Access to iterators of std containers by a template - c++

I want to write a function that takes an std container beginning and ending to add all values in the container to the third argument. For example, if I have
std::vector<int> my_ints{ 1, 2, 3 };
int sum_int = accumulate(my_ints.cbegin(), my_ints.cend(), 10); //should return 16.
I wanted to generalize this function in a way that it can work with any std containers. How can I write a template that can access to the iterators of the elements?
template<typename It, typename T>
T accumulate(It begin, It end, T x)
{
for (It i = begin; i != end; ++i)
{
x = x + i;
}
return x;
}
This is what I have at the moment. But, it does not compile because x and i are not the same type.

You should reach for std::for_each to do this rather than writing your own function. It will accept any container and any range of values.
If you want to write your own the look into the for-range statement:
template <typename C>
auto accumulate(const C& c) {
typename C::value_type x { };
for (auto value : c) {
x += value;
}
return x;
}
std::vector<int> my_ints{ 1, 2, 3 };
int sum = accumulate(my_ints);

As Peter mentioned in a comment, you are trying to add the actual iterator to x instead of the value it's pointing at. You need to dereference the iterator to get the value:
template<typename It, typename T>
T accumulate(It begin, It end, T x) {
// there's no need create a new iterator (i) here, use the one you already have (begin):
for(; begin != end; ++begin)
x += *begin; // use * to dereference the iterator
return x;
}

Related

boost::transform_iterator and std::iter_swap

I am trying to generalize a function I have which used to take two iterators to a vector of a specific data-structure, and re-arrange the elements in a certain way using std::iter_swap (like std::sort does).
Since this function only actually needs a subset of the data, and I will need to use it in other contexts in the future, I thought about removing the dependency on the data structure, and use boost::transform_iterator at the point of call to handle the transformation.
Unfortunately, it seems that boost::transform_iterator is not happy with this change. I can imagine why: std::iter_swap is usually implemented as std::swap(*lhs, *rhs), and dereferencing the transform_iterator does not yield the original element to swap in the correct way.
I was wondering if there was a way to handle this case. I am open to use boost::range or the experimental std::ranges ts if it needed.
This question is probably similar to this one, but even there the solution ends up modifying the subset of data the algorithm needs, rather than the outside structure.
Here is an MWE:
#include <boost/iterator/transform_iterator.hpp>
#include <vector>
#include <algorithm>
#include <iostream>
struct A {
int x;
int y;
};
template <typename It>
void my_invert(It begin, It end) {
while (begin < end) {
std::iter_swap(begin++, --end);
}
}
template <typename It>
void my_print(It begin, It end) {
for (; begin != end; ++begin)
std::cout << (*begin) << ' ';
std::cout << '\n';
}
int main() {
std::vector<int> x{7,6,5,4,3,2};
my_invert(std::begin(x), std::end(x));
my_print(std::begin(x), std::end(x));
auto unwrap = +[](const A & a) { return a.x; };
std::vector<A> y{{9,8}, {7,6}, {5,4}, {3,2}};
auto begin = boost::make_transform_iterator(std::begin(y), unwrap);
auto end = boost::make_transform_iterator(std::end(y), unwrap);
//my_invert(begin, end); // Does not work.
my_print(begin, end);
return 0;
}
Accessing the underlying iterator
You could access the base() property of transform_iterator (inherited publicly from iterator_adaptor) to implement your custom transform_iter_swap, for swapping the underlying data of the wrapped iterator.
E.g.:
template<class IteratorAdaptor>
void transform_iter_swap(IteratorAdaptor a, IteratorAdaptor b)
{
std::swap(*a.base(), *b.base());
}
template <typename It>
void my_invert(It begin, It end) {
while (begin < end) {
transform_iter_swap(begin++, --end);
}
}
After which your example (omitting the std::vector part) runs as expected:
my_invert(begin, end); // OK
my_print(begin, end); // 3 5 7 9
If you want a general function template to cover both the boost (adaptor) iterators as well as typical iterators, you could e.g. use if constexpr (C++17) based on whether the iterators public typedef iterator_category derives from boost::iterators::no_traversal_tag or not:
// expand includes with
#include <boost/iterator/iterator_categories.hpp>
template <class It>
void iter_swap(It a, It b) {
if constexpr(std::is_base_of<
boost::iterators::no_traversal_tag,
typename It::iterator_category>::value) {
std::swap(*a.base(), *b.base());
}
else {
std::swap(*a, *b);
}
}
template <typename It>
void my_invert(It begin, It end) {
while (begin < end) {
iter_swap(begin++, --end);
}
}
The problem comes from the unary predicate you've passed. Notice, that since you allow the return type to be deduced, the return type is deduced to be an int, a copy is returned, and the compilation fails when you try to swap two unmodifiable ints. However, if you were to specify the return type to be int&, like so:
auto unwrap = [](A & a)->int& { return a.x; }; // explicitly demand to return ref
It will compile, and reverse the elements. Tested on gcc 8.1.0 and clang 6.0.0.

Receive iterators as arguments and know class

I need to create a method that receives iterators as arguments and return a templated collection of the same type.
I created a minimal example the demonstrates my need:
#include <list>
#include <iostream>
using namespace std;
class A {
int i;
public:
A(int _i) : i(_i) {}
operator int() {
return i;
}
};
class B {
int i;
public:
B(int _i) : i(_i) {}
operator int() {
return i;
}
};
template <class T>
list<T> method(typename list<T>::iterator begin, typename list<T>::iterator end) {
list<T> res; // I need the template class here
for (; begin != end; begin++) {
cout << *begin; // Whatever...
}
return res;
}
int main() {
list<A> listA = {1, 2, 3};
list<B> listB = {4, 5, 6};
auto res1 = method(listA.begin(), listA.end()); // Cannot change
auto res2 = method(listB.begin(), listB.end()); // Cannot change
}
This is not a working example, but I am looking for a way to make this work.
The important part is the method and it's arguments, and that it will return a templated class with T. So I can change the method as much as i want but the auto res1 = method(listA.begin(), listA.end()); should stay the same. (not my code)
How can I do something like this?
In this particular case (if you know that it's std::list) you can get value_type from iterator itself:
template <class T>
auto method(T begin, T end) {
list<typename T::value_type> res; // I need the template class here
for (; begin != end; begin++) {
cout << *begin; // Whatever...
}
return res;
}
value_type = U only for std::list<U>
typename list<T>::iterator is a non-deduced context. You need to either pass the container itself or specify it as an explicit template argument.
Iterators designate a sequence; they do not have to be associated with a "collection". For example, you can create an iterator that reads input from the console.
If you want to restrict a function to only work with containers, then write it that way:
template <class T>
T f(const T& container) {
// whatever; code that uses begin() and end()?
}
This isn't possible. You can have iterators that don't correspond to any container. The function that calls method should create an empty list and pass a back_inserter to the list as the third argument to method. Use std:copy as an example of what your method should look like.

C++ algorithm for applying a function to consecutive elements

Is there a simpler way to write this, e.g. by using an STL or boost algorithm?
std::vector<int> v { 0, 1, 2, 3 }; // any generic STL container
std::vector<int> result;
std::transform(v.begin(), v.end() - 1, // (0, 1, 2)
v.begin() + 1, // (1, 2, 3)
std::back_inserter(result),
[](int a, int b){ return a + b; }); // any binary function
// result == { 1, 3, 5 }
I propose using a for loop:
for(std::vector::size_type i = 0; i < v.size() - 1; i++)
result.push_back(v[i] + v[i+1])
A more generic loop for bidirectional iterators:
// let begin and end be iterators to corresponding position
// let out be an output iterator
// let fun be a binary function
for (auto it = begin, end_it = std::prev(end); it != end_it; ++it)
*out++ = fun(*it, *std::next(it));
We can go a bit further and write a loop for forward iterators:
if(begin != end) {
for (auto curr = begin,
nxt = std::next(begin); nxt != end; ++curr, ++nxt) {
*out++ = fun(*curr, *nxt);
}
}
Finally, and algorithm for input iterators. However, this one requires that the value type is copyable.
if(begin != end) {
auto left = *begin;
for (auto it = std::next(begin); it != end; ++it) {
auto right = *it;
*out++ = fun(left, right);
left = right;
}
}
The binary version of std::transform can be used.
The std::adjacent_find/std::adjacent_difference algorithms can be abused.
std::adjacent_difference is for exactly this, but as you mentioned, it copies the first element to the result, which you don't want.
Using Boost.Iterator, it's pretty easy to make a back_inserter which throws away the first element.
#include <boost/function_output_iterator.hpp>
template <class Container>
auto mybackinsrtr(Container& cont) {
// Throw away the first element
return boost::make_function_output_iterator(
[&cont](auto i) -> void {
static bool first = true;
if (first)
first = false;
else
cont.push_back(i);
});
}
Then you can #include <boost/range/numeric.hpp> and do this:
std::vector<int> v { 0, 1, 2, 3 }; // any generic STL container
std::vector<int> result;
boost::adjacent_difference(v, mybackinsrtr(result), std::plus<>{}); // any binary function
See it on ideone
When you want your binary function to return a different type (such as a string), the above solution won't work because, even though the insertion cont.push_back(i) is never called for the first copied element, it still must be compiled and it won't go.
So, you can instead make a back_inserter that ignores any elements of a different type than go in the container. This will ignore the first, copied, element, and accept the rest.
template <class Container>
struct ignore_insert {
// Ignore any insertions that don't match container's type
Container& cont;
ignore_insert(Container& c) : cont(c) {}
void operator() (typename Container::value_type i) {
cont.push_back(i);
}
template <typename T>
void operator() (T) {}
};
template <class Container>
auto ignoreinsrtr(Container& cont) {
return boost::make_function_output_iterator(ignore_insert<Container>{cont});
}
Then you can use it similarly.
std::vector<int> v { 0, 1, 2, 3 }; // any generic STL container
std::vector<std::string> result;
boost::adjacent_difference(v, ignoreinsrtr(result), [](int a, int b){ return std::to_string(a+b); });
On ideone
I would write your own algorithm to apply a functor to each pair of elements in the container.
(Shameless blurb) In my ACCU presentation this year, "STL Algorithms – How to Use Them and How to Write Your Own", showed how to write one like this. I called it adjacent_pair (about 25:00 into the video)
template <typename ForwardIterator, typename Func>
void adjacent_pair(ForwardIterator first, ForwardIterator last, Func f)
{
if (first != last)
{
ForwardIterator trailer = first;
++first;
for (; first != last; ++first, ++trailer)
f(*trailer, *first);
}
}
Stephan T. Lavavej has written a nice adjacent_iterator class here:
How do I loop over consecutive pairs in an STL container using range-based loop syntax?
This could also be used here.

Return template iterator based on argument class

I'm writing an algorithm function that uses iterators. This function should work with both normal and constant iterators, and importantly the class that these iterators come from is NOT a template, I know it in advance.
Is there any way to enforce in the following definition that the iterators come from a specific class?
// This is an example, A could be any other class with exposed iterators.
using A = std::vector<int>;
// How to enforce that Iterator is an iterator from A?
template <typename Iterator>
Iterator foo(Iterator begin, Iterator end);
...
A a;
auto it = foo(a.begin(), a.end());
*it = 4; // Must compile
// --------
const A a;
auto it = foo(a.begin(), a.end());
*it = 4; // Must not compile
// --------
B b;
auto it = foo(b.begin(), b.end()); // Should not compile.
In this case, foo does not modify directly the supplied range, but allows for modification of the result iterator if the supplied range was modifiable in the first place. It would be nice if this could be done without replicating code.
Simply don't use template:
A::iterator foo(A::iterator begin, A::iterator end);
You might use std::enable_if:
#include <type_traits>
#include <vector>
class X : public std::vector<int> {};
class Y : public std::vector<double> {};
template <typename Iterator>
typename std::enable_if<std::is_same<Iterator, X::iterator>()
|| std::is_same<Iterator, X::const_iterator>(),
Iterator>::type
foo(Iterator begin, Iterator end) {
return begin;
}
int main() {
X x0;
auto i0 = foo(x0.begin(), x0.end());
*i0 = 4; // Must compile
const X x1;
auto i1 = foo(x1.begin(), x1.end());
// error: assignment of read-only location
//*i1 = 4; // Must not compile
Y y;
// error: no type named ‘type’ in ‘struct std::enable_if ...
//auto i2 = foo(y.begin(), y.end()); // Should not compile
}
Or static_assert as a nicer alternative:
template <typename Iterator>
Iterator foo(Iterator begin, Iterator end) {
static_assert(std::is_same<Iterator, X::iterator>()
|| std::is_same<Iterator, X::const_iterator>(),
"No X::iteator or X::const_iterator");
return begin;
}
You could use a function overload check:
inline void check_must_be_iterator_from_A(A::iterator) {}
inline void check_must_be_iterator_from_A(A::const_iterator) {}
template <typename I>
I foo(I a, I b) {
typedef void (*must_be_iterator_from_A)(I);
must_be_iterator_from_A c = &check_must_be_iterator_from_A;
//...
}
The other option is to use template specialization to create a constraint, which makes the code within the function terser and definitely without runtime penalty regardless of compiler:
template <typename I> struct is_iterator_from_A;
template <> struct is_iterator_from_A<A::iterator>{ enum {ok}; };
template <> struct is_iterator_from_A<A::const_iterator>{ enum {ok}; };
template <typename I>
I bar(I a, I b) {
is_iterator_from_A<I>::ok;
return a;
}
I would first write your function for const iterators and then write a wrapper around it for the non_const case:
A::const_iterator foo(A::const_iterator start, A::const_iterator end) {
std::cout << " Called foo with const iterators " << std::endl;
return start;
}
A::iterator foo(A::iterator start, A::iterator end) {
std::cout << " Called foo with non_const iterators " << std::endl;
auto it = foo(static_cast<A::const_iterator>(start), static_cast<A::const_iterator>(end));
return start + std::distance(static_cast<A::const_iterator>(start), it);
}
If you inline the wrapper function you should get zero (or nearly zero) overhead.
EDIT:
In case your container doesn't provide random access iterators distance has linear complexity and you will have to use std::advance instead of the "+"-operator, so depending on your performance requirements this might not be a viable solution for you.

Clean ways to write multiple 'for' loops

For an array with multiple dimensions, we usually need to write a for loop for each of its dimensions. For example:
vector< vector< vector<int> > > A;
for (int k=0; k<A.size(); k++)
{
for (int i=0; i<A[k].size(); i++)
{
for (int j=0; j<A[k][i].size(); j++)
{
do_something_on_A(A[k][i][j]);
}
}
}
double B[10][8][5];
for (int k=0; k<10; k++)
{
for (int i=0; i<8; i++)
{
for (int j=0; j<5; j++)
{
do_something_on_B(B[k][i][j]);
}
}
}
You see this kind of for-for-for loops in our code frequently. How do I use macros to define the for-for-for loops so that I don't need to re-write this kind of code every time? Is there a better way to do this?
The first thing is that you don't use such a data structure. If
you need a three dimensional matrix, you define one:
class Matrix3D
{
int x;
int y;
int z;
std::vector<int> myData;
public:
// ...
int& operator()( int i, int j, int k )
{
return myData[ ((i * y) + j) * z + k ];
}
};
Or if you want to index using [][][], you need an operator[]
which returns a proxy.
Once you've done this, if you find that you constantly have to
iterate as you've presented, you expose an iterator which will
support it:
class Matrix3D
{
// as above...
typedef std::vector<int>::iterator iterator;
iterator begin() { return myData.begin(); }
iterator end() { return myData.end(); }
};
Then you just write:
for ( Matrix3D::iterator iter = m.begin(); iter != m.end(); ++ iter ) {
// ...
}
(or just:
for ( auto& elem: m ) {
}
if you have C++11.)
And if you need the three indexes during such iterations, it's
possible to create an iterator which exposes them:
class Matrix3D
{
// ...
class iterator : private std::vector<int>::iterator
{
Matrix3D const* owner;
public:
iterator( Matrix3D const* owner,
std::vector<int>::iterator iter )
: std::vector<int>::iterator( iter )
, owner( owner )
{
}
using std::vector<int>::iterator::operator++;
// and so on for all of the iterator operations...
int i() const
{
((*this) - owner->myData.begin()) / (owner->y * owner->z);
}
// ...
};
};
Using a macro to hide the for loops can be a lot confusing, just to save few characters. I'd use range-for loops instead:
for (auto& k : A)
for (auto& i : k)
for (auto& j : i)
do_something_on_A(j);
Of course you can replace auto& with const auto& if you are, in fact, not modifying the data.
Something like this can help:
template <typename Container, typename Function>
void for_each3d(const Container &container, Function function)
{
for (const auto &i: container)
for (const auto &j: i)
for (const auto &k: j)
function(k);
}
int main()
{
vector< vector< vector<int> > > A;
for_each3d(A, [](int i){ std::cout << i << std::endl; });
double B[10][8][5] = { /* ... */ };
for_each3d(B, [](double i){ std::cout << i << std::endl; });
}
In order to make it N-ary we need some template magic. First of all we should create SFINAE structure to distinguish whether this value or container. The default implementation for values, and specialisations for arrays and each of the container types. How #Zeta notes, we can determine the standard containers by the nested iterator type (ideally we should check whether the type can be used with range-base for or not).
template <typename T>
struct has_iterator
{
template <typename C>
constexpr static std::true_type test(typename C::iterator *);
template <typename>
constexpr static std::false_type test(...);
constexpr static bool value = std::is_same<
std::true_type, decltype(test<typename std::remove_reference<T>::type>(0))
>::value;
};
template <typename T>
struct is_container : has_iterator<T> {};
template <typename T>
struct is_container<T[]> : std::true_type {};
template <typename T, std::size_t N>
struct is_container<T[N]> : std::true_type {};
template <class... Args>
struct is_container<std::vector<Args...>> : std::true_type {};
Implementation of for_each is straightforward. The default function will call function:
template <typename Value, typename Function>
typename std::enable_if<!is_container<Value>::value, void>::type
rfor_each(const Value &value, Function function)
{
function(value);
}
And the specialisation will call itself recursively:
template <typename Container, typename Function>
typename std::enable_if<is_container<Container>::value, void>::type
rfor_each(const Container &container, Function function)
{
for (const auto &i: container)
rfor_each(i, function);
}
And voila:
int main()
{
using namespace std;
vector< vector< vector<int> > > A;
A.resize(3, vector<vector<int> >(3, vector<int>(3, 5)));
rfor_each(A, [](int i){ std::cout << i << ", "; });
// 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
std::cout << std::endl;
double B[3][3] = { { 1. } };
rfor_each(B, [](double i){ std::cout << i << ", "; });
// 1, 0, 0, 0, 0, 0, 0, 0, 0,
}
Also this will not work for pointers (arrays allocated in heap).
Most of the answers simply demonstrate how C++ can be twisted into incomprehensible syntactic extensions, IMHO.
By defining whatever templates or macros, you just force other programmers to understand bits of obfuscated code designed to hide other bits of obfuscated code.
You will force every guy who reads your code to have template expertise, just to avoid doing your job of defining objects with clear semantics.
If you decided to use raw data like 3 dimensional arrays, just live with it, or else define a class that gives some understandable meaning to your data.
for (auto& k : A)
for (auto& i : k)
for (auto& current_A : i)
do_something_on_A(current_A);
is just consistent with the cryptic definition of a vector of vector of vector of int with no explicit semantics.
#include "stdio.h"
#define FOR(i, from, to) for(int i = from; i < to; ++i)
#define TRIPLE_FOR(i, j, k, i_from, i_to, j_from, j_to, k_from, k_to) FOR(i, i_from, i_to) FOR(j, j_from, j_to) FOR(k, k_from, k_to)
int main()
{
TRIPLE_FOR(i, j, k, 0, 3, 0, 4, 0, 2)
{
printf("i: %d, j: %d, k: %d\n", i, j, k);
}
return 0;
}
UPDATE: I know, that you asked for it, but you'd better not use that :)
One idea is to write an iterable pseudo-container class that "contains" the set of all multi-index tuples you'll index over. No implementation here because it'll take too long but the idea is that you should be able to write...
multi_index mi (10, 8, 5);
// The pseudo-container whose iterators give {0,0,0}, {0,0,1}, ...
for (auto i : mi)
{
// In here, use i[0], i[1] and i[2] to access the three index values.
}
I see many answers here that work recursively, detecting if the input is a container or not. Instead, why not detect if the current layer is the same type as the function takes? It's far simpler, and allows for more powerful functions:
//This is roughly what we want for values
template<class input_type, class func_type>
void rfor_each(input_type&& input, func_type&& func)
{ func(input);}
//This is roughly what we want for containers
template<class input_type, class func_type>
void rfor_each(input_type&& input, func_type&& func)
{ for(auto&& i : input) rfor_each(i, func);}
However, this (obviously) gives us ambiguity errors. So we use SFINAE to detect if the current input fits in the function or not
//Compiler knows to only use this if it can pass input to func
template<class input_type, class func_type>
auto rfor_each(input_type&& input, func_type&& func) ->decltype(func(input))
{ return func(input);}
//Otherwise, it always uses this one
template<class input_type, class func_type>
void rfor_each(input_type&& input, func_type&& func)
{ for(auto&& i : input) rfor_each(i, func);}
This now handles the containers correctly, but the compiler still considers this ambiguous for input_types that can be passed to the function. So we use a standard C++03 trick to make it prefer the first function over the second, of also passing a zero, and making the one we prefer accept and int, and the other takes ...
template<class input_type, class func_type>
auto rfor_each(input_type&& input, func_type&& func, int) ->decltype(func(input))
{ return func(input);}
//passing the zero causes it to look for a function that takes an int
//and only uses ... if it absolutely has to
template<class input_type, class func_type>
void rfor_each(input_type&& input, func_type&& func, ...)
{ for(auto&& i : input) rfor_each(i, func, 0);}
That's it. Six, relatively simple lines of code, and you can iterate over values, rows, or any other sub-unit, unlike all of the other answers.
#include <iostream>
int main()
{
std::cout << std::endl;
double B[3][3] = { { 1.2 } };
rfor_each(B[1], [](double&v){v = 5;}); //iterate over doubles
auto write = [](double (&i)[3]) //iterate over rows
{
std::cout << "{";
for(double d : i)
std::cout << d << ", ";
std::cout << "}\n";
};
rfor_each(B, write );
};
Proof of compilation and execution here and here
If you wanted a more convenient syntax in C++11, you could add a macro. (Following is untested)
template<class container>
struct container_unroller {
container& c;
container_unroller(container& c_) :c(c_) {}
template<class lambda>
void operator <=(lambda&& l) {rfor_each(c, l);}
};
#define FOR_NESTED(type, index, container) container_unroller(container) <= [](type& index)
//note that this can't handle functions, function pointers, raw arrays, or other complex bits
int main() {
double B[3][3] = { { 1.2 } };
FOR_NESTED(double, v, B) {
std::cout << v << ", ";
}
}
I caveat this answer with the following statement: this would only work if you were operating on an actual array - it wouldn't work for your example using std::vector.
If you are performing the same operation on every element of a multi-dimensional array, without caring about the position of each item, then you can take advantage of the fact that arrays are placed in contiguous memory locations, and treat the whole thing as one big one-dimensional array. For example, if we wanted to multiply every element by 2.0 in your second example:
double B[3][3][3];
// ... set the values somehow
double* begin = &B[0][0][0]; // get a pointer to the first element
double* const end = &B[3][0][0]; // get a (const) pointer past the last element
for (; end > begin; ++begin) {
(*begin) *= 2.0;
}
Note that using the above approach also allows the use of some "proper" C++ techniques:
double do_something(double d) {
return d * 2.0;
}
...
double B[3][3][3];
// ... set the values somehow
double* begin = &B[0][0][0]; // get a pointer to the first element
double* end = &B[3][0][0]; // get a pointer past the last element
std::transform(begin, end, begin, do_something);
I don't generally advise this approach (preferring something like Jefffrey's answer), as it relies on having defined sizes for your arrays, but in some cases it can be useful.
I was kind of shocked that no one proposed some arithmetic-magic based loop to do the work. Since C. Wang is looking for a solution with no nested loops, I'll propose one:
double B[10][8][5];
int index = 0;
while (index < (10 * 8 * 5))
{
const int x = index % 10,
y = (index / 10) % 10,
z = index / 100;
do_something_on_B(B[x][y][z]);
++index;
}
Well, this approach isn't elegant and flexible, so we could pack all the process into a template function:
template <typename F, typename T, int X, int Y, int Z>
void iterate_all(T (&xyz)[X][Y][Z], F func)
{
const int limit = X * Y * Z;
int index = 0;
while (index < limit)
{
const int x = index % X,
y = (index / X) % Y,
z = index / (X * Y);
func(xyz[x][y][z]);
++index;
}
}
This template function can be expressed in the form of nested loops as well:
template <typename F, typename T, int X, int Y, int Z>
void iterate_all(T (&xyz)[X][Y][Z], F func)
{
for (auto &yz : xyz)
{
for (auto &z : yz)
{
for (auto &v : z)
{
func(v);
}
}
}
}
And can be used providing a 3D array of arbitrary size plus the function name, letting the parameter deduction do the hard work of counting the size of each dimension:
int main()
{
int A[10][8][5] = {{{0, 1}, {2, 3}}, {{4, 5}, {6, 7}}};
int B[7][99][8] = {{{0, 1}, {2, 3}}, {{4, 5}, {6, 7}}};
iterate_all(A, do_something_on_A);
iterate_all(B, do_something_on_B);
return 0;
}
Towards more generic
But once again, it lacks of flexibility 'cause it only works for 3D arrays, but using SFINAE we can do the work for arrays of an arbitrary dimension, first we need a template function which iterates arrays of rank 1:
template<typename F, typename A>
typename std::enable_if< std::rank<A>::value == 1 >::type
iterate_all(A &xyz, F func)
{
for (auto &v : xyz)
{
func(v);
}
}
And another one which iterates arrays of any rank, doing the recursion:
template<typename F, typename A>
typename std::enable_if< std::rank<A>::value != 1 >::type
iterate_all(A &xyz, F func)
{
for (auto &v : xyz)
{
iterate_all(v, func);
}
}
This allows us to iterate all the elements in all the dimensions of a arbitrary-dimensions arbitrary-sized array.
Working with std::vector
For the multiple nested vector, the solution ressembles the one of arbitrary-dimensions arbitrary-sized array, but without SFINAE: First we will need a template function that iterates std::vectors and calls the desired function:
template <typename F, typename T, template<typename, typename> class V>
void iterate_all(V<T, std::allocator<T>> &xyz, F func)
{
for (auto &v : xyz)
{
func(v);
}
}
And another template function that iterates any kind of vector of vectors and calls himself:
template <typename F, typename T, template<typename, typename> class V>
void iterate_all(V<V<T, std::allocator<T>>, std::allocator<V<T, std::allocator<T>>>> &xyz, F func)
{
for (auto &v : xyz)
{
iterate_all(v, func);
}
}
Regardless of the nesting level, iterate_all will call the vector-of-vectors version unless the vector-of-values version is a better match thus ending the recursivity.
int main()
{
using V0 = std::vector< std::vector< std::vector<int> > >;
using V1 = std::vector< std::vector< std::vector< std::vector< std::vector<int> > > > >;
V0 A0 = {{{0, 1}, {2, 3}}, {{4, 5}, {6, 7}}};
V1 A1 = {{{{{9, 8}, {7, 6}}, {{5, 4}, {3, 2}}}}};
iterate_all(A0, do_something_on_A);
iterate_all(A1, do_something_on_A);
return 0;
}
I think that the function body is pretty simple and straight-forward... I wonder if the compiler could unroll this loops (I'm almost sure that most compilers could unroll the first example).
See live demo here.
Hope it helps.
Use something along these lines (its pseudo-code, but the idea stays the same). You extract the pattern to loop once, and apply a different function each time.
doOn( structure A, operator o)
{
for (int k=0; k<A.size(); k++)
{
for (int i=0; i<A[k].size(); i++)
{
for (int j=0; j<A[k][i].size(); j++)
{
o.actOn(A[k][i][j]);
}
}
}
}
doOn(a, function12)
doOn(a, function13)
Stick with the nested for loops!
All the methods suggested here have disadvantages in terms of either readability or flexibility.
What happens if you need to use the results of an inner loop for the processing in the outer loop? What happens if you need a value from the outer loop within your inner loop? Most of the "encapsulation" methods fail here.
Trust me I have seen several attempts to "clean up" nested for loops and in the end it turns out that the nested loop is actually the cleanest and most flexible solution.
One technique I've used is templates. E.g.:
template<typename T> void do_something_on_A(std::vector<T> &vec) {
for (auto& i : vec) { // can use a simple for loop in C++03
do_something_on_A(i);
}
}
void do_something_on_A(int &val) {
// this is where your `do_something_on_A` method goes
}
Then you simply call do_something_on_A(A) in your main code. The template function gets created once for each dimension, the first time with T = std::vector<std::vector<int>>, the second time with with T = std::vector<int>.
You could make this more generic using std::function (or function-like objects in C++03) as a second argument if you want:
template<typename T> void do_something_on_vec(std::vector<T> &vec, std::function &func) {
for (auto& i : vec) { // can use a simple for loop in C++03
do_something_on_vec(i, func);
}
}
template<typename T> void do_something_on_vec(T &val, std::function &func) {
func(val);
}
Then call it like:
do_something_on_vec(A, std::function(do_something_on_A));
This works even though the functions have the same signature because the first function is a better match for anything with std::vector in the type.
You could generate indices in one loop like this (A, B, C are dimensions):
int A = 4, B = 3, C = 3;
for(int i=0; i<A*B*C; ++i)
{
int a = i/(B*C);
int b = (i-((B*C)*(i/(B*C))))/C;
int c = i%C;
}
One thing you may want to try if you only have statements in the inner-most loop - and your concern is more about the overly verbose nature of the code - is to use a different whitespace scheme. This will only work if you can state your for loops compactly enough so that they all fit on one line.
For your first example, I would rewrite it as:
vector< vector< vector<int> > > A;
int i,j,k;
for(k=0;k<A.size();k++) for(i=0;i<A[k].size();i++) for(j=0;j<A[k][i].size();j++) {
do_something_on_A(A[k][i][j]);
}
This is kinda pushing it because you are calling functions in the outer loops which is equivalent to putting statements in them. I have removed all unnecessary white-space and it may be passible.
The second example is much better:
double B[10][8][5];
int i,j,k;
for(k=0;k<10;k++) for(i=0;i<8;i++) for(j=0;j<5;j++) {
do_something_on_B(B[k][i][j]);
}
This may be different whitespace convention than you like to use, but it achieves a compact result that nonetheless does not require any knowledge beyond C/C++ (such as macro conventions) and does not require any trickery like macros.
If you really want a macro, you could then take this a step further with something like:
#define FOR3(a,b,c,d,e,f,g,h,i) for(a;b;c) for(d;e;f) for(g;h;i)
which would change the second example to:
double B[10][8][5];
int i,j,k;
FOR3(k=0,k<10,k++,i=0,i<8,i++,j=0,j<5,j++) {
do_something_on_B(B[k][i][j]);
}
and the first example fares better too:
vector< vector< vector<int> > > A;
int i,j,k;
FOR3(k=0,k<A.size(),k++,i=0,i<A[k].size(),i++,j=0,j<A[k][i].size(),j++) {
do_something_on_A(A[k][i][j]);
}
Hopefully you can tell fairly easily which statements go with which for statements. Also, beware the commas, now you can't use them in a single clause of any of the fors.
Here is a C++11 implementation that handles everything iterable. Other solutions restrict themselves to containers with ::iterator typedefs or arrays: but a for_each is about iteration, not being a container.
I also isolate the SFINAE to a single spot in the is_iterable trait. The dispatching (between elements and iterables) is done via tag dispatching, which I find is a clearer solution.
The containers and the functions applied to elements are all perfect forwarded, allowing both const and non-const access to the ranges and functors.
#include <utility>
#include <iterator>
The template function I am implementing. Everything else could go into a details namespace:
template<typename C, typename F>
void for_each_flat( C&& c, F&& f );
Tag dispatching is much cleaner than SFINAE. These two are used for iterable objects and non iterable objects respectively. The last iteration of the first could use perfect forwarding, but I am lazy:
template<typename C, typename F>
void for_each_flat_helper( C&& c, F&& f, std::true_type /*is_iterable*/ ) {
for( auto&& x : std::forward<C>(c) )
for_each_flat(std::forward<decltype(x)>(x), f);
}
template<typename D, typename F>
void for_each_flat_helper( D&& data, F&& f, std::false_type /*is_iterable*/ ) {
std::forward<F>(f)(std::forward<D>(data));
}
This is some boilerplate required in order to write is_iterable. I do argument dependent lookup on begin and end in a detail namespace. This emulates what a for( auto x : y ) loop does reasonably well:
namespace adl_aux {
using std::begin; using std::end;
template<typename C> decltype( begin( std::declval<C>() ) ) adl_begin(C&&);
template<typename C> decltype( end( std::declval<C>() ) ) adl_end(C&&);
}
using adl_aux::adl_begin;
using adl_aux::adl_end;
The TypeSink is useful to test if code is valid. You do TypeSink< decltype( code ) > and if the code is valid, the expression is void. If the code is not valid, SFINAE kicks in and the specialization is blocked:
template<typename> struct type_sink {typedef void type;};
template<typename T> using TypeSink = typename type_sink<T>::type;
template<typename T, typename=void>
struct is_iterable:std::false_type{};
template<typename T>
struct is_iterable<T, TypeSink< decltype( adl_begin( std::declval<T>() ) ) >>:std::true_type{};
I only test for begin. An adl_end test could also be done.
The final implementation of for_each_flat ends up being extremely simple:
template<typename C, typename F>
void for_each_flat( C&& c, F&& f ) {
for_each_flat_helper( std::forward<C>(c), std::forward<F>(f), is_iterable<C>() );
}
Live example
This is way down at the bottom: feel free to poach for the top answers, which are solid. I just wanted a few better techniques to be used!
Firstly, you shouldn't use a vector of vectors of vectors. Each vector is guaranteed to have contiguous memory, but the "global" memory of a vector of vectors isn't (and probably won't be). You should use the standard library type array instead of C-style arrays as well.
using std::array;
array<array<array<double, 5>, 8>, 10> B;
for (int k=0; k<10; k++)
for (int i=0; i<8; i++)
for (int j=0; j<5; j++)
do_something_on_B(B[k][i][j]);
// or, if you really don't like that, at least do this:
for (int k=0; k<10; k++) {
for (int i=0; i<8; i++) {
for (int j=0; j<5; j++) {
do_something_on_B(B[k][i][j]);
}
}
}
Better yet though, you could define a simple 3D matrix class:
#include <stdexcept>
#include <array>
using std::size_t;
template <size_t M, size_t N, size_t P>
class matrix3d {
static_assert(M > 0 && N > 0 && P > 0,
"Dimensions must be greater than 0.");
std::array<std::array<std::array<double, P>, N>, M> contents;
public:
double& at(size_t i, size_t j, size_t k)
{
if (i >= M || j >= N || k >= P)
throw out_of_range("Index out of range.");
return contents[i][j][k];
}
double& operator(size_t i, size_t j, size_t k)
{
return contents[i][j][k];
}
};
int main()
{
matrix3d<10, 8, 5> B;
for (int k=0; k<10; k++)
for (int i=0; i<8; i++)
for (int j=0; j<5; j++)
do_something_on_B(B(i,j,k));
return 0;
}
You could go further and make it fully const-correct, add matrix multiplication (proper and element-wise), multiplication by vectors, etc. You could even generalise it to different types (I'd make it template if you mainly use doubles).
You could also add proxy objects so you can do B[i] or B[i][j]. They could return vectors (in the mathematical sense) and matrices full of double&, potentially?