bfh.bfSize - bmpInfo.bfh.bfOffBits];
file.read(reinterpret_cast<char*>(&pixels[0]), bmpInfo.bfh.bfSize - bmpInfo.bfh.bfOffBits);
uint8_t* temp = new uint8_t[bmpInfo.bih.biWidth * bmpInfo.bih.biHeight * sizeof(rgb32)];
uint8_t* in = pixels;
rgb32* out = reinterpret_cast<rgb32*>(temp);
int padding = bmpInfo.bih.biBitCount == 24 ? ((bmpInfo.bih.biSizeImage - bmpInfo.bih.biWidth * bmpInfo.bih.biHeight * 3) / bmpInfo.bih.biHeight) : 0;
for (int i = 0; i < bmpInfo.bih.biHeight; ++i, in += padding)
{
for (int j = 0; j < bmpInfo.bih.biWidth; ++j)
{
out->b = *(in++);
out->g = *(in++);
out->r = *(in++);
out->a = bmpInfo.bih.biBitCount == 32 ? *(in++) : 0xFF;
++out;
}
}
delete[] pixels;
pixels = temp;
}
}
bitmap::~bitmap()
{
delete[] pixels;
}
void bitmap::save(const char* path, uint16_t bit_count)
{
std::ofstream file(path, std::ios::out | std::ios::binary);
if (file)
{
bmpInfo.bih.biBitCount = bit_count;
uint32_t size = ((bmpInfo.bih.biWidth * bmpInfo.bih.biBitCount + 31) / 32) * 4 * bmpInfo.bih.biHeight;
bmpInfo.bfh.bfSize = bmpInfo.bfh.bfOffBits + size;
file.write(reinterpret_cast<char*>(&bmpInfo.bfh), sizeof(bmpInfo.bfh));
file.write(reinterpret_cast<char*>(&bmpInfo.bih), sizeof(bmpInfo.bih));
file.seekp(bmpInfo.bfh.bfOffBits, std::ios::beg);
uint8_t* out = NULL;
rgb32* in = reinterpret_cast<rgb32*>(pixels);
uint8_t* temp = out = new uint8_t[bmpInfo.bih.biWidth * bmpInfo.bih.biHeight * sizeof(rgb32)];
int padding = bmpInfo.bih.biBitCount == 24 ? ((bmpInfo.bih.biSizeImage - bmpInfo.bih.biWidth * bmpInfo.bih.biHeight * 3) / bmpInfo.bih.biHeight) : 0;
for (int i = 0; i < bmpInfo.bih.biHeight; ++i, out += padding)
{
for (int j = 0; j < bmpInfo.bih.biWidth; ++j)
{
*(out++) = in->b;
*(out++) = in->g;
*(out++) = in->r;
if (bmpInfo.bih.biBitCount == 32)
{
*(out++) = in->a;
}
++in;
}
}
file.write(reinterpret_cast<char*>(&temp[0]), size); //bmpInfo.bfh.bfSize - bmpInfo.bfh.bfOffBits
delete[] temp;
}
}
rgb32* bitmap::getPixel(uint32_t x, uint32_t y) const
{
rgb32* temp = reinterpret_cast<rgb32*>(pixels);
return &temp[(bmpInfo.bih.biHeight - 1 - y) * bmpInfo.bih.biWidth + x];
}
void bitmap::setPixel(rgb32* pixel, uint32_t x, uint32_t y)
{
rgb32* temp = reinterpret_cast<rgb32*>(pixels);
memcpy(&temp[(bmpInfo.bih.biHeight - 1 - y) * bmpInfo.bih.biWidth + x], pixel, sizeof(rgb32));
};
uint32_t bitmap::getWidth() const
{
return bmpInfo.bih.biWidth;
}
uint32_t bitmap::getHeight() const
{
return bmpInfo.bih.biHeight;
}
uint16_t bitmap::bitCount() const
{
return bmpInfo.bih.biBitCount;
}
void apply_blur(int x, int y, bitmap* bmp, int blurRadius)
{
double blurValue = 0.111;
int r = 0;
int g = 0 ;
int b = 0;
for (int k = y - blurRadius; k <= blurRadius; ++k)
{
for (int l = x - blurRadius; l <= blurRadius; ++l)
{
rgb32* pixel = bmp->getPixel(l, k);
r += blurValue * pixel->r;
g += blurValue * pixel->g;
b += blurValue * pixel->b;
}
}
rgb32 pixel = *bmp->getPixel(x, y);
pixel.r = r;
pixel.g = g;
pixel.b = b;
bmp->setPixel(&pixel, x, y);
}
int main(int argc, const char * argv[])
{
bitmap bmp{"/Users/brandon/Desktop/tiger.bmp"};
bmp.save("/Users/brandon/Desktop/blurred-tiger-24.bmp");
bmp.save("/Users/brandon/Desktop/blurred-tiger-32.bmp", 32);
return 0;
}
Now all you have to do is add your blur algorithm.. I tried it, but couldn't figure out the blurring part.. I ended up porting an algorithm found here: http://blog.ivank.net/fastest-gaussian-blur.html
void blur(bitmap* bmp, int radius)
{
float rs = ceil(radius * 2.57);
for (int i = 0; i < bmp->getHeight(); ++i)
{
for (int j = 0; j < bmp->getWidth(); ++j)
{
double r = 0, g = 0, b = 0;
double count = 0;
for (int iy = i - rs; iy < i + rs + 1; ++iy)
{
for (int ix = j - rs; ix < j + rs + 1; ++ix)
{
auto x = std::min(static_cast<int>(bmp->getWidth()) - 1, std::max(0, ix));
auto y = std::min(static_cast<int>(bmp->getHeight()) - 1, std::max(0, iy));
auto dsq = ((ix - j) * (ix - j)) + ((iy - i) * (iy - i));
auto wght = std::exp(-dsq / (2.0 * radius * radius)) / (M_PI * 2.0 * radius * radius);
rgb32* pixel = bmp->getPixel(x, y);
r += pixel->r * wght;
g += pixel->g * wght;
b += pixel->b * wght;
count += wght;
}
}
rgb32* pixel = bmp->getPixel(j, i);
pixel->r = std::round(r / count);
pixel->g = std::round(g / count);
pixel->b = std::round(b / count);
}
}
}
int main(int argc, const char * argv[])
{
bitmap bmp{"/Users/brandon/Desktop/tiger.bmp"};
blur(&bmp, 5);
bmp.save("/Users/brandon/Desktop/blurred-tiger.bmp");
return 0;
}
The result becomes:
Since iam only applying the blur effect on 24-bitmaps, I add the padding thing and modified my 3th and 4th loop:
for (x = xx; x < bitmapInfoHeader.biWidth && x < xx + blurSize; **x+=3**)
{
for (y = yy; y < bitmapInfoHeader.biHeight && y < yy + blurSize; **y+=3**)
And it works! the photo still have a weard thin line on the left but i think this is a read/write bitmap problem and i can handle it myself :)
The blurred photo: https://ibb.co/iGp9Cb and another blurred picture: https://ibb.co/jFXUCb
Thank you guys for your answers! it helped alot

Saliency Map with openCV

I'm trying to use the code proposed here http://ivrlwww.epfl.ch/supplementary_material/RK_CVPR09/ for saliency detection on colored images. The code proposed is associated with a GUI developed in windows. In my case, I want to use it on Mac OsX with OpenCv library for reading the initial image and writing the saliency map result. Therefore I pick up the four main functions and modify the reading and writing block using OpenCV. I got the following results which are a bit different from what the authors have obtained:
Original Image
Author saliency map
Obtained saliency map
Here are the four functions. Is there something wrong that I did wrong ? I was careful to consider that in OpenCV, colors are described as B-G-R and not R-G-B.
#include <stdio.h>
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
void RGB2LAB2(
const vector<vector<uint> > &ubuff,
vector<double>& lvec,
vector<double>& avec,
vector<double>& bvec){
int sz = int(ubuff.size());
cout<<"sz "<<sz<<endl;
lvec.resize(sz);
avec.resize(sz);
bvec.resize(sz);
for( int j = 0; j < sz; j++ ){
int sR = ubuff[j][2];
int sG = ubuff[j][1];
int sB = ubuff[j][0];
//------------------------
// sRGB to XYZ conversion
// (D65 illuminant assumption)
//------------------------
double R = sR/255.0;
double G = sG/255.0;
double B = sB/255.0;
double r, g, b;
if(R <= 0.04045) r = R/12.92;
else r = pow((R+0.055)/1.055,2.4);
if(G <= 0.04045) g = G/12.92;
else g = pow((G+0.055)/1.055,2.4);
if(B <= 0.04045) b = B/12.92;
else b = pow((B+0.055)/1.055,2.4);
double X = r*0.4124564 + g*0.3575761 + b*0.1804375;
double Y = r*0.2126729 + g*0.7151522 + b*0.0721750;
double Z = r*0.0193339 + g*0.1191920 + b*0.9503041;
//------------------------
// XYZ to LAB conversion
//------------------------
double epsilon = 0.008856; //actual CIE standard
double kappa = 903.3; //actual CIE standard
double Xr = 0.950456; //reference white
double Yr = 1.0; //reference white
double Zr = 1.088754; //reference white
double xr = X/Xr;
double yr = Y/Yr;
double zr = Z/Zr;
double fx, fy, fz;
if(xr > epsilon) fx = pow(xr, 1.0/3.0);
else fx = (kappa*xr + 16.0)/116.0;
if(yr > epsilon) fy = pow(yr, 1.0/3.0);
else fy = (kappa*yr + 16.0)/116.0;
if(zr > epsilon) fz = pow(zr, 1.0/3.0);
else fz = (kappa*zr + 16.0)/116.0;
lvec[j] = 116.0*fy-16.0;
avec[j] = 500.0*(fx-fy);
bvec[j] = 200.0*(fy-fz);
}
}
void GaussianSmooth(
const vector<double>& inputImg,
const int& width,
const int& height,
const vector<double>& kernel,
vector<double>& smoothImg){
int center = int(kernel.size())/2;
int sz = width*height;
smoothImg.clear();
smoothImg.resize(sz);
vector<double> tempim(sz);
int rows = height;
int cols = width;
int index(0);
for( int r = 0; r < rows; r++ ){
for( int c = 0; c < cols; c++ ){
double kernelsum(0);
double sum(0);
for( int cc = (-center); cc <= center; cc++ ){
if(((c+cc) >= 0) && ((c+cc) < cols)){
sum += inputImg[r*cols+(c+cc)] * kernel[center+cc];
kernelsum += kernel[center+cc];
}
}
tempim[index] = sum/kernelsum;
index++;
}
}
int index = 0;
for( int r = 0; r < rows; r++ ){
for( int c = 0; c < cols; c++ ){
double kernelsum(0);
double sum(0);
for( int rr = (-center); rr <= center; rr++ ){
if(((r+rr) >= 0) && ((r+rr) < rows)){
sum += tempim[(r+rr)*cols+c] * kernel[center+rr];
kernelsum += kernel[center+rr];
}
}
smoothImg[index] = sum/kernelsum;
index++;
}
}
}
void GetSaliencyMap(
const vector<vector<uint> >&inputimg,
const int& width,
const int& height,
vector<double>& salmap,
const bool& normflag){
int sz = width*height;
salmap.clear();
salmap.resize(sz);
vector<double> lvec(0), avec(0), bvec(0);
RGB2LAB2(inputimg, lvec, avec, bvec);
double avgl(0), avga(0), avgb(0);
for( int i = 0; i < sz; i++ ){
avgl += lvec[i];
avga += avec[i];
avgb += bvec[i];
}
avgl /= sz;
avga /= sz;
avgb /= sz;
vector<double> slvec(0), savec(0), sbvec(0);
vector<double> kernel(0);
kernel.push_back(1.0);
kernel.push_back(2.0);
kernel.push_back(1.0);
GaussianSmooth(lvec, width, height, kernel, slvec);
GaussianSmooth(avec, width, height, kernel, savec);
GaussianSmooth(bvec, width, height, kernel, sbvec);
for( int i = 0; i < sz; i++ ){
salmap[i] = (slvec[i]-avgl)*(slvec[i]-avgl) +
(savec[i]-avga)*(savec[i]-avga) +
(sbvec[i]-avgb)*(sbvec[i]-avgb);
}
if( true == normflag ){
vector<double> normalized(0);
Normalize(salmap, width, height, normalized);
swap(salmap, normalized);
}
}
void Normalize(
const vector<double>& input,
const int& width,
const int& height,
vector<double>& output,
const int& normrange = 255){
double maxval(0);
double minval(DBL_MAX);
int i(0);
for( int y = 0; y < height; y++ ){
for( int x = 0; x < width; x++ ){
if( maxval < input[i] ) maxval = input[i];
if( minval > input[i] ) minval = input[i];
i++;
}
}
}
double range = maxval-minval;
if( 0 == range ) range = 1;
int i(0);
output.clear();
output.resize(width*height);
for( int y = 0; y < height; y++ ){
for( int x = 0; x < width; x++ ){
output[i] = ((normrange*(input[i]-minval))/range);
i++;
}
}
}
int main(){
Mat image;
image = imread( argv[1], 1 );
if ( !image.data ){
printf("No image data \n");
return -1;
}
std::vector<vector<uint>>array(image.cols*image.rows,vector<uint>
(3,0));
for(int y=0;y<image.rows;y++){
for(int x=0;x<image.cols;x++){
Vec3b color= image.at<Vec3b>(Point(x,y));
array[image.cols*y+x][0]=color[0]; array[image.cols*y+x]
[1]=color[1];array[image.cols*y+x][2]=color[2];
}
}
vector<double> salmap; bool normflag=true;
GetSaliencyMap(array, image.size().width, image.size().height, salmap,
normflag);
Mat output;
output = Mat( image.rows, image.cols,CV_8UC1);
int k=0;
for(int y=0;y<image.rows;y++){
for(int x=0;x<image.cols;x++){
output.at<uchar>(Point(x,y)) = int(salmap[k]);
k++;
}
}
imwrite("test_saliency_blackAndWhite.jpg", output );
return 0;
}

Visualizing/saving an extremely large number of pixels with

I made a program in C++ which calculates the mandelbrot-set. Now I want to visualize it (save it in a picture). But when I try to save a 64k picture some problems come up. So what is the best way to save a picture of the pixels or at least to visual it?
Edit:
When I want to create a for Example 64K (61440 * 34560) image there will be the error "Access violation while writing at the position 0x0..." (originally on German and translated) and the program stops. This error appears with very high resolution. On lower resolutions the program works as it is supposed to.
#include <SFML\Graphics.hpp>
#include <stdlib.h>
#include <complex>
#include <cmath>
#include <thread>
//4K : 3840 * 2160
//8K : 7680 * 4320
//16K: 15360 * 8640
//32K: 30720 * 17280
//64K: 61440 * 34560
//128K:122880 * 69120
const unsigned long width = 61440; //should be dividable by ratioX & numberOfThreads!
const unsigned long height = 34560; //should be dividable by ratioY & numberOfThreads!
const unsigned int maxIterations = 500;
const unsigned int numberOfThreads = 6;
const int maxWidth = width / 3;
const int maxHeight = height / 2;
const int minWidth = -maxWidth * 2;
const int minHeight = -maxHeight;
const double ratioX = 3.0 / width;
const double ratioY = 2.0 / height;
sf::Image img = sf::Image();
int getsGreaterThan2(std::complex<double> z, int noIterations) {
double result;
std::complex<double> zTmp = z;
std::complex<double> c = z;
for (int i = 1; i != noIterations; i++) {
zTmp = std::pow(z, 2) + c;
if (zTmp == z) {
return 0;
}
z = std::pow(z, 2) + c;
result = std::sqrt(std::pow(z.real(), 2) + std::pow(z.imag(), 2));
if (result > 2) {
return i;
}
}
return 0;
}
void fillPixelArrayThreadFunc(int noThreads, int threadNr) { //threadNr ... starts from 0
double imgNumber;
double realNumber;
double tmp;
long startWidth = ((double)width) / noThreads * threadNr + minWidth;
long endWidth = startWidth + width / noThreads;
for (long x = startWidth; x < endWidth; x++) {
imgNumber = x * ratioX;
for (long y = minHeight; y < maxHeight; y++) {
realNumber = y * ratioY;
long xArray = x - minWidth;
long yArray = y - minHeight;
tmp = getsGreaterThan2(std::complex<double>(imgNumber, realNumber), maxIterations);
if (tmp == 0) {
img.setPixel(xArray, yArray, sf::Color(0, 0, 0, 255));
}
else {
img.setPixel(xArray, yArray, sf::Color(tmp / maxIterations * 128, tmp / maxIterations * 128, tmp / maxIterations * 255, 255));
}
}
}
}
int main() {
img.create(width, height, sf::Color::Black);
std::thread *threads = new std::thread[numberOfThreads];
for (int i = 0; i < numberOfThreads; i++) {
threads[i] = std::thread(std::bind(fillPixelArrayThreadFunc, numberOfThreads, i));
}
for (int i = 0; i < numberOfThreads; i++) {
threads[i].join();
}
img.saveToFile("filename.png");
return 1;
}
Your program fails during the call img.create(width, height, sf::Color::Black);.
When you step into the sf::Image::create function you end up here where the newPixels vector is created, this simply fails when width * height is too big as in your case:
////////////////////////////////////////////////////////////
void Image::create(unsigned int width, unsigned int height, const Color& color)
{
if (width && height)
{
// Create a new pixel buffer first for exception safety's sake
std::vector<Uint8> newPixels(width * height * 4);
^61440* ^34560 = 8'493'465'600 bytes !!
Conclusion: SFML cannot handle huge images.

Performant Threaded C++ Pixel Rendering: Fastest Way?

My goal is simple: I want to create a rendering system in C++ that can draw thousands of bitmaps on screen. I have been trying to use threads to speed up the process but to no avail. In most cases, I have actually slowed down performance by using multiple threads. I am using this project as an educational exercise by not using hardware acceleration. That said, my question is this:
What is the best way to use several threads to accept a massive list of images to be drawn onto the screen and render them at break-neck speeds? I know that I won’t be able to create a system that can rival hardware accelerated graphics, but I believe that my idea is still feasible because the operation is so simple: copying pixels from one memory location to another.
My renderer design uses three core blitting operations: position, rotation, and scale of a bitmap image. I have it set up to only rotate an image when needed, and only scale an image when needed.
I have gone through several designs for this system. All of them too slow to get the job done (300 64x64 bitmaps at barely 60fps).
Here are the designs I have tried:
Immediately drawing a source bitmap on a destination bitmap for every image on screen (moderate speed).
Creating workers that accept a draw instruction and immediately begin working on it while other workers receive their instructions also (slowest).
Workers that receive packages of several instructions at a time (slower).
Saving all drawing instructions up and then parting them up in one swoop to several workers while other tasks (in theory) are being done (slowest).
Here is the bitmap class I am using to blit bitmaps onto each other:
class Bitmap
{
public:
Bitmap(int w, int h)
{
width = w;
height = h;
size = w * h;
pixels = new unsigned int[size];
}
virtual ~Bitmap()
{
if (pixels != 0)
{
delete[] pixels;
pixels = 0;
}
}
void blit(Bitmap *bmp, float x, float y, float rot, float sclx,
float scly)
{
// Position only
if (rot == 0 && sclx == 1 && scly == 1)
{
blitPos(bmp, x, y);
return;
}
// Rotate only
else if (rot != 0 && sclx == 1 && scly == 1)
{
blitRot(bmp, x, y, rot);
return;
}
// Scale only
else if (rot == 0 && (sclx != 1 || scly != 1))
{
blitScl(bmp, x, y, sclx, scly);
return;
}
/////////////////////////////////////////////////////////////////////////////
// If it is not one of those, you have to do all three... :D
/////////////////////////////////////////////////////////////////////////////
// Create a bitmap that is scaled to the new size.
Bitmap tmp((int)(bmp->width * sclx), (int)(bmp->height * scly));
// Find how much each pixel steps:
float step_x = (float)bmp->width / (float)tmp.width;
float step_y = (float)bmp->height / (float)tmp.height;
// Fill the scaled image with pixels!
float inx = 0;
int xOut = 0;
while (xOut < tmp.width)
{
float iny = 0;
int yOut = 0;
while (yOut < tmp.height)
{
unsigned int sample = bmp->pixels[
(int)(std::floor(inx) + std::floor(iny) * bmp->width)
];
tmp.drawPixel(xOut, yOut, sample);
iny += step_y;
yOut++;
}
inx += step_x;
xOut++;
}
blitRot(&tmp, x, y, rot);
}
void drawPixel(int x, int y, unsigned int color)
{
if (x > width || y > height || x < 0 || y < 0)
return;
if (color == 0x00000000)
return;
int index = x + y * width;
if (index >= 0 && index <= size)
pixels[index] = color;
}
unsigned int getPixel(int x, int y)
{
return pixels[x + y * width];
}
void clear(unsigned int color)
{
std::fill(&pixels[0], &pixels[size], color);
}
private:
void blitPos(Bitmap *bmp, float x, float y)
{
// Don't draw if coordinates are already past edges
if (x > width || y > height || y + bmp->height < 0 || x + bmp->width < 0)
return;
int from;
int to;
int destfrom;
int destto;
for (int i = 0; i < bmp->height; i++)
{
from = i * bmp->width;
to = from + bmp->width;
//////// Caps
// Bitmap is being drawn past the right edge
if (x + bmp->width > width)
{
int cap = bmp->width - ((x + bmp->width) - width);
to = from + cap;
}
// Bitmap is being drawn past the left edge
else if (x + bmp->width < bmp->width)
{
int cap = bmp->width + x;
from += (bmp->width - cap);
to = from + cap;
}
//////// Destination Maths
if (x < 0)
{
destfrom = (y + i) * width;
destto = destfrom + (bmp->width + x);
}
else
{
destfrom = x + (y + i) * width;
destto = destfrom + bmp->width;
}
// Bitmap is being drawn past either top or bottom edges
if (y + i > height - 1)
{
continue;
}
if (destfrom > size || destfrom < 0)
{
continue;
}
memcpy(&pixels[destfrom], &bmp->pixels[from], sizeof(unsigned int) * (to - from));
}
}
void blitRot(Bitmap *bmp, float x, float y, float rot)
{
float sine = std::sin(-rot);
float cosine = std::cos(-rot);
int x1 = (int)(-bmp->height * sine);
int y1 = (int)(bmp->height * cosine);
int x2 = (int)(bmp->width * cosine - bmp->height * sine);
int y2 = (int)(bmp->height * cosine + bmp->width * sine);
int x3 = (int)(bmp->width * cosine);
int y3 = (int)(bmp->width * sine);
int minx = (int)std::min(0, std::min(x1, std::min(x2, x3)));
int miny = (int)std::min(0, std::min(y1, std::min(y2, y3)));
int maxx = (int)std::max(0, std::max(x1, std::max(x2, x3)));
int maxy = (int)std::max(0, std::max(y1, std::max(y2, y3)));
int w = maxx - minx;
int h = maxy - miny;
int srcx;
int srcy;
int dest_x;
int dest_y;
unsigned int color;
for (int sy = miny; sy < maxy; sy++)
{
for (int sx = minx; sx < maxx; sx++)
{
srcx = sx * cosine + sy * sine;
srcy = sy * cosine - sx * sine;
dest_x = x + sx;
dest_y = y + sy;
if (dest_x <= width - 1 && dest_y <= height - 1
&& dest_x >= 0 && dest_y >= 0)
{
color = 0;
// Only grab a pixel if it is inside of the src image
if (srcx < bmp->width && srcy < bmp->height && srcx >= 0 &&
srcy >= 0)
color = bmp->getPixel(srcx, srcy);
// Only this pixel if it is not completely transparent:
if (color & 0xFF000000)
// Only if the pixel is somewhere between 0 and the bmp size
if (0 < srcx < bmp->width && 0 < srcy < bmp->height)
drawPixel(x + sx, y + sy, color);
}
}
}
}
void blitScl(Bitmap *bmp, float x, float y, float sclx, float scly)
{
// Create a bitmap that is scaled to the new size.
int finalwidth = (int)(bmp->width * sclx);
int finalheight = (int)(bmp->height * scly);
// Find how much each pixel steps:
float step_x = (float)bmp->width / (float)finalwidth;
float step_y = (float)bmp->height / (float)finalheight;
// Fill the scaled image with pixels!
float inx = 0;
int xOut = 0;
float iny;
int yOut;
while (xOut < finalwidth)
{
iny = 0;
yOut = 0;
while (yOut < finalheight)
{
unsigned int sample = bmp->pixels[
(int)(std::floor(inx) + std::floor(iny) * bmp->width)
];
drawPixel(xOut + x, yOut + y, sample);
iny += step_y;
yOut++;
}
inx += step_x;
xOut++;
}
}
public:
int width;
int height;
int size;
unsigned int *pixels;
};
Here is some code showing the latest method I have tried: saving up all instructions and then giving them to workers once they have all been received:
class Instruction
{
public:
Instruction() {}
Instruction(Bitmap* out, Bitmap* in, float x, float y, float rot,
float sclx, float scly)
: outbuffer(out), inbmp(in), x(x), y(y), rot(rot),
sclx(sclx), scly(scly)
{ }
~Instruction()
{
outbuffer = nullptr;
inbmp = nullptr;
}
public:
Bitmap* outbuffer;
Bitmap* inbmp;
float x, y, rot, sclx, scly;
};
Layer Class:
class Layer
{
public:
bool empty()
{
return instructions.size() > 0;
}
public:
std::vector<Instruction> instructions;
int pixel_count;
};
Worker Thread Class:
class Worker
{
public:
void start()
{
done = false;
work_thread = std::thread(&Worker::processData, this);
}
void processData()
{
while (true)
{
controller.lock();
if (done)
{
controller.unlock();
break;
}
if (!layers.empty())
{
for (int i = 0; i < layers.size(); i++)
{
for (int j = 0; j < layers[i].instructions.size(); j++)
{
Instruction* inst = &layers[i].instructions[j];
inst->outbuffer->blit(inst->inbmp, inst->x, inst->y, inst->rot, inst->sclx, inst->scly);
}
}
layers.clear();
}
controller.unlock();
}
}
void finish()
{
done = true;
}
public:
bool done;
std::thread work_thread;
std::mutex controller;
std::vector<Layer> layers;
};
Finally, the Render Manager Class:
class RenderManager
{
public:
RenderManager()
{
workers.reserve(std::thread::hardware_concurrency());
for (int i = 0; i < 1; i++)
{
workers.emplace_back();
workers.back().start();
}
}
void layer()
{
layers.push_back(current_layer);
current_layer = Layer();
}
void blit(Bitmap* out, Bitmap* in, float x, float y, float rot, float sclx, float scly)
{
current_layer.instructions.emplace_back(out, in, x, y, rot, sclx, scly);
}
void processInstructions()
{
if (layers.empty())
layer();
lockall();
int index = 0;
for (int i = 0; i < layers.size(); i++)
{
// Evenly distribute the layers in a round-robin fashion
Layer l = layers[i];
workers[index].layers.push_back(layers[i]);
index++;
if (index >= workers.size()) index = 0;
}
layers.clear();
unlockall();
}
void lockall()
{
for (int i = 0; i < workers.size(); i++)
{
workers[i].controller.lock();
}
}
void unlockall()
{
for (int i = 0; i < workers.size(); i++)
{
workers[i].controller.unlock();
}
}
void finish()
{
// Wait until every worker is done rendering
lockall();
// At this point, we know they have nothing more to draw
unlockall();
}
void endRendering()
{
for (int i = 0; i < workers.size(); i++)
{
// Send each one an exit code
workers[i].finish();
}
// Let the workers finish and then return
for (int i = 0; i < workers.size(); i++)
{
workers[i].work_thread.join();
}
}
private:
std::vector<Worker> workers;
std::vector<Layer> layers;
Layer current_layer;
};
Here is a screenshot of what the 3rd method I tried, and it's results:
Sending packages of draw instructions
What would really be helpful is that if someone could simply point me in the right direction in regards to what method I should try. I have tried these four methods and have failed, so I stand before those who have done greater things than I for help. The least intelligent person in the room is the one that does not ask questions because his pride does not permit it. Please keep in mind though, this is my first question ever on Stack Overflow.