std::algorithm Read access violation - c++

I'm setting up the face detection with delay camera in opencv/c++. How can I do it without errors?
For detection I'm used CascadeClassifier.Detectmultiscale.
void detectAndDraw(Mat& img, CascadeClassifier& cascade,
double scale)
{
vector<Rect> faces;
Mat gray;
cvtColor(img, gray, COLOR_BGR2GRAY); // Convert to Gray Scale
// Resize the Grayscale Image
equalizeHist(gray, gray);
// Detect faces of different sizes using cascade classifier
cascade.detectMultiScale(gray, faces);
// Draw circles around the faces
for(int i = 0; i<=faces.size();i++){
//and cout of x,y,width,height
}
I have expexted the details but I have a error with Access Reading Memory in algorithm.
Photo:

Looks like you have an off-by-one error in this loop:
for(int i = 0; i <= faces.size(); i++) {
...
}
That should probably be a < rather than <=, since otherwise on the last iteration your value of i will be out of bounds.

Related

Can't detected bounding rect of id card

I want to detect the bounding rectangle of an German ID card within an image by using OpenCV.
This is what my code looks like:
capture >> frame;
cv::resize(frame, frame, cv::Size(512,256));
cv::Mat grayScaledFrame, blurredFrame, cannyFrame;
cv::cvtColor(frame, grayScaledFrame, cv::COLOR_BGR2GRAY);
cv::GaussianBlur(grayScaledFrame, blurredFrame, cv::Size(9,9), 1);
cv::Canny(blurredFrame, cannyFrame, 40, 70);
// CONTOURS
std::vector<std::vector<cv::Point>> contours;
cv::findContours(cannyFrame, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);
// SORT
int maxArea = 0;
std::vector<cv::Point> contour;
for(int i = 0; i < contours.size(); i++) {
int thisArea = cv::contourArea(contours.at(i));
if(thisArea > maxArea) {
maxArea = thisArea;
contour = contours.at(i);
}
}
cv::Rect borderBox = cv::boundingRect(contour);
cv::rectangle(cannyFrame, borderBox, cv::Scalar{255, 32, 32}, 8);
cv::imshow("Webcam", cannyFrame);
The result looks like this:
RESULT
There are some rectangles detected but not the big one I'm interested in.
I've already tried different thresholds for Canny and also different kernel sizes for Gaussian Blur.
Best regards
First of all, as the environmental conditions change, the parameters of the code change, so it is necessary to standardize the environment (light, distance to the object, etc.).
To get this detection right, put the card at a fixed distance from the camera and calculate the area of the rectangles.
When the card is at a certain distance from the camera, you get approximate reference values of the card's area. Then, when drawing a rectangle, you use values within a specified tolerance range.

Drawing Rectangle around difference area

I have a question which i am unable to resolve. I am taking difference of two images using OpenCV. I am getting output in a seperate Mat. Difference method used is the AbsDiff method. Here is the code.
char imgName[15];
Mat img1 = imread(image_path1, COLOR_BGR2GRAY);
Mat img2 = imread(image_path2, COLOR_BGR2GRAY);
/*cvtColor(img1, img1, CV_BGR2GRAY);
cvtColor(img2, img2, CV_BGR2GRAY);*/
cv::Mat diffImage;
cv::absdiff(img2, img1, diffImage);
cv::Mat foregroundMask = cv::Mat::zeros(diffImage.rows, diffImage.cols, CV_8UC3);
float threshold = 30.0f;
float dist;
for(int j=0; j<diffImage.rows; ++j)
{
for(int i=0; i<diffImage.cols; ++i)
{
cv::Vec3b pix = diffImage.at<cv::Vec3b>(j,i);
dist = (pix[0]*pix[0] + pix[1]*pix[1] + pix[2]*pix[2]);
dist = sqrt(dist);
if(dist>threshold)
{
foregroundMask.at<unsigned char>(j,i) = 255;
}
}
}
sprintf(imgName,"D:/outputer/d.jpg");
imwrite(imgName, diffImage);
I want to bound the difference part in a rectangle. findContours is drawing too many contours. but i only need a particular portion. My diff image is
I want to draw a single rectangle around all the five dials.
Please point me to right direction.
Regards,
I would search for the highest value for i index giving a non black pixel; that's the right border.
The lowest non black i is the left border. Similar for j.
You can:
binarize the image with a threshold. Background will be 0.
Use findNonZero to retrieve all points that are not 0, i.e. all foreground points.
use boundingRect on the retrieved points.
Result:
Code:
#include <opencv2/opencv.hpp>
using namespace cv;
int main()
{
// Load image (grayscale)
Mat1b img = imread("path_to_image", IMREAD_GRAYSCALE);
// Binarize image
Mat1b bin = img > 70;
// Find non-black points
vector<Point> points;
findNonZero(bin, points);
// Get bounding rect
Rect box = boundingRect(points);
// Draw (in color)
Mat3b out;
cvtColor(img, out, COLOR_GRAY2BGR);
rectangle(out, box, Scalar(0,255,0), 3);
// Show
imshow("Result", out);
waitKey();
return 0;
}
Find contours, it will output a set of contours as std::vector<std::vector<cv::Point> let us call it contours:
std::vector<cv::Point> all_points;
size_t points_count{0};
for(const auto& contour:contours){
points_count+=contour.size();
all_points.reserve(all_points);
std::copy(contour.begin(), contour.end(),
std::back_inserter(all_points));
}
auto bounding_rectnagle=cv::boundingRect(all_points);

Filtering image with OpenCV

I am pretty new to programming. And I want to make program which is able to filtrate image from small objects and non-convex objects so only shapes such as rectangles, triangles, circles etc. stay.
What have I done so far?
I managed to obtain image in binary by two separate ways (color detection and canny function) Then I created contours with function findContours. So that is working flawlessly.
here's the code:
vector<Point> approxShape;
vector<vector<Point>> FiltredContours;
vector<vector<Point>> TRI;
vector<vector<Point>> RECT;
vector<vector<Point>> PENTA;
Mat WSO= Mat::zeros(im.size(), CV_8UC3); //Without Small Objects
for ( int j = 0; j < contours.size(); j++)
{
if ((fabs(contourArea(contours[j]))) >100)
drawContours(WSO, contours, j,Scalar(128,128,128),2,8,hiearchy,0, Point()); // to see how it looks before it goes further
{
approxPolyDP( Mat(contours[j]), approxShape, arcLength(Mat(contours[j]), true) * 0.02, true);
if (isContourConvex(approxShape))
{
FiltredContours.push_back(approxShape);
}
}
}
///--------Show image after filtring small obj. -----
imshow("WSO",WSO);
////--------Filtred-Image-Drawing---------------------
Mat approxmat = Mat::zeros(imHSV.size(),CV_8UC3);
drawContours(approxmat, FiltredContours, -1,barva,2,8,hiearchy,0, Point());//drawContours(approxkresba, FiltredContours, -1,Scalar(255, 0, 0),2,8,hiearchy,0, Point());
namedWindow("Filtred objects",CV_WINDOW_AUTOSIZE);
imshow("Filtred objects",approxmat);
I tried to change parameters in contourArea and in approxPollyDP as well. It still doesn't work the way I thought it would.

Glasses detection

What I'm trying to do is measure the thickness of the eyeglasses frames. I had the idea to measure the thickness of the frame's contours (may be a better way?). I have so far outlined the frame of the glasses, but there are gaps where the lines don't meet. I thought about using HoughLinesP, but I'm not sure if this is what I need.
So far I have conducted the following steps:
Convert image to grayscale
Create ROI around the eye/glasses area
Blur the image
Dilate the image (have done this to remove any thin framed glasses)
Conduct Canny edge detection
Found contours
These are the results:
This is my code so far:
//convert to grayscale
cv::Mat grayscaleImg;
cv::cvtColor( img, grayscaleImg, CV_BGR2GRAY );
//create ROI
cv::Mat eyeAreaROI(grayscaleImg, centreEyesRect);
cv::imshow("roi", eyeAreaROI);
//blur
cv::Mat blurredROI;
cv::blur(eyeAreaROI, blurredROI, Size(3,3));
cv::imshow("blurred", blurredROI);
//dilate thin lines
cv::Mat dilated_dst;
int dilate_elem = 0;
int dilate_size = 1;
int dilate_type = MORPH_RECT;
cv::Mat element = getStructuringElement(dilate_type,
cv::Size(2*dilate_size + 1, 2*dilate_size+1),
cv::Point(dilate_size, dilate_size));
cv::dilate(blurredROI, dilated_dst, element);
cv::imshow("dilate", dilated_dst);
//edge detection
int lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;
cv::Canny(dilated_dst, dilated_dst, lowThreshold, lowThreshold*ratio, kernel_size);
//create matrix of the same type and size as ROI
Mat dst;
dst.create(eyeAreaROI.size(), dilated_dst.type());
dst = Scalar::all(0);
dilated_dst.copyTo(dst, dilated_dst);
cv::imshow("edges", dst);
//join the lines and fill in
vector<Vec4i> hierarchy;
vector<vector<Point>> contours;
cv::findContours(dilated_dst, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE);
cv::imshow("contours", dilated_dst);
I'm not entirely sure what the next steps would be, or as I said above, if I should use HoughLinesP and how to implement it. Any help is very much appreciated!
I think there are 2 main problems.
segment the glasses frame
find the thickness of the segmented frame
I'll now post a way to segment the glasses of your sample image. Maybe this method will work for different images too, but you'll probably have to adjust parameters, or you might be able to use the main ideas.
Main idea is:
First, find the biggest contour in the image, which should be the glasses. Second, find the two biggest contours within the previous found biggest contour, which should be the glasses within the frame!
I use this image as input (which should be your blurred but not dilated image):
// this functions finds the biggest X contours. Probably there are faster ways, but it should work...
std::vector<std::vector<cv::Point>> findBiggestContours(std::vector<std::vector<cv::Point>> contours, int amount)
{
std::vector<std::vector<cv::Point>> sortedContours;
if(amount <= 0) amount = contours.size();
if(amount > contours.size()) amount = contours.size();
for(int chosen = 0; chosen < amount; )
{
double biggestContourArea = 0;
int biggestContourID = -1;
for(unsigned int i=0; i<contours.size() && contours.size(); ++i)
{
double tmpArea = cv::contourArea(contours[i]);
if(tmpArea > biggestContourArea)
{
biggestContourArea = tmpArea;
biggestContourID = i;
}
}
if(biggestContourID >= 0)
{
//std::cout << "found area: " << biggestContourArea << std::endl;
// found biggest contour
// add contour to sorted contours vector:
sortedContours.push_back(contours[biggestContourID]);
chosen++;
// remove biggest contour from original vector:
contours[biggestContourID] = contours.back();
contours.pop_back();
}
else
{
// should never happen except for broken contours with size 0?!?
return sortedContours;
}
}
return sortedContours;
}
int main()
{
cv::Mat input = cv::imread("../Data/glass2.png", CV_LOAD_IMAGE_GRAYSCALE);
cv::Mat inputColors = cv::imread("../Data/glass2.png"); // used for displaying later
cv::imshow("input", input);
//edge detection
int lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;
cv::Mat canny;
cv::Canny(input, canny, lowThreshold, lowThreshold*ratio, kernel_size);
cv::imshow("canny", canny);
// close gaps with "close operator"
cv::Mat mask = canny.clone();
cv::dilate(mask,mask,cv::Mat());
cv::dilate(mask,mask,cv::Mat());
cv::dilate(mask,mask,cv::Mat());
cv::erode(mask,mask,cv::Mat());
cv::erode(mask,mask,cv::Mat());
cv::erode(mask,mask,cv::Mat());
cv::imshow("closed mask",mask);
// extract outermost contour
std::vector<cv::Vec4i> hierarchy;
std::vector<std::vector<cv::Point>> contours;
//cv::findContours(mask, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE);
cv::findContours(mask, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
// find biggest contour which should be the outer contour of the frame
std::vector<std::vector<cv::Point>> biggestContour;
biggestContour = findBiggestContours(contours,1); // find the one biggest contour
if(biggestContour.size() < 1)
{
std::cout << "Error: no outer frame of glasses found" << std::endl;
return 1;
}
// draw contour on an empty image
cv::Mat outerFrame = cv::Mat::zeros(mask.rows, mask.cols, CV_8UC1);
cv::drawContours(outerFrame,biggestContour,0,cv::Scalar(255),-1);
cv::imshow("outer frame border", outerFrame);
// now find the glasses which should be the outer contours within the frame. therefore erode the outer border ;)
cv::Mat glassesMask = outerFrame.clone();
cv::erode(glassesMask,glassesMask, cv::Mat());
cv::imshow("eroded outer",glassesMask);
// after erosion if we dilate, it's an Open-Operator which can be used to clean the image.
cv::Mat cleanedOuter;
cv::dilate(glassesMask,cleanedOuter, cv::Mat());
cv::imshow("cleaned outer",cleanedOuter);
// use the outer frame mask as a mask for copying canny edges. The result should be the inner edges inside the frame only
cv::Mat glassesInner;
canny.copyTo(glassesInner, glassesMask);
// there is small gap in the contour which unfortunately cant be closed with a closing operator...
cv::dilate(glassesInner, glassesInner, cv::Mat());
//cv::erode(glassesInner, glassesInner, cv::Mat());
// this part was cheated... in fact we would like to erode directly after dilation to not modify the thickness but just close small gaps.
cv::imshow("innerCanny", glassesInner);
// extract contours from within the frame
std::vector<cv::Vec4i> hierarchyInner;
std::vector<std::vector<cv::Point>> contoursInner;
//cv::findContours(glassesInner, contoursInner, hierarchyInner, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE);
cv::findContours(glassesInner, contoursInner, hierarchyInner, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
// find the two biggest contours which should be the glasses within the frame
std::vector<std::vector<cv::Point>> biggestInnerContours;
biggestInnerContours = findBiggestContours(contoursInner,2); // find the one biggest contour
if(biggestInnerContours.size() < 1)
{
std::cout << "Error: no inner frames of glasses found" << std::endl;
return 1;
}
// draw the 2 biggest contours which should be the inner glasses
cv::Mat innerGlasses = cv::Mat::zeros(mask.rows, mask.cols, CV_8UC1);
for(unsigned int i=0; i<biggestInnerContours.size(); ++i)
cv::drawContours(innerGlasses,biggestInnerContours,i,cv::Scalar(255),-1);
cv::imshow("inner frame border", innerGlasses);
// since we dilated earlier and didnt erode quite afterwards, we have to erode here... this is a bit of cheating :-(
cv::erode(innerGlasses,innerGlasses,cv::Mat() );
// remove the inner glasses from the frame mask
cv::Mat fullGlassesMask = cleanedOuter - innerGlasses;
cv::imshow("complete glasses mask", fullGlassesMask);
// color code the result to get an impression of segmentation quality
cv::Mat outputColors1 = inputColors.clone();
cv::Mat outputColors2 = inputColors.clone();
for(int y=0; y<fullGlassesMask.rows; ++y)
for(int x=0; x<fullGlassesMask.cols; ++x)
{
if(!fullGlassesMask.at<unsigned char>(y,x))
outputColors1.at<cv::Vec3b>(y,x)[1] = 255;
else
outputColors2.at<cv::Vec3b>(y,x)[1] = 255;
}
cv::imshow("output", outputColors1);
/*
cv::imwrite("../Data/Output/face_colored.png", outputColors1);
cv::imwrite("../Data/Output/glasses_colored.png", outputColors2);
cv::imwrite("../Data/Output/glasses_fullMask.png", fullGlassesMask);
*/
cv::waitKey(-1);
return 0;
}
I get this result for segmentation:
the overlay in original image will give you an impression of quality:
and inverse:
There are some tricky parts in the code and it's not tidied up yet. I hope it's understandable.
The next step would be to compute the thickness of the the segmented frame. My suggestion is to compute the distance transform of the inversed mask. From this you will want to compute a ridge detection or skeletonize the mask to find the ridge. After that use the median value of ridge distances.
Anyways I hope this posting can help you a little, although it's not a solution yet.
Depending on lighting, frame color etc this may or may not work but how about simple color detection to separate the frame ? Frame color will usually be a lot darker than human skin. You'll end up with a binary image (just black and white) and by calculating the number (area) of black pixels you get the area of the frame.
Another possible way is to get better edge detection, by adjusting/dilating/eroding/both until you get better contours. You will also need to differentiate the contour from the lenses and then apply cvContourArea.

OpenCV C++ How to write a function which does the same Matlab's bwareaopen function?

I'm trying to convert bwareaopen function to OpenCV C++ ...
I Found this code but it is not working correctly.
So if anyone have solved this problem and can help me, I would be really delighted.
void removeSmallBlobs(cv::Mat& im, double size)
{
// Only accept CV_8UC1
if (im.channels() != 1 || im.type() != CV_8U)
return;
// Find all contours
std::vector<std::vector<cv::Point> > contours;
cv::findContours(im.clone(), contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
for (int i = 0; i < contours.size(); i++)
{
// Calculate contour area
double area = cv::contourArea(contours[i]);
// Remove small objects by drawing the contour with black color
if (area > 0 && area <= size)
cv::drawContours(im, contours, i, CV_RGB(0, 0, 0), -1);
}
}
I think you need opening morphological operation. Here you can see an example.
Or take a look here: How to filter small segments from image in OpenCV?
I am using cvBlobsLib to implement such function in opencv. You should first compile and include the cvBlobsLib in your project. The library link is here:cvBlobsLib
Because matlab canny function does the Gaussian blur by default but opencv doesn't, you should first Gaussian blur the image to reduce noise. Then you dectect the canny edge, then you delete the edges that is shorter or longer than a given length measured by pixel.
Here is my code.
#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp>
#include "BlobResult.h"
using namespace std;
using namespace cv;
void bwareaopen( Mat& img, int size);
int main()
{
Mat img;
img = imread("1.jpg");
Mat gray;
cvtColor(img,gray,CV_BGR2GRAY);
GaussianBlur( gray, gray, Size(7, 7), 2, 2);
Mat edges;
Canny(gray,edges,50,500,5,true);
imshow("raw edge",edges);
bwareaopen( edges, 800);
imshow("edge",edges);
waitKey(0);
}
void bwareaopen( Mat& img, int size)
{
CBlobResult blobs;
blobs = CBlobResult( img ,Mat(),4);
blobs.Filter( blobs, B_INCLUDE, CBlobGetLength(), B_GREATER, size );
Mat newimg(img.size(),img.type());
newimg.setTo(0);
for(int i=0;i<blobs.GetNumBlobs();i++)
{
blobs.GetBlob(i)->FillBlob(newimg,CV_RGB(255,255,255),0,0,true);
}
img = newimg;
}
I had the same problem. I changed the line
if (area > 0 && area <= size) to
if (area <= size)
This is after I found that many small blobs had area 0. That worked for me.