I'm trying to combine texture and lighting on a pyramid in OpenGL. I basically started by merging two separate codes, and now, I'm working to make changes to smooth out the merge. However, I am having 2 issues.
I need to remove the object color and replace it with texture, but I'm not sure how to approach that issue with this code since object color is deeply ingrained in the code.
I'm not sure how to list the coordinates for position, normals, and texture. Their current arrangement seems to be causing a lot of issues with the output.
For issue one, I have tried replacing pyramidColor and objectColor with texture, but it seemed to create more issues.
For issue two, I have tried rearranging the list order as position, texture, and normals, which helped for a few of the triangles. However, it still isn't right.
/*Header Inclusions*/
#include <iostream>
#include <GL/glew.h>
#include <GL/freeglut.h>
//GLM Math Header Inclusions
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
//SOIL image loader Inclusion
#include "SOIL2/SOIL2.h"
using namespace std; //Standard namespace
#define WINDOW_TITLE "Pyramid" //Window title Macro
/*Shader program Macro*/
#ifndef GLSL
#define GLSL(Version, Source) "#version " #Version "\n" #Source
#endif
/*Variable declarations for shader, window size initialization, buffer and array objects */
GLint pyramidShaderProgram, lampShaderProgram, WindowWidth = 800, WindowHeight = 600;
GLuint VBO, PyramidVAO, LightVAO, texture;
//Subject position and scale
glm::vec3 pyramidPosition(0.0f, 0.0f, 0.0f);
glm::vec3 pyramidScale(2.0f);
//pyramid and light color
glm::vec3 objectColor(1.0f, 1.0f, 1.0f);
glm::vec3 lightColor(1.0f, 1.0f, 1.0f);
//Light position and scale
glm::vec3 lightPosition(0.5f, 0.5f, -3.0f);
glm::vec3 lightScale(0.3f);
//Camera position
glm::vec3 cameraPosition(0.0f, 0.0f, -6.0f);
//Camera rotation
float cameraRotation = glm::radians(-25.0f);
/*Function prototypes*/
void UResizeWindow(int, int);
void URenderGraphics(void);
void UCreateShader(void);
void UCreateBuffers(void);
void UGenerateTexture(void);
/*Pyramid Vertex Shader Source Code*/
const GLchar * pyramidVertexShaderSource = GLSL(330,
layout (location = 0) in vec3 position; //Vertex data from Vertex Attrib Pointer 0
layout (location = 1) in vec3 normal; //VAP position 1 for normals
layout (location = 2) in vec2 textureCoordinate;
out vec3 FragmentPos; //For outgoing color / pixels to fragment shader
out vec3 Normal; //For outgoing normals to fragment shader
out vec2 mobileTextureCoordinate;
//Global variables for the transform matrices
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main(){
gl_Position = projection * view * model * vec4(position, 1.0f); //transforms vertices to clip coordinates
FragmentPos = vec3(model * vec4(position, 1.0f)); //Gets fragment / pixel position in world space only (exclude view and projection)
Normal = mat3(transpose(inverse(model))) * normal; //get normal vectors in world space only and exclude normal translation properties
mobileTextureCoordinate = vec2(textureCoordinate.x, 1 - textureCoordinate.y); //flips the texture horizontal
}
);
/*Pyramid Fragment Shader Source Code*/
const GLchar * pyramidFragmentShaderSource = GLSL(330,
in vec3 FragmentPos; //For incoming fragment position
in vec3 Normal; //For incoming normals
in vec2 mobileTextureCoordinate;
out vec4 pyramidColor; //For outgoing pyramid color to the GPU
out vec4 gpuTexture; //Variable to pass color data to the GPU
//Uniform / Global variables for object color, light color, light position, and camera/view position
uniform vec3 objectColor;
uniform vec3 lightColor;
uniform vec3 lightPos;
uniform vec3 viewPosition;
uniform sampler2D uTexture; //Useful when working with multiple textures
void main(){
/*Phong lighting model calculations to generate ambient, diffuse, and specular components*/
//Calculate Ambient Lighting
float ambientStrength = 0.1f; //Set ambient or global lighting strength
vec3 ambient = ambientStrength * lightColor; //Generate ambient light color
//Calculate Diffuse Lighting
vec3 norm = normalize(Normal); //Normalize vectors to 1 unit
vec3 lightDirection = normalize(lightPos - FragmentPos); //Calculate distance (light direction) between light source and fragments/pixels on
float impact = max(dot(norm, lightDirection), 0.0); //Calculate diffuse impact by generating dot product of normal and light
vec3 diffuse = impact * lightColor; //Generate diffuse light color
//Calculate Specular lighting
float specularIntensity = 0.8f; //Set specular light strength
float highlightSize = 128.0f; //Set specular highlight size
vec3 viewDir = normalize(viewPosition - FragmentPos); //Calculate view direction
vec3 reflectDir = reflect(-lightDirection, norm); //Calculate reflection vector
//Calculate specular component
float specularComponent = pow(max(dot(viewDir, reflectDir), 0.0), highlightSize);
vec3 specular = specularIntensity * specularComponent * lightColor;
//Calculate phong result
vec3 phong = (ambient + diffuse + specular) * objectColor;
pyramidColor = vec4(phong, 1.0f); //Send lighting results to GPU
gpuTexture = texture(uTexture, mobileTextureCoordinate);
}
);
/*Lamp Shader Source Code*/
const GLchar * lampVertexShaderSource = GLSL(330,
layout (location = 0) in vec3 position; //VAP position 0 for vertex position data
//Uniform / Global variables for the transform matrices
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
gl_Position = projection * view *model * vec4(position, 1.0f); //Transforms vertices into clip coordinates
}
);
/*Fragment Shader Source Code*/
const GLchar * lampFragmentShaderSource = GLSL(330,
out vec4 color; //For outgoing lamp color (smaller pyramid) to the GPU
void main()
{
color = vec4(1.0f); //Set color to white (1.0f, 1.0f, 1.0f) with alpha 1.0
}
);
/*Main Program*/
int main(int argc, char* argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
glutInitWindowSize(WindowWidth, WindowHeight);
glutCreateWindow(WINDOW_TITLE);
glutReshapeFunc(UResizeWindow);
glewExperimental = GL_TRUE;
if (glewInit() != GLEW_OK)
{
std::cout<< "Failed to initialize GLEW" << std::endl;
return -1;
}
UCreateShader();
UCreateBuffers();
UGenerateTexture();
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); //Set background color
glutDisplayFunc(URenderGraphics);
glutMainLoop();
//Destroys Buffer objects once used
glDeleteVertexArrays(1, &PyramidVAO);
glDeleteVertexArrays(1, &LightVAO);
glDeleteBuffers(1, &VBO);
return 0;
}
/*Resizes the window*/
void UResizeWindow(int w, int h)
{
WindowWidth = w;
WindowHeight = h;
glViewport(0, 0, WindowWidth, WindowHeight);
}
/*Renders graphics*/
void URenderGraphics(void)
{
glEnable(GL_DEPTH_TEST); //Enable z-depth
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //Clears the screen
GLint modelLoc, viewLoc, projLoc, objectColorLoc, lightColorLoc, lightPositionLoc, viewPositionLoc;
glm::mat4 model;
glm::mat4 view;
glm::mat4 projection;
/*********Use the pyramid Shader to activate the pyramid Vertex Array Object for rendering and transforming*********/
glUseProgram(pyramidShaderProgram);
glBindVertexArray(PyramidVAO);
//Transform the pyramid
model = glm::translate(model, pyramidPosition);
model = glm::scale(model, pyramidScale);
//Transform the camera
view = glm::translate(view, cameraPosition);
view = glm::rotate(view, cameraRotation, glm::vec3(0.0f, 1.0f, 0.0f));
//Set the camera projection to perspective
projection = glm::perspective(45.0f,(GLfloat)WindowWidth / (GLfloat)WindowHeight, 0.1f, 100.0f);
//Reference matrix uniforms from the pyramid Shader program
modelLoc = glGetUniformLocation(pyramidShaderProgram, "model");
viewLoc = glGetUniformLocation(pyramidShaderProgram, "view");
projLoc = glGetUniformLocation(pyramidShaderProgram, "projection");
//Pass matrix data to the pyramid Shader program's matrix uniforms
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
//Reference matrix uniforms from the pyramid Shader program for the pyramid color, light color, light position, and camera position
objectColorLoc = glGetUniformLocation(pyramidShaderProgram, "objectColor");
lightColorLoc = glGetUniformLocation(pyramidShaderProgram, "lightColor");
lightPositionLoc = glGetUniformLocation(pyramidShaderProgram, "lightPos");
viewPositionLoc = glGetUniformLocation(pyramidShaderProgram, "viewPosition");
//Pass color, light, and camera data to the pyramid Shader programs corresponding uniforms
glUniform3f(objectColorLoc, objectColor.r, objectColor.g, objectColor.b);
glUniform3f(lightColorLoc, lightColor.r, lightColor.g, lightColor.b);
glUniform3f(lightPositionLoc, lightPosition.x, lightPosition.y, lightPosition.z);
glUniform3f(viewPositionLoc, cameraPosition.x, cameraPosition.y, cameraPosition.z);
glDrawArrays(GL_TRIANGLES, 0, 18); //Draw the primitives / pyramid
glBindVertexArray(0); //Deactivate the Pyramid Vertex Array Object
/***************Use the Lamp Shader and activate the Lamp Vertex Array Object for rendering and transforming ************/
glUseProgram(lampShaderProgram);
glBindVertexArray(LightVAO);
//Transform the smaller pyramid used as a visual cue for the light source
model = glm::translate(model, lightPosition);
model = glm::scale(model, lightScale);
//Reference matrix uniforms from the Lamp Shader program
modelLoc = glGetUniformLocation(lampShaderProgram, "model");
viewLoc = glGetUniformLocation(lampShaderProgram, "view");
projLoc = glGetUniformLocation(lampShaderProgram, "projection");
//Pass matrix uniforms from the Lamp Shader Program
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
glBindTexture(GL_TEXTURE_2D, texture);
//Draws the triangles
glDrawArrays(GL_TRIANGLES, 0, 18);
glBindVertexArray(0); //Deactivate the Lamp Vertex Array Object
glutPostRedisplay();
glutSwapBuffers(); //Flips the back buffer with the front buffer every frame. Similar to GL Flush
}
/*Create the Shader program*/
void UCreateShader()
{
//Pyramid Vertex shader
GLint pyramidVertexShader = glCreateShader(GL_VERTEX_SHADER); //Creates the Vertex shader
glShaderSource(pyramidVertexShader, 1, &pyramidVertexShaderSource, NULL); //Attaches the Vertex shader to the source code
glCompileShader(pyramidVertexShader); //Compiles the Vertex shader
//Pyramid Fragment Shader
GLint pyramidFragmentShader = glCreateShader(GL_FRAGMENT_SHADER); //Creates the Fragment Shader
glShaderSource(pyramidFragmentShader, 1, &pyramidFragmentShaderSource, NULL); //Attaches the Fragment shader to the source code
glCompileShader(pyramidFragmentShader); //Compiles the Fragment Shader
//Pyramid Shader program
pyramidShaderProgram = glCreateProgram(); //Creates the Shader program and returns an id
glAttachShader(pyramidShaderProgram, pyramidVertexShader); //Attaches Vertex shader to the Shader program
glAttachShader(pyramidShaderProgram, pyramidFragmentShader); //Attaches Fragment shader to the Shader program
glLinkProgram(pyramidShaderProgram); //Link Vertex and Fragment shaders to the Shader program
//Delete the Vertex and Fragment shaders once linked
glDeleteShader(pyramidVertexShader);
glDeleteShader(pyramidFragmentShader);
//Lamp Vertex shader
GLint lampVertexShader = glCreateShader(GL_VERTEX_SHADER); //Creates the Vertex shader
glShaderSource(lampVertexShader, 1, &lampVertexShaderSource, NULL); //Attaches the Vertex shader to the source code
glCompileShader(lampVertexShader); //Compiles the Vertex shader
//Lamp Fragment shader
GLint lampFragmentShader = glCreateShader(GL_FRAGMENT_SHADER); //Creates the Fragment shader
glShaderSource(lampFragmentShader, 1, &lampFragmentShaderSource, NULL); //Attaches the Fragment shader to the source code
glCompileShader(lampFragmentShader); //Compiles the Fragment shader
//Lamp Shader Program
lampShaderProgram = glCreateProgram(); //Creates the Shader program and returns an id
glAttachShader(lampShaderProgram, lampVertexShader); //Attach Vertex shader to the Shader program
glAttachShader(lampShaderProgram, lampFragmentShader); //Attach Fragment shader to the Shader program
glLinkProgram(lampShaderProgram); //Link Vertex and Fragment shaders to the Shader program
//Delete the lamp shaders once linked
glDeleteShader(lampVertexShader);
glDeleteShader(lampFragmentShader);
}
/*Creates the Buffer and Array Objects*/
void UCreateBuffers()
{
//Position and Texture coordinate data for 18 triangles
GLfloat vertices[] = {
//Positions //Normals //Texture Coordinates
//Back Face //Negative Z Normals
0.0f, 0.5f, 0.0f, 0.0f, 0.0f, -1.0f, 0.5f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f,
//Front Face //Positive Z Normals
0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 1.0f, 0.5f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f,
//Left Face //Negative X Normals
0.0f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.5f, 1.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
//Right Face //Positive X Normals
0.0f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.5f, 1.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
//Bottom Face //Negative Y Normals
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
};
//Generate buffer ids
glGenVertexArrays(1, &PyramidVAO);
glGenBuffers(1, &VBO);
//Activate the PyramidVAO before binding and setting VBOs and VAPs
glBindVertexArray(PyramidVAO);
//Activate the VBO
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); //Copy vertices to VBO
//Set attribute pointer 0 to hold position data
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0); //Enables vertex attribute
//Set attribute pointer 1 to hold Normal data
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(1);
//Set attribute pointer 2 to hold Texture coordinate data
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);
glBindVertexArray(0); //Unbind the pyramid VAO
//Generate buffer ids for lamp (smaller pyramid)
glGenVertexArrays(1, &LightVAO); //Vertex Array for pyramid vertex copies to serve as light source
//Activate the Vertex Array Object before binding and setting any VBOs and Vertex Attribute Pointers
glBindVertexArray(LightVAO);
//Referencing the same VBO for its vertices
glBindBuffer(GL_ARRAY_BUFFER, VBO);
//Set attribute pointer to 0 to hold Position data (used for the lamp)
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0);
glBindVertexArray(0);
}
/*Generate and load the texture*/
void UGenerateTexture(){
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
int width, height;
unsigned char* image = SOIL_load_image("brick.jpg", &width, &height, 0, SOIL_LOAD_RGB); //Loads texture file
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
glGenerateMipmap(GL_TEXTURE_2D);
SOIL_free_image_data(image);
glBindTexture(GL_TEXTURE_2D, 0); //Unbind the texture
}
Expected results: A brick textured pyramid with lighting.
Actual results: A bunch of assorted triangles.
I see the following issues with your code:
In the fragment shader:
Remove the objectColor uniform and the gpuTexture output.
Replace the last three lines of main() with:
//Calculate phong result
vec3 objectColor = texture(uTexture, mobileTextureCoordinate).xyz;
vec3 phong = (ambient + diffuse) * objectColor + specular;
pyramidColor = vec4(phong, 1.0f); //Send lighting results to GPU
In your rendering code:
Replace all mentions of objectColor with texture setup:
uTextureLoc = glGetUniformLocation(pyramidShaderProgram, "uTexture");
glUniform1i(uTextureLoc, 0); // texture unit 0
Bind the texture before you call glDrawArrays of the textured pyramid:
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture);
glDrawArrays(GL_TRIANGLES, 0, 18);
(Right now you bind it before drawing the LightVAO, which doesn't use the texture.)
All your glVertexAttribPointer calls have an incorrect stride of 6 * sizeof(GLfloat), but the buffer you provide has eight (8) floats per vertex, so it shall be 8 * sizeof(GLfloat). Remember that this parameter is the number of bytes that the GL has to advance to fetch the next vertex. Other than that your VAO setup is alright.
Related
I am tring to use shader to draw rectangle with texture, following this tutorial, and this is my code:
main.cpp:
#define GLM_ENABLE_EXPERIMENTAL
#define GLEW_STATIC
#include<GL/glew.h>
#include<SFML/Graphics.hpp>
#include<SFML/OpenGL.hpp>
#include"../include/glm/glm.hpp"
#include"../include/glm/gtx/transform.hpp"
#include"../include/glm/gtc/type_ptr.hpp"
#include<iostream>
float vertices[] = {
// positions // texture coords
0.5f, 0.5f, 0.0f, 1.0f, 1.0f, // top right
0.5f, -0.5f, 0.0f, 1.0f, 0.0f, // bottom right
-0.5f, -0.5f, 0.0f, 0.0f, 0.0f, // bottom left
-0.5f, 0.5f, 0.0f, 0.0f, 1.0f // top left
};
int main(){
sf::ContextSettings set;
set.depthBits = 24;
sf::RenderWindow window(sf::VideoMode(800, 600), "Window", sf::Style::Default, set);
window.setActive(true);
glewInit();
glewExperimental = GL_TRUE;
glEnable(GL_TEXTURE_2D);
sf::Image im;
im.loadFromFile("texture.jpg");
im.flipVertically();
sf::Texture tex1;
tex1.loadFromImage(im);
sf::Shader shader;
shader.loadFromFile(
"vertex.txt",
"fragment.txt"
);
shader.setUniform("tex1", tex1);
glm::mat4 transform = glm::mat4(1.f);
transform = glm::translate(transform, glm::vec3(0.3f, 0.3f, 0.f));
shader.setUniform("transform", glm::value_ptr(transform)); // !!!
sf::Shader::bind(&shader);
unsigned int VBO;
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
unsigned int VAO;
glGenVertexArrays(1, &VAO);
glBindVertexArray(VAO);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(0 * sizeof(float)));
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glViewport(0.f, 0.f, 800.f, 600.f);
glClearColor(0.f, 100.f, 150.f, 0.f);
while(window.isOpen()){
sf::Event event;
while(window.pollEvent(event)){
if (event.type == sf::Event::Closed){
window.close();
}
}
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDrawArrays(GL_QUADS, 0, 4);
window.display();
}
}
vertex.txt::
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoord;
out vec2 TexCoord;
uniform mat4 transform;
void main()
{
gl_Position = transform * vec4(aPos, 1.0f);
TexCoord = vec2(aTexCoord.x, aTexCoord.y);
}
But it draws just clear color with no rectangle.
The fun part is, without transformation it works perfectly fine - if gl_Position = transform * vec4(aPos, 1.0f); line is changed to gl_Position = vec4(aPos, 1.0f);, it draws untransformed rectangle with texture as expected. So I guess, this is a problem with setting uniform, but it would be strange, at least texture sets without any issues. What am I doing wrong?
sf::Shader has an overloaded setUniform method for the sf::Glsl::Mat4 type. need to create a sf::Glsl::Mat4 object. That can be crated from an array of floats:
sf::Glsl::Mat4 sfTransform(glm::value_ptr(transform));
shader.setUniform("transform", sfTransform);
I have this OpenGL code the draws a cube and pyramid. However, this program rotates the pyramid and cube together. I am tasked with only making the cube itself move not both objects at the same time. I know for this to happen I have to implement shaders for both. I'm not sure how to go about implementing both of the shaders at once. Any tips?
/*
This program demonstrates simple lighting.
A pyramid is lighted by a point light and can be rotated by mouse.
Ying Zhu
Georgia State University
October 2016
*/
// GLEW header
#include <GL/glew.h> // This must appear before freeglut.h
// Freeglut header
#include <GL/freeglut.h>
// GLM header files
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
// #include <glm/gtx/transform2.hpp>
#include <glm/gtc/matrix_access.hpp>
// #include <glm/gtx/projection.hpp>
#include <glm/gtc/matrix_inverse.hpp>
#include <glm/gtc/type_ptr.hpp>
// C++ header files
#include <iostream>
using namespace std;
using namespace glm;
#define BUFFER_OFFSET(offset) ((GLvoid *) offset)
// VBO buffer IDs
GLuint vertexArrayBufferID = 0;
GLuint normalArrayBufferID = 0;
GLuint cubePosition = 0;
GLuint cubeElements = 0;
GLuint program; // shader program ID
// Shader variable IDs
GLint vPos; // vertex attribute: position
GLint normalID; // vertex attribute: normal
GLint mvpMatrixID; // uniform variable: model, view, projection matrix
GLint modelMatrixID; // uniform variable: model, view matrix
GLint normalMatrixID; // uniform variable: normal matrix for transforming normals
GLint lightSourcePositionID; // uniform variable: for lighting calculation
GLint diffuseLightProductID; // uniform variable: for lighting calculation
GLint ambientID;
GLint attenuationAID;
GLint attenuationBID;
GLint attenuationCID;
// Transformation matrices
mat4 projMatrix;
mat4 mvpMatrix;
mat4 modelMatrix;
mat4 viewMatrix;
mat3 normalMatrix; // Normal matrix for transforming normals
// Light parameters
vec4 lightSourcePosition = vec4(0.0f, 4.0f, 0.0f, 1.0f);
vec4 diffuseMaterial = vec4(0.5f, 0.5f, 0.0f, 1.0f);
vec4 diffuseLightIntensity = vec4(1.0f, 1.0f, 1.0f, 1.0f);
vec4 ambient = vec4(0.2f, 0.2f, 0.2f, 1.0f);
float attenuationA = 1.0f;
float attenuationB = 0.2f;
float attenuationC = 0.0f;
vec4 diffuseLightProduct;
// Camera parameters
vec3 eyePosition = vec3(0.0f, 0.0f, 4.0f);
vec3 lookAtCenter = vec3(0.0f, 0.0f, 0.0f);
vec3 upVector = vec3(0.0f, 1.0f, 0.0f);
float fieldOfView = 30.0f;
float nearPlane = 0.1f;
float farPlane = 1000.0f;
// Mouse controlled rotation angles
float rotateX = 0;
float rotateY = 0;
struct VertexData {
GLfloat vertex[3];
VertexData(GLfloat x, GLfloat y, GLfloat z) {
vertex[0] = x; vertex[1] = y; vertex[2] = z;
}
};
//---------------------------------------------------------------
// Initialize vertex arrays and VBOs
void prepareVBOs() {
// Define a 3D pyramid.
GLfloat vertices[][4] = {
{1.0f, -1.0f, 1.0f, 1.0f}, // face 1
{-1.0f, -1.0f, -1.0f, 1.0f},
{1.0f, -1.0f, -1.0f, 1.0f},
{ 1.0f, -1.0f, -1.0f, 1.0f }, // face 2
{0.0f, 1.0f, 0.0f, 1.0f},
{ 1.0f, -1.0f, 1.0f, 1.0f },
{ 1.0f, -1.0f, 1.0f, 1.0f }, // face 3
{ 0.0f, 1.0f, 0.0f, 1.0f },
{-1.0f, -1.0f, 1.0f, 1.0f},
{ -1.0f, -1.0f, 1.0f, 1.0f }, // face 4
{ 0.0f, 1.0f, 0.0f, 1.0f },
{ -1.0f, -1.0f, -1.0f, 1.0f },
{ 0.0f, 1.0f, 0.0f, 1.0f }, // face 5
{ 1.0f, -1.0f, -1.0f, 1.0f },
{ -1.0f, -1.0f, -1.0f, 1.0f },
{ 1.0f, -1.0f, 1.0f, 1.0f }, // face 6
{ -1.0f, -1.0f, 1.0f, 1.0f },
{ -1.0f, -1.0f, -1.0f, 1.0f }
};
GLfloat normals[][4] = {
{0.0f, -1.0f, 0.0f, 1.0f}, // normal 1
{0.0f, -1.0f, 0.0f, 1.0f },
{0.0f, -1.0f, 0.0f, 1.0f },
{0.8944f, 0.4472f, 0.0f, 1.0f}, // normal 2
{ 0.8944f, 0.4472f, 0.0f, 1.0f },
{ 0.8944f, 0.4472f, 0.0f, 1.0f },
{-0.0f, 0.4472f, 0.8944f, 1.0f}, // normal 3
{ -0.0f, 0.4472f, 0.8944f, 1.0f },
{ -0.0f, 0.4472f, 0.8944f, 1.0f },
{-0.8944f, 0.4472f, 0.0f, 1.0f}, // normal 4
{ -0.8944f, 0.4472f, 0.0f, 1.0f },
{ -0.8944f, 0.4472f, 0.0f, 1.0f },
{0.0f, 0.4472f, -0.8944f, 1.0f}, // normal 5
{ 0.0f, 0.4472f, -0.8944f, 1.0f },
{ 0.0f, 0.4472f, -0.8944f, 1.0f },
{ 0.0f, -1.0f, 0.0f, 1.0f }, // normal 6
{ 0.0f, -1.0f, 0.0f, 1.0f },
{ 0.0f, -1.0f, 0.0f, 1.0f }
};
// Cube positioins
VertexData vertexData[] = {
VertexData(0.0, 0.0, 0.0), /* Index 0 */
VertexData(0.0, 0.0, 1.0), /* Index 1 */
VertexData(0.0, 1.0, 0.0), /* Index 2 */
VertexData(0.0, 1.0, 1.0), /* Index 3 */
VertexData(1.0, 0.0, 0.0), /* Index 4 */
VertexData(1.0, 0.0, 1.0), /* Index 5 */
VertexData(1.0, 1.0, 0.0), /* Index 6 */
VertexData(1.0, 1.0, 1.0), /* Index 7 */
};
// Cube elements
GLubyte indices[] = {
4, 5, 7, // +X face
4, 7, 6,
0, 2, 3, // ‐X face
0, 3, 1,
2, 6, 7, // +Y face
2, 7, 3,
0, 1, 5, // ‐Y face
0, 5, 4,
0, 4, 6, // +Z face
0, 6, 2,
1, 3, 7, // ‐Z face
1, 7, 5
};
// Get an unused buffer object name. Required after OpenGL 3.1.
glGenBuffers(1, &vertexArrayBufferID);
// If it's the first time the buffer object name is used, create that buffer.
glBindBuffer(GL_ARRAY_BUFFER, vertexArrayBufferID);
// Allocate memory for the active buffer object.
// 1. Allocate memory on the graphics card for the amount specified by the 2nd parameter.
// 2. Copy the data referenced by the third parameter (a pointer) from the main memory to the
// memory on the graphics card.
// 3. If you want to dynamically load the data, then set the third parameter to be NULL.
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glGenBuffers(1, &normalArrayBufferID);
glBindBuffer(GL_ARRAY_BUFFER, normalArrayBufferID);
glBufferData(GL_ARRAY_BUFFER, sizeof(normals), normals, GL_STATIC_DRAW);
glGenBuffers(1, &cubePosition);
glBindBuffer(GL_ARRAY_BUFFER, cubePosition);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertexData),
vertexData, GL_STATIC_DRAW);
glGenBuffers(1, &cubeElements);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cubeElements);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices),
indices, GL_STATIC_DRAW);
}
//---------------------------------------------------------------
// Print out the output of the shader compiler
void printLog(GLuint obj)
{
int infologLength = 0;
char infoLog[1024];
if (glIsShader(obj)) {
glGetShaderInfoLog(obj, 1024, &infologLength, infoLog);
}
else {
glGetProgramInfoLog(obj, 1024, &infologLength, infoLog);
}
if (infologLength > 0) {
cout << infoLog;
}
}
//-------------------------------------------------------------------
void prepareShaders() {
// Vertex shader source code
// A point light source is implemented.
// For simplicity, only the ambient and diffuse components are implemented.
// The lighting is calculated in world space, not in camera space.
const char* vSource = {
"#version 330\n"
"in vec4 vPos;"
"in vec4 normal;"
"uniform mat4x4 mvpMatrix;"
"uniform mat4x4 modelMatrix;"
"uniform mat3x3 normalMatrix;"
"uniform vec4 lightSourcePosition;"
"uniform vec4 diffuseLightProduct;"
"uniform vec4 ambient;"
"uniform float attenuationA;"
"uniform float attenuationB;"
"uniform float attenuationC;"
"out vec4 color;"
"void main() {"
" gl_Position = mvpMatrix * vPos;"
// Transform the vertex position to the world space.
" vec4 transformedVertex = modelMatrix * vPos;"
// Transform the normal vector to the world space.
" vec3 transformedNormal = normalize(normalMatrix * normal.xyz);"
// Light direction
" vec3 lightVector = normalize(transformedVertex.xyz - lightSourcePosition.xyz);"
// Distance between the light source and vertex
" float dist = distance(lightSourcePosition.xyz, transformedVertex.xyz);"
// Attenuation factor
" float attenuation = 1.0f / (attenuationA + (attenuationB * dist) + (attenuationC * dist * dist));"
// Calculate the diffuse component of the lighting equation.
" vec4 diffuse = attenuation * (max(dot(transformedNormal, lightVector), 0.0) * diffuseLightProduct);"
// Combine the ambient component and diffuse component.
" color = ambient + diffuse;"
"}"
};
// Fragment shader source code
const char* fSource = {
"#version 330\n"
"in vec4 color;"
"out vec4 fragColor;"
"void main() {"
" fragColor = color;"
"}"
};
// Declare shader IDs
GLuint vShader, fShader;
// Create empty shader objects
vShader = glCreateShader(GL_VERTEX_SHADER);
fShader = glCreateShader(GL_FRAGMENT_SHADER);
// Attach shader source code the shader objects
glShaderSource(vShader, 1, &vSource, NULL);
glShaderSource(fShader, 1, &fSource, NULL);
// Compile shader objects
glCompileShader(vShader);
printLog(vShader);
glCompileShader(fShader);
printLog(fShader);
// Create an empty shader program object
program = glCreateProgram();
// Attach vertex and fragment shaders to the shader program
glAttachShader(program, vShader);
glAttachShader(program, fShader);
// Link the shader program
glLinkProgram(program);
printLog(program);
}
//---------------------------------------------------------------
// Retrieve the IDs of the shader variables. Later we will
// use these IDs to pass data to the shaders.
void getShaderVariableLocations(GLuint shaderProgram) {
// Retrieve the ID of a vertex attribute, i.e. position
vPos = glGetAttribLocation(shaderProgram, "vPos");
normalID = glGetAttribLocation(shaderProgram, "normal");
mvpMatrixID = glGetUniformLocation(shaderProgram, "mvpMatrix");
modelMatrixID = glGetUniformLocation(shaderProgram, "modelMatrix");
normalMatrixID = glGetUniformLocation(shaderProgram, "normalMatrix");
lightSourcePositionID = glGetUniformLocation(shaderProgram, "lightSourcePosition");
diffuseLightProductID = glGetUniformLocation(shaderProgram, "diffuseLightProduct");
ambientID = glGetUniformLocation(shaderProgram, "ambient");
attenuationAID = glGetUniformLocation(shaderProgram, "attenuationA");
attenuationBID = glGetUniformLocation(shaderProgram, "attenuationB");
attenuationCID = glGetUniformLocation(shaderProgram, "attenuationC");
}
//---------------------------------------------------------------
void setShaderVariables() {
// value_ptr is a glm function
glUniformMatrix4fv(mvpMatrixID, 1, GL_FALSE, value_ptr(mvpMatrix));
glUniformMatrix4fv(modelMatrixID, 1, GL_FALSE, value_ptr(modelMatrix));
glUniformMatrix3fv(normalMatrixID, 1, GL_FALSE, value_ptr(normalMatrix));
glUniform4fv(lightSourcePositionID, 1, value_ptr(lightSourcePosition));
glUniform4fv(diffuseLightProductID, 1, value_ptr(diffuseLightProduct));
glUniform4fv(ambientID, 1, value_ptr(ambient));
glUniform1f(attenuationAID, attenuationA);
glUniform1f(attenuationBID, attenuationB);
glUniform1f(attenuationCID, attenuationC);
}
//---------------------------------------------------------------
// Set lighting related parameters
void setLightingParam() {
diffuseLightProduct = diffuseMaterial * diffuseLightIntensity;
}
//---------------------------------------------------------------
// Build the model matrix. This matrix will transform the 3D object to the proper place.
mat4 buildModelMatrix() {
mat4 rotationXMatrix = rotate(mat4(1.0f), radians(rotateX), vec3(1.0f, 0.0f, 0.0f));
mat4 rotationYMatrix = rotate(mat4(1.0f), radians(rotateY), vec3(0.0f, 1.0f, 0.0f));
mat4 matrix = rotationYMatrix * rotationXMatrix;
return matrix;
}
//---------------------------------------------------------------
void buildMatrices() {
modelMatrix = buildModelMatrix();
mvpMatrix = projMatrix * viewMatrix * modelMatrix;
normalMatrix = column(normalMatrix, 0, vec3(modelMatrix[0][0], modelMatrix[0][1], modelMatrix[0][2]));
normalMatrix = column(normalMatrix, 1, vec3(modelMatrix[1][0], modelMatrix[1][1], modelMatrix[1][2]));
normalMatrix = column(normalMatrix, 2, vec3(modelMatrix[2][0], modelMatrix[2][1], modelMatrix[2][2]));
// Use glm::inverseTranspose() to create a normal matrix, which is used to transform normal vectors.
normalMatrix = inverseTranspose(normalMatrix);
}
//---------------------------------------------------------------
// Handles the display event
void display()
{
// Clear the window with the background color
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
buildMatrices();
setShaderVariables();
// Activate the shader program
glUseProgram(program);
// If the buffer object already exists, make that buffer the current active one.
// If the buffer object name is 0, disable buffer objects.
glBindBuffer(GL_ARRAY_BUFFER, vertexArrayBufferID);
// Associate the vertex array in the buffer object with the vertex attribute: "position"
glVertexAttribPointer(vPos, 4, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
// Enable the vertex attribute: "position"
glEnableVertexAttribArray(vPos);
glBindBuffer(GL_ARRAY_BUFFER, normalArrayBufferID);
glVertexAttribPointer(normalID, 4, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
glEnableVertexAttribArray(normalID);
// Start the shader program. Draw the object. The third parameter is the number of triangles.
glDrawArrays(GL_TRIANGLES, 0, 18);
glBindBuffer(GL_ARRAY_BUFFER, cubePosition);
glVertexAttribPointer(vPos, 3, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
glEnableVertexAttribArray(vPos);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cubeElements);
glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_BYTE, BUFFER_OFFSET(0));
// Refresh the window
glutSwapBuffers();
}
//---------------------------------------------------------------
// Handles the reshape event
void reshape(int width, int height)
{
// Specify the width and height of the picture within the window
glViewport(0, 0, width, height);
projMatrix = perspective(fieldOfView, (float)width / (float)height, nearPlane, farPlane);
viewMatrix = lookAt(eyePosition, lookAtCenter, upVector);
}
//---------------------------------------------------------------
// Read mouse motion data and convert them to rotation angles.
void passiveMotion(int x, int y) {
rotateY = (float)x * -0.8f;
rotateX = (float)y * -0.8f;
// Generate a dislay event to force refreshing the window.
glutPostRedisplay();
}
//-----------------------------------------------------------------
void init() {
prepareVBOs();
prepareShaders();
getShaderVariableLocations(program);
setLightingParam();
// Specify the background color
glClearColor(1, 1, 1, 1);
glEnable(GL_DEPTH_TEST);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
}
//---------------------------------------------------------------
void main(int argc, char *argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
glutCreateWindow("Lighting Demo");
glutReshapeWindow(800, 800);
glewInit();
init();
// Register the display callback function
glutDisplayFunc(display);
// Register the reshape callback function
glutReshapeFunc(reshape);
// Register the passive mouse motion call back function
// This function is called when the mouse moves within the window
// while no mouse buttons are pressed.
glutPassiveMotionFunc(passiveMotion);
// Start the event loop
glutMainLoop();
}
Well, the most obvious culprit here would be setting a single ModelMatrix for both - I can't see any logic in your code to set them independently for each object you're rendering.
Since each object has a different rotation (and presumably, unless you're planning to draw one on top of the other, a different translation), you would want to be generating / loading a different model matrix for each draw call.
You dont need to use different shaders, you just need to use different model matricies. Say you have two objects in you scene something like this:
while (!myWindow(shouldClose))
{
myShader.use();
glBindVertexArray(myVao1);
glDrawArrays(GL_TRIANGLES, 0, x); // Draw pyramid
glBindVertaxArray(myVao2);
glDrawArrays(GL_TRIANGLES, 0, x); // Draw cube
}
Say you want only the second model to rotate on the y axis, you could do something like this:
float rotationDegree = 0;
while (!myWindow(shouldClose))
{
myShader.use();
myShader.setMat4(glm::mat4(1.0f)) // Make sure to set it to normal matrix for the pyrmamid
glBindVertexArray(myVao1);
glDrawArrays(GL_TRIANGLES, 0, x); // Draw pyramid
glBindVertaxArray(myVao2);
glm::mat4 model = glm::mat4(1.0f);
glm::rotate(model, glm::radians(rotationDegree), glm::vec3(0.0f, 1.0f, 0.0f));
rotateionDegree += 0.01;
myShader.setMat4("model", model); // Set you model matrix in your shader.
glDrawArrays(GL_TRIANGLES, 0, x); // Draw cube
}
I'm staring to understand that a vertex Shader handles transformations of my texture. While the fragment Shader handles individual pixels. But this vector math is confusing.
What I'm trying to do is render a sprite from a sprite sheet. I can render a whole image just fine, but now i'm actually trying to write my own shader.
I think its more efficient to have the graphics card do the heavy lifting, that being said;
Currently I draw whole images like so:
In my init step,
void TextureRenderer::initRenderData()
{
// Configure VAO/VBO
game_uint VBO;
game_float vertices[] = {
// Pos // Tex
0.0f, 1.0f, 0.0f, 1.0f,
1.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f,
1.0f, 0.0f, 1.0f, 0.0f
};
glGenVertexArrays(1, &this->quadVAO);
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glBindVertexArray(this->quadVAO);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 4 * sizeof(game_float), (GLvoid*)0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
Then when its time to draw any texture:
void TextureRenderer::DrawTexture(Texture2D &texture, vec2 position, vec2 size, game_float rotate, vec3 color)
{
// Prepare transformations
this->shader->Use();
glm::mat4 model;
model = glm::translate(model, vec3(position, 0.0f)); // First translate (transformations are: scale happens first, then rotation and then finall translation happens; reversed order)
model = glm::translate(model, vec3(0.5f * size.x, 0.5f * size.y, 0.0f)); // Move origin of rotation to center of quad
model = glm::rotate(model, rotate, vec3(0.0f, 0.0f, 1.0f)); // Then rotate
model = glm::translate(model, vec3(-0.5f * size.x, -0.5f * size.y, 0.0f)); // Move origin back
model = glm::scale(model, vec3(size, 1.0f)); // Last scale
this->shader->SetMatrix4("model", model);
// Render textured quad
this->shader->SetVector3f("spriteColor", color);
glActiveTexture(GL_TEXTURE0);
texture.Bind();
glBindVertexArray(this->quadVAO);
glDrawArrays(GL_TRIANGLES, 0, 6);
glBindVertexArray(0);
}
TextureShader.vs:
#version 330 core
layout (location = 0) in vec4 vertex; // <vec2 position, vec2 texCoords>
out vec2 TexCoords;
uniform mat4 model;
uniform mat4 projection;
void main()
{
TexCoords = vertex.zw;
gl_Position = projection * model * vec4(vertex.xy, 0.0, 1.0);
}
Fragment Shader:
#version 330 core
in vec2 TexCoords; //Position
out vec4 color;
uniform sampler2D image;
uniform vec3 spriteColor;
void main()
{
color = vec4(spriteColor, 1.0) * texture(image, TexCoords);
}
Now that work all fine and dandy (assuming proper opengl setup ext.)
But id like to apply this to a Sprite sheet shader, and have the GPU handle the math to draw it.
void SpriteRenderer::drawSprite(Texture2D &texture, vec2 position,game_float spriteHeight,game_float spriteWidth,int frameIndex)
{
shader->Use();//Load a diffrent Shader here.
shader->SetInteger("frameindex", frameIndex);
shader->SetVector2f("position", position);
shader->SetFloat("spriteHeight", spriteHeight);
shader->SetFloat("spriteWidth", spriteWidth);
shader->SetMatrix4("model", model);
shader->SetVector3f("spriteColor", color);
glActiveTexture(GL_TEXTURE0); //Set texture to nothin
texture.Bind(); //Bind my texture.
glBindVertexArray(this->quadVAO); //Bind the fullscreen quad
glDrawArrays(GL_TRIANGLES, 0, 6); //Draw
glBindVertexArray(0); //Unbind the quad.
}
I assume:
Inside the vertex Shader, I manipulate the VAO quad to the position it is on the canvas then set the color of the pixles in the fragment shader to that spesific region.
How would that be done?
Or would it be better off for me to pre-calculate a VAO Array for each Sprite in a sprite class? Then each draw call would be:
void SpriteRenderer::drawSprite(Texture2D &texture, vec2 position,Sprite s)
Where the sprite has these vertices stored.
Iv seen:
Techniques for drawing spritesheets in OpenGL with shaders
Somewhat similar, but id like to have the GPU handle the math all together.
I asked a question the other day, about rendering TTF fonts using SDL, and was pointed towards SDL_TTFL I've tried using the SDL_TTF library, but All I'm getting is garbage on screen
I have included my shaders, which are very simple for this program, and also the snipped I'm using to load the text into surface, and to bind it to the texture. I'm not trying to do anything crazy here at all. Is there anything I'm doing wrong you can see? I'm not really too sure how to debug shaders etc.
Fragment Shader (frag.glsl):
#version 330
in vec2 texCoord;
in vec4 fragColor;
out vec3 finalColor;
uniform sampler2D myTextureSampler;
void main() {
finalColor = texture( myTextureSampler, texCoord ).rgb;
}
Vertex Shader (vert.glsl)
#version 330
in vec3 vert;
in vec4 color;
in vec2 texcoord;
out vec4 fragColor;
out vec2 texCoord;
void main() {
fragColor = color;
gl_Position = vec4(vert, 1);
texCoord = texcoord;
}
Font Loading (loadFont.cpp)
//Initialise TTF
if( TTF_Init() == -1 )
throw std::runtime_error("SDL_TTF failed to initialise.");
//Load the texture
font = TTF_OpenFont( filePath.c_str(), 12 );
if(!font)
throw std::runtime_error("Couldn't load: "+ filePath);
TTF_SetFontStyle(font, TTF_STYLE_NORMAL);
surface = TTF_RenderUTF8_Blended(font, "Hello", this->textColor);
Uint8 colors = surface->format->BytesPerPixel;
int texture_format;
if (colors == 4) { // alpha
if (surface->format->Rmask == 0x000000ff)
texture_format = GL_RGBA;
else
texture_format = GL_BGRA;
} else { // no alpha
if (surface->format->Rmask == 0x000000ff)
texture_format = GL_RGB;
else
texture_format = GL_BGR;
}
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
glTexImage2D(GL_TEXTURE_2D, 0, colors, surface->w, surface->h, 0,
texture_format, GL_UNSIGNED_BYTE, surface->pixels);
SDL_FreeSurface(surface);
Vertex Attribute Setup
GLfloat vertices[] = {
//X Y Z R G B A U V
-1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.f, 1.f,
1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.5f, 1.f, 1.f,
-1.0f, -0.4f, 0.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.f, 0.f,
1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.5f, 1.f, 1.f,
1.0f, -0.4f, 0.0f, 1.0f, 0.0f, 0.0f, 0.5f, 1.f, 0.f,
-1.0f, -0.4f, 0.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.f, 0.f
};
glGenVertexArrays(1, &_vao);
glBindVertexArray(_vao);
glGenBuffers(1, &_vbo);
glBindBuffer(GL_ARRAY_BUFFER, _vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(program->attrib("vert"));
glVertexAttribPointer(program->attrib("vert"), 3, GL_FLOAT, GL_FALSE, 9*sizeof(GLfloat), NULL);
glEnableVertexAttribArray(program->attrib("color"));
glVertexAttribPointer(program->attrib("color"), 4, GL_FLOAT, GL_TRUE, 9*sizeof(GLfloat), (const GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(program->attrib("texcoord"));
glVertexAttribPointer(program->attrib("texcoord"), 2, GL_FLOAT, GL_TRUE, 9*sizeof(GLfloat), (const GLvoid*)(7 * sizeof(GLfloat)));
I've attached the code I'm using for the vertex attributes as per the comment below.
EDIT:
In a reply that has been deleted since, It was asked whether SDL_TTF was returning 3 or 4 channels. It's returning a BGRA image. I've tried changing my fragment shader to
Fragment shader
#version 330
in vec2 texCoord;
in vec4 fragColor;
out vec4 finalColor;
uniform sampler2D myTextureSampler;
void main() {
finalColor = texture( myTextureSampler, texCoord ).rgba;
}
Note the vec4, and using rgba rather than rgb. This just leads to a black rectangle.
I also tried generating a surface using SDL_LoadBMP(), which gives the exact same results.
Your call to
glTexImage2D(GL_TEXTURE_2D, 0, colors, surface->w, surface->h, 0,
texture_format, GL_UNSIGNED_BYTE, surface->pixels);
Is a problem.
The third paramter is wrong:
http://www.opengl.org/sdk/docs/man/xhtml/glTexImage2D.xml
internalFormat
Specifies the number of color components in the texture.
Must be one of base internal formats given in Table 1,
one of the sized internal formats given in Table 2, or one
of the compressed internal formats given in Table 3, below.
I suspect you want yours to be GL_RGBA (or what format you want opengl to store your texture in)
EDIT:
I just saw it now, but you are using only 3 channels in your fragment shader. The Blended function requires that you use 4 channels otherwise the alpha channel is going to be messed up.
I think your "main" problem lies somewhere else though as that should just make the colour constant over the entire surface. (Not the "garbage" you are seeing)
I quickly wrote this program that mostly does what your doing. I think it will help you more than my repository as it's straight to the point.
#include <GL/glew.h>
#include <SDL2/SDL.h>
#include <SDL2/SDL_opengl.h>
#include <SDL2/SDL_ttf.h>
#include <string>
#include <iostream>
using namespace std;
SDL_Window *window = NULL;
SDL_GLContext context = NULL;
TTF_Font* font = NULL;
SDL_Surface* surface = NULL;
//OpenGL Objects
GLuint vao;
GLuint vbo;
GLuint texture;
//Shader Objects
GLuint program;
GLuint vs;
GLuint fs;
//Sampler Object
GLuint uniformSampler;
//Callback Function
APIENTRY GLvoid debugMessageCallbackFunction( GLenum source, GLenum type, GLuint id, GLenum severity,
GLsizei length, const GLchar* message, GLvoid* userParam)
{
cerr << endl << "\t" << message << endl;
}
//The shaders are identical to yours
const string fragmentShaderString =
"#version 130\n" // My laptop can't do OpenGL 3.3 so 3.0 will have to do
"in vec2 texCoord;\n"
"in vec4 fragColor;\n"
"\n"
"out vec4 finalColor;\n"
"\n"
"uniform sampler2D myTextureSampler;\n"
"void main() {\n"
" finalColor = texture( myTextureSampler, texCoord ) * fragColor;\n"
"}";
const string vertexShaderString =
"#version 130\n"
"\n"
"in vec3 vert;\n"
"in vec4 color;\n"
"in vec2 texcoord;\n"
"\n"
"out vec4 fragColor;\n"
"out vec2 texCoord;\n"
"void main() {\n"
" fragColor = color;\n"
" gl_Position = vec4(vert, 1);\n"
" texCoord = texcoord;\n"
"}\n";
//Your vertices, but I changed alpha to 1.0f
const GLfloat vertices[] =
{
//X Y Z R G B A U V
-1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.f, 1.f,
1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.f, 1.f,
-1.0f, -0.4f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.f, 0.f,
1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.f, 1.f,
1.0f, -0.4f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.f, 0.f,
-1.0f, -0.4f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.f, 0.f
};
int main(int argc, char* args[])
{
//Create Window and Context
window = SDL_CreateWindow("SDL Text with OpenGL", 0, 0, 640, 480, SDL_WINDOW_OPENGL);
//Set Core Context
SDL_GL_SetAttribute( SDL_GL_CONTEXT_MAJOR_VERSION, 3 );
SDL_GL_SetAttribute( SDL_GL_CONTEXT_MINOR_VERSION, 1 );
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
context = SDL_GL_CreateContext(window);
//Simple OpenGL State Settings
glViewport( 0.f, 0.f, 640.f, 480.f);
glClearColor( 0.f, 0.f, 0.f, 1.f);
//Init Glew
//Set glewExperimental for Core Context
glewExperimental=true;
glewInit();
//Set Blending
//Required so that the alpha channels show up from the surface
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
//Simple callback function for GL errors
glDebugMessageCallbackARB(debugMessageCallbackFunction, NULL);
//Create Shaders
vs = glCreateShader(GL_VERTEX_SHADER);
fs = glCreateShader(GL_FRAGMENT_SHADER);
//Source Pointers
const GLchar* vsSource= &vertexShaderString[0];
const GLchar* fsSource = &fragmentShaderString[0];
//Set Source
glShaderSource(vs, 1, &vsSource, NULL);
glShaderSource(fs, 1, &fsSource, NULL);
//Compile Shaders
glCompileShader(fs);
glCompileShader(vs);
//Create Shader Program
program = glCreateProgram();
//Attach Shaders to Program
glAttachShader(program, vs);
glAttachShader(program, fs);
//No need for shaders anymore
glDeleteShader(vs);
glDeleteShader(fs);
//Set Attribute Locations
glBindAttribLocation(program, 0, "vert");
glBindAttribLocation(program, 1, "color");
glBindAttribLocation(program, 2, "texcoord");
//Link Program
glLinkProgram(program);
//Setup VAO and VBO
glGenVertexArrays(1, &vao);
glGenBuffers(1, &vbo);
glBindVertexArray(vao);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat) * 9 * 6, vertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glEnableVertexAttribArray(2);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 9 * sizeof(GLfloat), NULL);
glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, 9 * sizeof(GLfloat),(GLvoid*)(3*sizeof(GLfloat)));
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 9 * sizeof(GLfloat),(GLvoid*)(7*sizeof(GLfloat)));
//Init TTF
TTF_Init();
//Open Font
font = TTF_OpenFont("DroidSansFallbackFull.ttf", 30);
SDL_Color color = {255, 255, 255, 255};
//Create Surface
surface = TTF_RenderUTF8_Blended(font, "This is TEXT!", color);
//Your format checker
GLenum format = (surface->format->BytesPerPixel==3)?GL_RGB:GL_RGBA;
//Create OpenGL Texture
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
glTexImage2D( GL_TEXTURE_2D, 0, format, surface->w, surface->h, 0,
format, GL_UNSIGNED_BYTE, surface->pixels);
//Set Some basic parameters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
//Set up Sampler
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture);
uniformSampler = glGetUniformLocation(program, "myTextureSampler");
//It defaults to using GL_TEXTURE0, so it's not necessary to set it
//in this program it's generally a good idea.
//--------------------------------------------------------------------------------------
// DRAW STAGE
//--------------------------------------------------------------------------------------
glUseProgram(program);
//glBindVertexArray(vao); - still in use
glClear(GL_COLOR_BUFFER_BIT);
glDrawArrays(GL_TRIANGLES, 0, 6);
SDL_GL_SwapWindow(window);
//Sleep for 2s before closing
SDL_Delay(2000);
}
I didn't do any error checking or close any of the resources since it's just meant to be a reference and not meant to be used.
Usually I don't use glew, but writing code to manually get the functions for such a small program seemed pointless.
It compiles with
g++ source.cpp -g -lSDL2 -lSDL2_ttf -lGL -GLEW -o demo
on linux. You might need to make some adjustments for Windows (Headers files might change slightly and libraries will change as wel) and I think it will work without change on Mac.
EDIT 2:
To compile it on windows with mingw you need to add APIENTRY to callback function and the main should have arguments. Changed code to reflect this.
Tested it and it works on both windows and linux. (Provided that your implementation have access to the GL_ARB_debug_callback extension, if not just comment that out)
Does work nicely, only got to edit the const GLfloat vertices[] array to be able to change the text color consistently. For a solid color text, have all RGB components in the array equal to 1.0f and render the texture in color. For a multicolored text, first render the texture in white with SDL_Color color = { 255, 255, 255, 255 };, then edit the array as shown here below.
float width = (float)surface->w;
float height = (float)surface->h;
// alpha to 1.0f
const GLfloat vertices[] = {
// X Y Z R G B A U V
-1.0, -height / width, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,
1.0f, -height / width, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
-1.0f, height / width, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f,
1.0f, -height / width, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
1.0f, height / width, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f,
-1.0f, height / width, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f
};
I just started to learning OpenGL 3.1 and I'm trying to implement deferred shading to my engine(framework?). I wrote simple shaders for first stage, lighting stage and deferred stage.
Lighting stage takes the diffuse color from deferred texture and saves it in lighting texture. Deferred stage draws the lighting texture. In lighting shader is a bug and scene is very strange. It looks like this, and it should look like this. Lighting stage vertex shader:
#version 150
in vec4 vertex;
out vec2 position;
void main(void)
{
gl_Position = vertex*2-1;
gl_Position.z = 0.0;
position.xy = vertex.xy;
}
Lighting stage fragment shader:
#version 150
in vec2 position;
uniform sampler2D diffuseTexture;
uniform sampler2D positionTexture;
out vec4 lightingOutput;
void main()
{
vec4 diffuse = texture(diffuseTexture, vec2(position.x, position.y));
vec4 position = texture(positionTexture, position.xy);
vec4 ambient = vec4(0.05, 0.05, 0.05, 1.0) * diffuse;
lightingOutput = diffuse;
}
That's what I render in lighting stage:
static const GLfloat _vertices[] =
{
-1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
1.0f, 1.0f, 0.0f,
};
And that's how I render it:
glUseProgram( programID[2] );
glEnableVertexAttribArray(vertexID[1]);
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
glVertexAttribPointer(
vertexID[1],
3, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, positionTexture);
glUniform1i(positionTextureID[1], 1);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, diffuseTexture);
glUniform1i(diffuseTextureID[1], 0);
glDrawArrays( GL_TRIANGLES, 0, 6 );
glDisableVertexAttribArray(vertexID[1]);
If you need all the code it's here www.dropbox.com/s/hvfe4v4pb1pfxb3/code.zip.
How to fix that strange problem?