Using Virtual Function with Final keyword - c++

I have a question about using the keyword final in C++. I understand that virtual function is a member function that is declared in the base class, and it is expected to be overridden in the derived classes. By dynamic binding, an appropriate method will be called, depending on the type of the object responsible for the call. However, to prevent a member function in a base class from being overridden in any derived class, we will use the final keyword.
void startEngine() final;// Compile error!
virtual void startEngine() final; //No error
Why we use "final" to PREVENT a member function in the base class from being overridden in derived class meanwhile we still have to use the keyword VIRTUAL (ALLOW to override) together.
I tried to delete the word virtual, but I got a compile error: "nonvirtual function cannot be declared with 'final' modifier"

First at all, we only can stop overriding functions if they can be overridden at all. So final only makes sense on virtual functions at all.
Still, final applied on a single class's virtual function might appear pretty meaningless. But if you consider a more complex hierarchy, matter changes:
class Parent
{
public:
virtual ~Parent() = default;
virtual void f();
};
class Child : public Parent
{
public:
void f() final; // f IS virtual already...
};
class GrandChild : public Child
{
// cannot override f any more – while Child still could!
};
Additionally, consider the following:
class Base
{
public:
virtual ~Base() = default;
void f(); // non-virtual! (i. e. cannot be overridden)
};
class Derived : public Base
{
public:
void f(); // does not override, but HIDEs Base::f!!!
};
Declaring Base::f both virtual and final would prevent hiding as well (but not overloading).
Actually, again this scenario rather makes sense if Base itself already inherited from another polymorphic class. If not and Base is not intended to be inherited, I'd not introduce any virtual functions at all (virtual function calls are more costly than normal function calls!). If then a user still inherits and hides a function – well, his own responsibility...

Related

Should I reuse virtual when overriding in a sub-subclass?

I know I don't need to declare an overriding function in a subclass as virtual. But if I'm using a virtual function in a sub-subclass do I need to declare the subclass function as virtual?
struct Base
{
virtual int foo();
};
struct Derived : Base
{
virtual int foo() override
{
// ...
}
};
struct DoubleDerived : Derived
{
int foo() override
{
// ...
}
};
You don't have to, the function is virtual anyways, but it makes it unquestionably clear. Previously (before override was available) you could override some function and then if the function was changed in base class your derived class wouldn't override it anymore and the code would compile without any issues. Your function in derived class wouldn't override anything and would become non-virtual.
With override compiler will prevent this kind of mistakes and the function cannot magically become non-virtual if base is changed. In other words, if override or final is used, it's implied that the function is virtual, it would be compilation error otherwise.
I just found Core guideline C.128 that states:
Virtual functions should specify exactly one of virtual, override, or final.

Do overriding functions need to be specified virtual?

In Cplusplus, in a derived class, if we define a member function to override a member function in its parent class, do we need to declare the one in the derived class to be virtual?
For example, do we need to declare g to be virtual in B in order for it to override A::g? which one of the following is correct for the above purpose?
class A{
public:
void f(){printf("A");}
virtual void g(){printf("A");}
}
class B : public A{
public:
void f(){printf("B");}
void g(){printf("B");}
}
or
class A{
public:
void f(){printf("A");}
virtual void g(){printf("A");}
}
class B : public A{
public:
void f(){printf("B");}
virtual void g(){printf("B");}
}
Thanks.
Once a method is virtual in a class, its child class has also these virtual class even if you don't add virtual to them.
Adding override is a good habit to avoid subtle error:
class A{
public:
void f() { printf("A"); }
virtual void g() { printf("A"); }
};
class B : public A{
public:
void f() { printf("B"); }
void g() override { printf("B"); }
};
No you don't. The function is virtual from the first point in the hierarchy where you declare it as such.
You can and should specify it as override in c++11 and onward. It specifies explicitly to the compiler that you are trying to override a virtual function in a base class. It than emits an error if you misspell the function name, mistype the parameters or do anything else that can be considered as adding an overload of the function. Prior to c++11, the previous mistakes would silently compile.
Defining member functions virtual in derived classes is optional. You can make the override explicit using C++11's override.
They both do the same thing. You don't need to explicitly say virtual in the derived class, as long as it is virtual in the base class.
In Cplusplus, in a derived class, if we define a member function to override a member function in its parent class, do we need to declare the one in the derived class to be virtual?
From the working draft, [class.virtual]/2 (emphasis mine):
If a virtual member function vf is declared in a class Base and in a class Derived, derived directly or indirectly from Base, a member function vf with the same name, parameter-type-list, cv-qualification, and ref-qualifier (or absence of same) as Base::vf is declared, then Derived::vf is also virtual (whether or not it is so declared) and it overrides Base::vf.
So, no. It is not required.
In pre-C++11 era, declaring virtual also the member functions in the derived classes helped the readers understanding what's going on under the hood.
Since C++11, override is the preferred way, for it not only helps the readers, but also it forces a compile-time check so that typos in the declarations don't introduce subtle errors.

What's the potential danger of overriding a private function to public?

I just find out that overriding a private function to a public one from base object is allowed in C++ since Visual Studio produces 0 warning. Is there any potential danger to doing that?
If there isn't, what's the difference between declaring a virtual function in private, protected and public in a base object?
what's the difference between declaring a virtual function in
private, protected and public in a base object?
The difference is that a private virtual function can be called only from a base class. This can be useful if the function is not a part of an external class interface, and is only used by base class. So that users call (some other) base class' member, and that member calls the virtual function. For example:
class Base {
virtual void stage1()=0; // derived classes override this
virtual void stage2()=0;
public:
void run() { stage1(); stage2(); } // users call this
};
Moreover, there is a point of view that you should not make your virtual functions public at all, because the fact that they are virtual is internals of the class and its subclasses, and the users should not be aware of that. It is rarely that the same function must be overridden and callable from external code. This allows the base class to control which (virtual) functions can be called from which (non-virtual) public method, making maiteinance easier.
See more details in this article by Herb Sutter:
...each [public] virtual
function is doing two jobs: It's specifying interface because it's
public...; and it's specifying implementation detail,
namely the internally customizable behavior... That a public virtual
function inherently has two significantly different jobs is a sign
that it's not separating concerns well and that we should consider a
different approach. What if we want to separate the specification of
interface from the specification of the implementation's customizable
behavior?
...
In summary, prefer to make base class virtual functions private (or
protected if you really must). This separates the concerns of
interface and implementation, which stabilizes interfaces and makes
implementation decisions easier to change and refactor later.
However, I am not qualified to say whether this is really widely used...
Is there any potential danger to doing that?
I don't think so, because you are still very limited:
class Base
{
private:
virtual void foo(){}
};
class Derived1 : public Base
{
public:
virtual void foo(){ Base::foo(); }
};
class Derived2 : public Base
{
public:
virtual void foo(){}
};
int main()
{
Derived1 d1;
d1.foo(); //error
Base * d2 = new Derived2();
d2->foo(); //error
}
So at best you will be able to call the overloaded function (if it doesn't call the function from the base class from itself), but the function of the base class will still have the same visibility, and will be inaccessible.
When changing access visibility by overriding in derived class, base class visibility doesn't change:
So with:
class Base {
public:
virtual ~Base() = default;
protected:
virtual void foo() = 0;
};
class Derived : public Base {
public:
void foo() override {};
};
Then
Derived d;
Base& b = d;
d.foo(); // valid
b.foo(); // invalid
If there isn't, what's the difference between declaring a virtual function in private, protected and public in a base object?
It depends on how you access the function. The type of the object/pointer you use determines whether you can access the function.
class Base
{
public:
virtual void foo() {}
};
class Derived : public Base
{
private:
virtual void foo() {}
};
int main()
{
Derived* dptr = new Derived;
Base* bptr = dptr;
dptr->foo(); // Can't use it. Derived::foo is private
bptr->foo(); // Can use it. Base::foo is public.
}
Compiler message, using g++ 4.9.3.
socc.cc: In function ‘int main()’:
socc.cc:12:20: error: ‘virtual void Derived::foo()’ is private
virtual void foo() {}
^
socc.cc:20:14: error: within this context
dptr->foo(); // Can't use it. Derived::foo is private
A virtual function is a customization point for derived class implementations. If it is private then it's purely an implementation detail. Making it more accessible in a derived class then exposes an implementation detail, with all that that entails. In particular client code can come to depend on that detail so that the implementation can't be easily changed. It can also be easier for client tode to call in incorrect ways, than the originally intended interface, and it can yield results that are only valid in certain contexts, so that it's more brittle than the original interface.

Virtual member functions in most-derived class?

Consider the following base class:
class Base
{
public:
virtual ~Base(void);
virtual void foo(void);
virtual void bar(void) = 0;
}
Now suppose I know that a given class should be the most derived class of Base. Should I declare the functions virtual? The most derived class can/will be used polymorphically with Base.
For example, should I use MostDerived1 or MostDerived2?
class MostDerived1 : public Base
{
public:
~MostDerived1(void);
void foo(void);
void bar(void);
}
class MostDerived2 : public Base
{
public:
virtual ~MostDerived2(void);
virtual void foo(void);
virtual void bar(void);
}
I'm leaning towards MostDerived1 because it most closely models the intent of the programmer: I don't want another child class of MostDerived1 to be used polymorphically with MostDerived1.
Is this reasoning correct? Are there any good reasons why I should pick MostDerived2, aside from the obvious there could be a >0% chance MostDerived2 should be used polymorphically with any deriving classes (class OriginalAssumptionWrong : public MostDerived2)?
Keep in mind MostDerived1/MostDerived2 can both be used polymorphically with Base.
Adding virtual to derived classes doesn't change their behavior, MostDerived and MostDerived2 are have exactly the same behavior.
It does however document your intention, however. I would recommend it for that purpose. The override keyword also helps with this, assuming its available on your platform.
You can't turn off virtualness. Another class derived from either MostDerived1 or MostDerived2 can also override any of the virtual functions regardless of whether you omit the virtual keyword somewhere in the class hierarchy or not.
If you want to enforce that no other class derives from MostDerived1, define it as
class MostDerived1 final : public Base
{
// ...
};
The final keyword can also be used for individual virtual member functions, ensuring no derived class overrides that specific function.
Once function declear somewhere at the hierarchy as a virtual, it's virtual for ever.
You can use final or override if you using C++11

Virtual/pure virtual explained

What exactly does it mean if a function is defined as virtual and is that the same as pure virtual?
From Wikipedia's Virtual function
...
In object-oriented programming, in languages such as C++, and Object Pascal, a virtual function or virtual method is an inheritable and overridable function or method for which dynamic dispatch is facilitated. This concept is an important part of the (runtime) polymorphism portion of object-oriented programming (OOP). In short, a virtual function defines a target function to be executed, but the target might not be known at compile time.
Unlike a non-virtual function, when a virtual function is overridden the most-derived version is used at all levels of the class hierarchy, rather than just the level at which it was created. Therefore if one method of the base class calls a virtual method, the version defined in the derived class will be used instead of the version defined in the base class.
This is in contrast to non-virtual functions, which can still be overridden in a derived class, but the "new" version will only be used by the derived class and below, but will not change the functionality of the base class at all.
whereas..
A pure virtual function or pure virtual method is a virtual function that is required to be implemented by a derived class if the derived class is not abstract.
When a pure virtual method exists, the class is "abstract" and can not be instantiated on its own. Instead, a derived class that implements the pure-virtual method(s) must be used. A pure-virtual isn't defined in the base-class at all, so a derived class must define it, or that derived class is also abstract, and can not be instantiated. Only a class that has no abstract methods can be instantiated.
A virtual provides a way to override the functionality of the base class, and a pure-virtual requires it.
I'd like to comment on Wikipedia's definition of virtual, as repeated by several here. [At the time this answer was written,] Wikipedia defined a virtual method as one that can be overridden in subclasses. [Fortunately, Wikipedia has been edited since, and it now explains this correctly.] That is incorrect: any method, not just virtual ones, can be overridden in subclasses. What virtual does is to give you polymorphism, that is, the ability to select at run-time the most-derived override of a method.
Consider the following code:
#include <iostream>
using namespace std;
class Base {
public:
void NonVirtual() {
cout << "Base NonVirtual called.\n";
}
virtual void Virtual() {
cout << "Base Virtual called.\n";
}
};
class Derived : public Base {
public:
void NonVirtual() {
cout << "Derived NonVirtual called.\n";
}
void Virtual() {
cout << "Derived Virtual called.\n";
}
};
int main() {
Base* bBase = new Base();
Base* bDerived = new Derived();
bBase->NonVirtual();
bBase->Virtual();
bDerived->NonVirtual();
bDerived->Virtual();
}
What is the output of this program?
Base NonVirtual called.
Base Virtual called.
Base NonVirtual called.
Derived Virtual called.
Derived overrides every method of Base: not just the virtual one, but also the non-virtual.
We see that when you have a Base-pointer-to-Derived (bDerived), calling NonVirtual calls the Base class implementation. This is resolved at compile-time: the compiler sees that bDerived is a Base*, that NonVirtual is not virtual, so it does the resolution on class Base.
However, calling Virtual calls the Derived class implementation. Because of the keyword virtual, the selection of the method happens at run-time, not compile-time. What happens here at compile-time is that the compiler sees that this is a Base*, and that it's calling a virtual method, so it insert a call to the vtable instead of class Base. This vtable is instantiated at run-time, hence the run-time resolution to the most-derived override.
I hope this wasn't too confusing. In short, any method can be overridden, but only virtual methods give you polymorphism, that is, run-time selection of the most derived override. In practice, however, overriding a non-virtual method is considered bad practice and rarely used, so many people (including whoever wrote that Wikipedia article) think that only virtual methods can be overridden.
The virtual keyword gives C++ its' ability to support polymorphism. When you have a pointer to an object of some class such as:
class Animal
{
public:
virtual int GetNumberOfLegs() = 0;
};
class Duck : public Animal
{
public:
int GetNumberOfLegs() { return 2; }
};
class Horse : public Animal
{
public:
int GetNumberOfLegs() { return 4; }
};
void SomeFunction(Animal * pAnimal)
{
cout << pAnimal->GetNumberOfLegs();
}
In this (silly) example, the GetNumberOfLegs() function returns the appropriate number based on the class of the object that it is called for.
Now, consider the function 'SomeFunction'. It doesn't care what type of animal object is passed to it, as long as it is derived from Animal. The compiler will automagically cast any Animal-derived class to a Animal as it is a base class.
If we do this:
Duck d;
SomeFunction(&d);
it'd output '2'. If we do this:
Horse h;
SomeFunction(&h);
it'd output '4'. We can't do this:
Animal a;
SomeFunction(&a);
because it won't compile due to the GetNumberOfLegs() virtual function being pure, which means it must be implemented by deriving classes (subclasses).
Pure Virtual Functions are mostly used to define:
a) abstract classes
These are base classes where you have to derive from them and then implement the pure virtual functions.
b) interfaces
These are 'empty' classes where all functions are pure virtual and hence you have to derive and then implement all of the functions.
In a C++ class, virtual is the keyword which designates that, a method can be overridden (i.e. implemented by) a subclass. For example:
class Shape
{
public:
Shape();
virtual ~Shape();
std::string getName() // not overridable
{
return m_name;
}
void setName( const std::string& name ) // not overridable
{
m_name = name;
}
protected:
virtual void initShape() // overridable
{
setName("Generic Shape");
}
private:
std::string m_name;
};
In this case a subclass can override the the initShape function to do some specialized work:
class Square : public Shape
{
public:
Square();
virtual ~Square();
protected:
virtual void initShape() // override the Shape::initShape function
{
setName("Square");
}
}
The term pure virtual refers to virtual functions that need to be implemented by a subclass and have not been implemented by the base class. You designate a method as pure virtual by using the virtual keyword and adding a =0 at the end of the method declaration.
So, if you wanted to make Shape::initShape pure virtual you would do the following:
class Shape
{
...
virtual void initShape() = 0; // pure virtual method
...
};
By adding a pure virtual method to your class you make the class an abstract base class
which is very handy for separating interfaces from implementation.
"Virtual" means that the method may be overridden in subclasses, but has an directly-callable implementation in the base class. "Pure virtual" means it is a virtual method with no directly-callable implementation. Such a method must be overridden at least once in the inheritance hierarchy -- if a class has any unimplemented virtual methods, objects of that class cannot be constructed and compilation will fail.
#quark points out that pure-virtual methods can have an implementation, but as pure-virtual methods must be overridden, the default implementation can't be directly called. Here is an example of a pure-virtual method with a default:
#include <cstdio>
class A {
public:
virtual void Hello() = 0;
};
void A::Hello() {
printf("A::Hello\n");
}
class B : public A {
public:
void Hello() {
printf("B::Hello\n");
A::Hello();
}
};
int main() {
/* Prints:
B::Hello
A::Hello
*/
B b;
b.Hello();
return 0;
}
According to comments, whether or not compilation will fail is compiler-specific. In GCC 4.3.3 at least, it won't compile:
class A {
public:
virtual void Hello() = 0;
};
int main()
{
A a;
return 0;
}
Output:
$ g++ -c virt.cpp
virt.cpp: In function ‘int main()’:
virt.cpp:8: error: cannot declare variable ‘a’ to be of abstract type ‘A’
virt.cpp:1: note: because the following virtual functions are pure within ‘A’:
virt.cpp:3: note: virtual void A::Hello()
A virtual function is a member function that is declared in a base class and that is redefined by derived class. Virtual function are hierarchical in order of inheritance.
When a derived class does not override a virtual function, the function defined within its base class is used.
A pure virtual function is one that contains no definition relative to the base class.
It has no implementation in the base class. Any derived class must override this function.
How does the virtual keyword work?
Assume that Man is a base class, Indian is derived from man.
Class Man
{
public:
virtual void do_work()
{}
}
Class Indian : public Man
{
public:
void do_work()
{}
}
Declaring do_work() as virtual simply means: which do_work() to call will be determined ONLY at run-time.
Suppose I do,
Man *man;
man = new Indian();
man->do_work(); // Indian's do work is only called.
If virtual is not used, the same is statically determined or statically bound by the compiler, depending on what object is calling. So if an object of Man calls do_work(), Man's do_work() is called EVEN THOUGH IT POINTS TO AN INDIAN OBJECT
I believe that the top voted answer is misleading - Any method whether or not virtual can have an overridden implementation in the derived class. With specific reference to C++ the correct difference is run-time (when virtual is used) binding and compile-time (when virtual is not used but a method is overridden and a base pointer is pointed at a derived object) binding of associated functions.
There seems to be another misleading comment that says,
"Justin, 'pure virtual' is just a term (not a keyword, see my answer
below) used to mean "this function cannot be implemented by the base
class."
THIS IS WRONG!
Purely virtual functions can also have a body AND CAN BE IMPLEMENTED! The truth is that an abstract class' pure virtual function can be called statically! Two very good authors are Bjarne Stroustrup and Stan Lippman.... because they wrote the language.
Simula, C++, and C#, which use static method binding by default, the programmer can specify that particular methods should use dynamic binding by labeling them as virtual.
Dynamic method binding is central to object-oriented programming.
Object oriented programming requires three fundamental concepts: encapsulation, inheritance, and dynamic method binding.
Encapsulation allows the implementation details of an
abstraction to be hidden behind a
simple interface.
Inheritance allows a new abstraction to be defined as an
extension or refinement of some
existing abstraction, obtaining some
or all of its characteristics
automatically.
Dynamic method binding allows the new abstraction to display its new
behavior even when used in a context
that expects the old abstraction.
Virtual methods CAN be overridden by deriving classes, but need an implementation in the base class (the one that will be overridden)
Pure virtual methods have no implementation the base class. They need to be defined by derived classes. (So technically overridden is not the right term, because there's nothing to override).
Virtual corresponds to the default java behaviour, when the derived class overrides a method of the base class.
Pure Virtual methods correspond to the behaviour of abstract methods within abstract classes. And a class that only contains pure virtual methods and constants would be the cpp-pendant to an Interface.
Pure Virtual Function
try this code
#include <iostream>
using namespace std;
class aClassWithPureVirtualFunction
{
public:
virtual void sayHellow()=0;
};
class anotherClass:aClassWithPureVirtualFunction
{
public:
void sayHellow()
{
cout<<"hellow World";
}
};
int main()
{
//aClassWithPureVirtualFunction virtualObject;
/*
This not possible to create object of a class that contain pure virtual function
*/
anotherClass object;
object.sayHellow();
}
In class anotherClass remove the function sayHellow and run the code. you will get error!Because when a class contain a pure virtual function, no object can be created from that class and it is inherited then its derived class must implement that function.
Virtual function
try another code
#include <iostream>
using namespace std;
class aClassWithPureVirtualFunction
{
public:
virtual void sayHellow()
{
cout<<"from base\n";
}
};
class anotherClass:public aClassWithPureVirtualFunction
{
public:
void sayHellow()
{
cout<<"from derived \n";
}
};
int main()
{
aClassWithPureVirtualFunction *baseObject=new aClassWithPureVirtualFunction;
baseObject->sayHellow();///call base one
baseObject=new anotherClass;
baseObject->sayHellow();////call the derived one!
}
Here the sayHellow function is marked as virtual in base class.It say the compiler that try searching the function in derived class and implement the function.If not found then execute the base one.Thanks
"A virtual function or virtual method is a function or method whose behavior can be overridden within an inheriting class by a function with the same signature" - wikipedia
This is not a good explanation for virtual functions. Because, even if a member is not virtual, inheriting classes can override it. You can try and see it yourself.
The difference shows itself when a function take a base class as a parameter. When you give an inheriting class as the input, that function uses the base class implementation of the overriden function. However, if that function is virtual, it uses the one that is implemented in the deriving class.
Virtual functions must have a definition in base class and also in derived class but not necessary, for example ToString() or toString() function is a Virtual so you can provide your own implementation by overriding it in user-defined class(es).
Virtual functions are declared and defined in normal class.
Pure virtual function must be declared ending with "= 0" and it can only be declared in abstract class.
An abstract class having a pure virtual function(s) cannot have a definition(s) of that pure virtual functions, so it implies that implementation must be provided in class(es) that derived from that abstract class.