Handling different variable types as commands - c++

I'm building an Arduino sketch, where i want to communicate with my arduino to control a neorgb strip by adafruit, which is a strip with in my case 60 RGB LEDs with each LED is adressable.
I got it to work with a simple if construct to check if I send the command "off" to switch the whole strip of or I send a hex code for a specific color.
That works fine, but now I want to also dim the brightness of the strip, my function to dim every color component works fine but I need a way to trigger it with a command. My problem is that I don't know how I can handle it if I sent a specific string (in this case "off"), a hex color code or a percentage to dimm my strip.
Also another question is why I need to enter " off" in the serial monitor for the sketch to turn of my strip.
My whole code looks like this:
#include <Adafruit_NeoPixel.h>
//Vars
int stripPin = 6; //NeoPixel Strip Pin
int numberLED = 60; //How many LEDs?
int maxBrightness = 50; //maximum Brightness
String incoming;
Adafruit_NeoPixel strip = Adafruit_NeoPixel(numberLED, stripPin, NEO_GRB + NEO_KHZ800);
void setup() {
// put your setup code here, to run once:
strip.setBrightness(maxBrightness);
strip.begin();
strip.show(); //Clear Strip
Serial.begin(9600);
}
void loop() {
if (Serial.available() > 0) { //Listening for Commands
incoming = Serial.readString();
if (incoming == "off ") { //if command is "off", switch strip of
setStripColor(0,0,0);
}
else{
// Get rid of '#' and convert it to integer
long number = (long) strtol( &incoming[1], NULL, 16);
// Split them up into r, g, b values
long r = number >> 16;
long g = number >> 8 & 0xFF;
long b = number & 0xFF;
setStripColor(r,g,b); //Set Color for whole Strip
strip.show();
}
Serial.println(incoming);
}
delay(10);
}
int setStripColor(int redValue, int greenValue, int blueValue) //Set Color for whole strip
{
for(int i = 0; i < numberLED; i++ ){
strip.setPixelColor(i, redValue,greenValue,blueValue);
}
}
int dim(int color, int dimVal) //Dim color to dimVal in percent
{
color = color / 100 * dimVal;
return color;
}

Related

Code keeps looping even if serial is available

I'm using an external application to sync my RGB peripherals with my WS2812B Strip. I wanted to make a default color that it could switch to when the application isn't running but after 2 seconds of enabling the strip in the software, it goes back to the default color I set (255,255,255).
#include <Adafruit_NeoPixel.h>
#define PIN 6
#define NUMPIXELS 30
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB +
NEO_KHZ800);
void setup() {
pixels.begin();
Serial.begin(19200, SERIAL_8E1);
}
void loop() {
for (int w = 0; w < NUMPIXELS; w++) {
pixels.setPixelColor(w, 255, 255, 255);
}
pixels.show();
int w = 0;
if (Serial.available()) {
int n = 0;
for (int n = 0; n < 3; n++) {
byte rgb[3];
Serial.readBytes(rgb, 3);
uint32_t r = int(rgb[0]);
uint32_t g = int(rgb[1]);
uint32_t b = int(rgb[2]);
for (int i = 0; i < NUMPIXELS; i++) {
pixels.setPixelColor(i, r, g, b);
}
pixels.show();
}
}
}
The function Serial.available() does something else than what you expect:
You expect it to return if there is a communication partner available. Instead it checks if there are bytes to read available:
Get the number of bytes (characters) available for reading from the serial port. (Source: https://www.arduino.cc/en/Serial/Available )
This means: Your Arduino has run out of bytes to read, because it empties the pipeline too fast. So, as there are no more bytes to read, it will just make the leds show white.
Sidenote: The if condition should be changed to reflect this (see post on Arduino website):
if (Serial.available() > 0) {

Arduino Serial not parsing commands

I am using Processing (java) to communicate over serial to an Arduino which controls two servos and a laser. Everything works independently, however when I turn the laser on using Processing I am unable to control the servos until I turn the laser back off.
Troubleshooting I've tried:
Manually sending commands to the Arduino using Arduino Serial or
Putty results in thethe Arduino working as expected (servo control is
independent of laser status)
Putting the Arduino in the serial-bridge configuration to monitor what
serial commands Processing is sending to the Arduino, and it is as
expected (motor positions, laser status)
I am using an external power supply so I know its not a
max-current-draw issue. (and it works
Included delays in Processing, flushing the Arduino buffer.
Used all "\n", "\r", "\r\n" combinations.
Here is my processing program :
import processing.serial.*;
import org.gamecontrolplus.gui.*;
import org.gamecontrolplus.*;
import net.java.games.input.*;
String ard_ser = "/dev/ttyACM0";
ControlIO control;
ControlDevice stick;
float px, py;
int deg_x, deg_y;
boolean trailOn;
Serial myPort;
ArrayList<PVector> shadows = new ArrayList<PVector>();
ArrayList<PVector> trail = new ArrayList<PVector>();
public void setup() {
size(400, 400);
myPort = new Serial(this, Serial.list()[0],9600);
printArray(Serial.list());
// Initialise the ControlIO
control = ControlIO.getInstance(this);
// Find a device that matches the configuration file
stick = control.getMatchedDevice("joystick");
if (stick == null) {
println("No suitable device configured");
System.exit(-1); // End the program NOW!
}
// Setup a function to trap events for this button
stick.getButton("LASER").plug(this, "toggleLaser", ControlIO.ON_PRESS);
}
// Poll for user input called from the draw() method.
public void getUserInput() {
px = map(stick.getSlider("X").getValue(), -1, 1, 0, width);
deg_x = int(map(stick.getSlider("X").getValue(),-1,1,0,180));
py = map(stick.getSlider("Y").getValue(), -1, 1, 0, height);
deg_y = int(map(stick.getSlider("Y").getValue(),-1,1,0,180));
//stick.getButton("LASER").plug(this,"toggleLaser",ControlIO.);
}
// Event handler for the Laser button
public void toggleLaser() {
println("laser");
if (myPort.available()>0){
myPort.write("-1\n");
}
//delay(1000);
return;
}
public void draw() {
getUserInput(); // Polling
background(255, 255, 240);
// Draw shadows
fill(0, 0, 255, 32);
noStroke();
for (PVector shadow : shadows)
ellipse(shadow.x, shadow.y, shadow.z, shadow.z);
if ( trail.size() > 1) {
stroke(132, 0, 0);
for (int n = 1; n < trail.size(); n++) {
PVector v0 = trail.get(n-1);
PVector v1 = trail.get(n);
line(v0.x, v0.y, v1.x, v1.y);
v0 = v1;
}
}
// Show position
noStroke();
fill(255, 64, 64, 64);
ellipse(px, py, 20, 20);
String position = str(deg_x)+','+str(deg_y)+'\n';
if (myPort.available()>0){
//println(position);
myPort.write(position);
}
delay(10);
}
It has a little visualization to monitor the motor location, and basically just sends "mot_x_pos,mot_y_pos \n", and a "-1\n" to toggle the laser.
example output serial stream:
90,90\n
50,50\n
-1\n
The Arduino code parses the stream and controls the motors/laser:
#include <Servo.h>
bool laser = true;
// true sets the value high (off for my transistor)
char val = 0;
const int laser_pin = 7;
int out1 = 9; //servo pins
int out2 = 11;
boolean newData= true;
Servo servo_x;
Servo servo_y;
int pos_x =0;
int pos_y =0;
int x_prev = 90;
int y_prev = 90;
void setup() {
Serial.begin(9600);
Serial.println("<Arduino is ready>");
servo_x.attach(out1);
servo_y.attach(out2);
pinMode(laser_pin, OUTPUT);
digitalWrite(laser_pin, laser); //turn laser off on startup
}
void loop(){
while(Serial.available()>0){
pos_x = Serial.parseInt();
pos_y = Serial.parseInt();
val = Serial.read(); // this catches the newline escape characters
if ( (pos_x<0) || (pos_y<0) ){
//toggle laser
if(laser){
laser = false;
}
else {laser = true;}
digitalWrite(laser_pin, laser);
}
else if( (val == '\n') || (val == '\r') ){
if(pos_x != x_prev){ //only write to the motors if something has changed
servo_x.write(pos_x);
x_prev = pos_x;
}
if(pos_y != y_prev){
servo_y.write(pos_y);
y_prev = pos_y;
}
}
}
}
Any suggestions would be appreciated, thanks.
Would help if you provided the sequence of commands that's not working.
Your Arduino code tries to read two int's, but you're only sending one with the laser command. That'll get out of synch (parseInt doesn't care about the ends of lines, it's happy to go to the next line)
Try
Having your laser button send "-1,-1" so all lines have two numbers on them
Better, create a better-structured format for your lines: Start with a letter that says whether it's a servo or laser command, then read what's needed, then make sure you find a '\n', then repeat.

c++ Fade between colors? (Arduino)

I currently have this thats fading between 2 set colours:
for(int i=0;i<nLEDs;i++){
a = (255 / 100) * (incomingByte * sensitivity);
r = (r * 7 + a + 7) / 8;
g = (g * 7 + (255 - a) + 7) / 8;
b = 0;
FTLEDColour col = { r , g , b };
led.setLED(i, col);
}
But now im trying to allow users to enter their own colours:
// > Colour fade, Start colour
int colFade1Red = 0;
int colFade1Green = 255;
int colFade1Blue = 0;
// > Colour fade, End colour
int colFade2Red = 255;
int colFade2Green = 0;
int colFade2Blue = 0;
int fadeAm = 7; // Fade speed
with the fading code:
void ColourFade(){
for(int i=0;i<nLEDs;i++){
r = ctest(colFade1Red, colFade2Red, r);
g = ctest(colFade1Green, colFade2Green, g);
b = ctest(colFade1Blue, colFade2Blue, b);
FTLEDColour col = { r , g , b };
led.setLED(i, col);
}
}
int ctest(int col1, int col2, int cur){
int temp = col1 - col2;
if(temp < 0) { temp = -temp; }
int alp = (temp / 100) * (incomingByte * sensitivity);
if(col1 < col2){
return (cur * fadeAm + (col2 - alp) + fadeAm) / (fadeAm +1 );
} else {
return (cur * fadeAm + alp + fadeAm) / (fadeAm +1 );
}
}
But this starts with the Second user colour and fades into pink. How would I fade colours properly?
Also "incomingByte" is a value between 0 and 100, and the code is in a update loop.
Smooth transitions between colours is best done in a different colour space (IMHO).
As an example, to transition from bright red to bright green, do you want to go via bright yellow (around the edge of the colour wheel) or via #808000 (murky yellow) - which is what a straight line interpolation would give you in the RGB domain.
Having done this for my Moodlamp app, I used the HSL colour space. I specified a start colour and end colour, along with a number of steps for the transition to take. That enabled me to calculate how much to adjust H, S and L by at each point in the transition.
Only at the point of using the colour did I convert back to RGB.
You can see the javascript code here (please bear in mind it's the first Javascript I ever wrote, so if it seems non-idiomatic, that's probably why!):
https://github.com/martinjthompson/MoodLamp/blob/master/app/assistants/lamp-assistant.js
It's impossible to fade to pink beacuse you are starting from red and ending with green.
To avoid this kind of mistake I suggest you to write an object oriented code.
If you don't want to write the classes to handle a 3D vectonr you can use the Arduino Tinker Library
I wrote this example for you:
#include <Vect3d.h>
#include <SerialLog.h>
Tinker::Vect3d<float> red(255,0,0);
Tinker::Vect3d<float> green(0,255,0);
Tinker::SerialLog serialLog;
void setup(){
Serial.begin(9600);
serialLog.display("Fade color example");
serialLog.endline();
}
void loop(){
//fade factor computation
const uint32_t t = millis()%10000;
const float cosArg = t/10000.*3.1415*2;
const float fade = abs(cos(cosArg));
//Here's the color computation... as you can see is very easy to do!! :)
Tinker::Vect3d<uint8_t> finalColor(red*fade + green*(1-fade));
//We print the vect3d on the arduino serial port
Tinker::LOG::displayVect3d(finalColor,&serialLog);
serialLog.endline();
delay(500);
}
Which prints the following output on the serial port
Fade color example
V[255;0;0]
V[242;12;0]
V[206;48;0]
V[149;105;0]
V[78;176;0]
V[0;254;0]
V[79;175;0]
V[150;104;0]
V[206;48;0]
V[242;12;0]
V[254;0;0]
V[242;12;0]
V[205;49;0]
V[148;106;0]
V[77;177;0]
V[1;253;0]
V[80;174;0]
V[151;103;0]
hope that this helps :)
uint8_t clrR = abs(255 * cos(<some var that changes in time>));
same for clrB & clrG

Fading Arduino RGB LED from one color to the other?

I've currently managed to get my LED to cycle through eight colors that I've selected. Everything is working correctly, except that I want to go for a more natural feel, and would like to fade / transition from one color to the next, instead of having them just replace one another.
Here's my code so far:
int redPin = 11;
int greenPin = 10;
int bluePin = 9;
void setup()
{
pinMode(redPin, OUTPUT);
pinMode(greenPin, OUTPUT);
pinMode(bluePin, OUTPUT);
}
void loop()
{
setColor(250, 105, 0); // Yellow
delay(1000);
setColor(250, 40, 0); // Orange
delay(1000);
setColor(255, 0, 0); // Red
delay(1000);
setColor(10, 10, 255); // Blue
delay(1000);
setColor(255, 0, 100); // Pink
delay(1000);
setColor(200, 0, 255); // Purple
delay(1000);
setColor(0, 255, 0); // Green
delay(1000);
setColor(255, 255, 255); // White
delay(1000);
}
void setColor(int red, int green, int blue)
{
analogWrite(redPin, 255-red);
analogWrite(greenPin, 255-green);
analogWrite(bluePin, 255-blue);
}
What the other answers omit about this topic is the fact that that human perception of light intensity is logarithmic, not linear. The analogWrite() routines are setting the output pin's PWM duty cycle, and are linear. So by taking the minimum duty cycle (say 0) and maximum duty cycle (say, for the sake of easy math this is 10) and dividing it into equal chunks, you will be controlling the intensitiy linearly which will not give satisfying results.
What you need to do instead is set your intensity exponentially. Let's say your maximum intensity is 255. You can generate this result by treating your intensity as a power to raise some number to. In our case, given that we are dealing with computers that like binary, powers of two are convenient. So,
2^0 =1
2^8=256
so we can have 8 intensity levels. Actually, note that out minimum is now not fully off (it is 1 not 0) and our maximum is out of range (256 not 255). So we modify the formula to be
output = 2 ^ intensity - 1
Or in code
int output = 1<<intensity - 1;
This yields values from 0 to 255 for intensity levels from 0 to 8 (inclusive), so we actually get nine levels of intensity. If you wanted smoother transitions (i.e. more levels of intensity), and still use logarithmic intensity you'll need floating-point math.
If you apply this method of calculating intensity to each channel (R, G, B) then your perception will be in accord with what your code says it should be.
As fars as how to smoothly transition between various colors, the answer depends on how you want to navigate the color space. The simplest thing to do is to think about your color space as a triangle, with R, G, and B, as the verteces:
The question then is how to navigate this triangle: you could go along the sides, from R, to G, to B. This way you will never see white (all channels fully on) or "black" (all fully off). You could think of your color space as a hexagon, with additional purple (R+B), yellow (G+B), and brown (R+G) colors, and also navigate the perimeter (again, no white or black). There are as many fading possibilities as there are ways of navigating insides these, and other figures we might think of.
When I built fading programs like this the color space and the traversal I liked was as follows: think of each channel as a binary bit, so now you have three (R, G, and B). If you think of each color as having some combination of these channels being fully on, you get 7 total colors (excluding black, but including white). Take the first of these colors, fade to it from black and back to black, and then go to the next color. Here's some code that does something like that:
int targetColor = 1;
int nIntensity = 0;
int nDirection = 1; // When direction is 1 we fade towards the color (fade IN)
// when 0 we fade towards black (fade OUT)
#define MAX_INTENSITY 8
#define MIN_INTENSITY 0
#define MAX_TARGETCOLOR 7
void loop() {
for (;;) {
// Update the intensity value
if (nDirection) {
// Direction is positive, fading towards the color
if (++nIntensity >= MAX_INTENSITY) {
// Maximum intensity reached
nIntensity = MAX_INTENSITY; // Just in case
nDirection = 0; // Now going to fade OUT
} // else : nothing to do
} else {
if (--nIntensity <= MIN_INTENSITY) {
nIntensity = MIN_INTENSITY; // Just in case
// When we get back to black, find the next target color
if (++targetColor>MAX_TARGETCOLOR)
targetColor=1; // We'll skip fading in and out of black
nDirection = 1; // Now going to fade IN
} // else: nothing to do
}
// Compute the colors
int colors[3];
for (int i=0;i<3;i++) {
// If the corresponding bit in targetColor is set, it's part of the target color
colors[i] = (targetColor & (1<<i)) ? (1<<nIntensity) -1 : 0;
}
// Set the color
setColor(colors[0], colors[1], colors[2]);
// Wait
delay(100);
}
}
It is indeed possible to fade between different colors. What I'm also usually missing in Arduino books and code on the web is, that it is possible to write C++ classes in Arduino IDE. Therefore, I'm going to show an example that fades between colors using C++ classes.
An issue that should be addressed is on which pins the analogWrite should be done to, because not all pins are capable of Pulse Width Modulation (PWM). On a Arduino device the pins that support PWM are denoted with a tilde '~'. The Arduino UNO has digital pins ~3, ~5, ~6, ~9, ~10 and ~11. And most Arduino use those pins for PWM, but check your device to be sure. You can create PWM on regular digital pins by switching your led on for 1ms and of for 1 ms this mimics 50% power on the LED. Or turn it on 3 ms and of 1 ms this mimics 75% power.
In order to fade a LED you would have to reduce/increase the PWM value and wait a bit. Youl'll have to wait a little while, because otherwise the arduino tries to fade/dim leds thousands of times per second and you won't see a fade effect, although it probably there. So you are looking for a method to gradually reduce/increase the second parameter to analogWrite( ) for three LEDs; For a more thorough explanation see for example chapter 7 of Arduino Cookbook. That book is a good read for Arduino fans anyway!
So I adapted the code from the OP to contain a 'rgb_color' class that is more or less just a container for red, green and blue values. But more importantly is the fader class. When an instance of fader is constructed the proper pins should be in the constructor red, green and blue respectively. Than the fader contains a member function void fade( const rgb_color& const rgb_color&) which will do the fading between the in and out color. By default the function will take 256 steps of 10ms from the input color to the output color. (note here due to integer divisions this doesn't really mean that each step 1/256 th, but perceputally you won't notice it).
/*
* LedBrightness sketch
* controls the brightness of LEDs on "analog" (PWM) output ports.
*/
class rgb_color {
private:
int my_r;
int my_g;
int my_b;
public:
rgb_color (int red, int green, int blue)
:
my_r(red),
my_g(green),
my_b(blue)
{
}
int r() const {return my_r;}
int b() const {return my_b;}
int g() const {return my_g;}
};
/*instances of fader can fade between two colors*/
class fader {
private:
int r_pin;
int g_pin;
int b_pin;
public:
/* construct the fader for the pins to manipulate.
* make sure these are pins that support Pulse
* width modulation (PWM), these are the digital pins
* denoted with a tilde(~) common are ~3, ~5, ~6, ~9, ~10
* and ~11 but check this on your type of arduino.
*/
fader( int red_pin, int green_pin, int blue_pin)
:
r_pin(red_pin),
g_pin(green_pin),
b_pin(blue_pin)
{
}
/*fade from rgb_in to rgb_out*/
void fade( const rgb_color& in,
const rgb_color& out,
unsigned n_steps = 256, //default take 256 steps
unsigned time = 10) //wait 10 ms per step
{
int red_diff = out.r() - in.r();
int green_diff = out.g() - in.g();
int blue_diff = out.b() - in.b();
for ( unsigned i = 0; i < n_steps; ++i){
/* output is the color that is actually written to the pins
* and output nicely fades from in to out.
*/
rgb_color output ( in.r() + i * red_diff / n_steps,
in.g() + i * green_diff / n_steps,
in.b() + i * blue_diff/ n_steps);
/*put the analog pins to the proper output.*/
analogWrite( r_pin, output.r() );
analogWrite( g_pin, output.g() );
analogWrite( b_pin, output.b() );
delay(time);
}
}
};
void setup()
{
//pins driven by analogWrite do not need to be declared as outputs
}
void loop()
{
fader f (3, 5, 6); //note OP uses 9 10 and 11
/*colors*/
rgb_color yellow( 250, 105, 0 );
rgb_color orange( 250, 40, 0 );
rgb_color red ( 255, 0, 0 );
rgb_color blue ( 10, 10, 255 );
rgb_color pink ( 255, 0, 100 );
rgb_color purple( 200, 0, 255 );
rgb_color green ( 0, 255, 0 );
rgb_color white ( 255, 255, 255 );
/*fade colors*/
f.fade( white, yellow);
f.fade( yellow, orange);
f.fade( orange, red);
f.fade( red, blue);
f.fade( blue, pink);
f.fade( pink, purple);
f.fade( purple, green);
f.fade( green, white);
}
This is probably what you are looking for. Whenever we want to shift color over the spectrum and trasition the colors in a circular and smooth motion, what we are really doing is shifting light using HUE in the HSI/HSV (Hue, Saturation, Intensity/Value) color space.
Take if you will this figure:
We will attach a value from 0-360 for hue because hue has 360 degrees of color.
A value of 0.00 - 1.00 for saturation, and a value of 0.00 -1.00 for intensity/value
Here is my circuit on the MEGA 2560:
Here is video of this code running:
<iframe width="560" height="315" src="https://www.youtube.com/embed/gGG-GndSKi0" frameborder="0" allowfullscreen></iframe>
So lets build a function that we can pass the hue value and a for loop inside our loop function to call that value 360 times to shift over the full rainbow of color.
//Define the pins we will use with our rgb led
int redPin = 9;
int greenPin = 10;
int bluePin = 11;
//define that we are using common anode leds
#define COMMON_ANODE
void setup()
{
pinMode(redPin, OUTPUT);
pinMode(greenPin, OUTPUT);
pinMode(bluePin, OUTPUT);
}
int rgb[3];
//Arduino has no prebuilt function for hsi to rgb so we make one:
void hsi_to_rgb(float H, float S, float I) {
int r, g, b;
if (H > 360) {
H = H - 360;
}
// Serial.println("H: "+String(H));
H = fmod(H, 360); // cycle H around to 0-360 degrees
H = 3.14159 * H / (float)180; // Convert to radians.
S = S > 0 ? (S < 1 ? S : 1) : 0; // clamp S and I to interval [0,1]
I = I > 0 ? (I < 1 ? I : 1) : 0;
if (H < 2.09439) {
r = 255 * I / 3 * (1 + S * cos(H) / cos(1.047196667 - H));
g = 255 * I / 3 * (1 + S * (1 - cos(H) / cos(1.047196667 - H)));
b = 255 * I / 3 * (1 - S);
} else if (H < 4.188787) {
H = H - 2.09439;
g = 255 * I / 3 * (1 + S * cos(H) / cos(1.047196667 - H));
b = 255 * I / 3 * (1 + S * (1 - cos(H) / cos(1.047196667 - H)));
r = 255 * I / 3 * (1 - S);
} else {
H = H - 4.188787;
b = 255 * I / 3 * (1 + S * cos(H) / cos(1.047196667 - H));
r = 255 * I / 3 * (1 + S * (1 - cos(H) / cos(1.047196667 - H)));
g = 255 * I / 3 * (1 - S);
}
rgb[0] = r;
rgb[1] = g;
rgb[2] = b;
}
void setColor(int red, int green, int blue)
{
#ifdef COMMON_ANODE
red = 255 - red;
green = 255 - green;
blue = 255 - blue;
#endif
analogWrite(redPin, red);
analogWrite(greenPin, green);
analogWrite(bluePin, blue);
}
///here we have our main loop and the for loop to shift color
void loop()
{
//the for loop counts to 360 and because its in our control loop it will run forever
// We will use int i to increment the actual desired color
for (int i=0; i<=360;i++){
hsi_to_rgb(i,1,1);
setColor(rgb[0],rgb[1],rgb[2]);
//Changing the delay() value in milliseconds will change how fast the
//the light moves over the hue values
delay(5);
}
}
If you want to fade between colours, work in a colourspace which makes it easy and then convert back to RGB at the end.
For example, work in HSL colour space, keep S and L constant (say a fully saturated and bright colour) and then "fade" H around the circle - you'll go from red through green, blue and back to red. Convert back to RGB and then use those values for your LED drives. I used this technique for a "mood lamp" app, and other code for the colour space conversion can be found on SO.
You can simplify your code by using a struct for your color.
struct Color
{
unsigned char r;
unsigned char g;
unsigned char b;
};
Then, it is easy to have a fading function
// the old color will be modified, hence it is not given as reference
void fade(Color old, const Color& newColor)
{
// get the direction of increment first (count up or down)
// each of the inc_x will be either 1 or -1
char inc_r = (newColor.r - old.r)/abs(newColor.r-old.r); // note, that the right hand side will be sign extended to int according to the standard.
char inc_g = (newColor.g - old.g)/abs(newColor.g-old.g);
char inc_b = (newColor.g - old.g)/abs(newColor.g-old.g);
fadeOneColor(old.r, newColor.r, inc_r, old);
fadeOneColor(old.g, newColor.g, inc_g, old);
fadeOneColor(old.b, newColor.b, inc_b, old);
}
void fadeOneColor( unsigned char& col_old,
const unsigned char& col_new,
const char inc,
Color& col)
{
while(col_old != col_new)
{
col_old += inc;
SetColor(col);
delay(20);
}
}
I would like to contribute with a more user friendly answer as aids understanding of how it works.
In my example bellow I'm using common anode RGB LED.
In my project however: To set a Color to RGB LED, I send a String via HW Serial.
Command Example: RGB000255000
This Command as String is divided into 4 parts of 3 chars each.
Using the Command Example Above:
"RGB" : To filter where the Command will be executed.
"000" : The 2nd 3 Chars represent Red Value.
"255" : The 3rd 3 Chars represent Green Value.
"000" : The 4th 3 Chars represent Blue Value.
Result: This will Output Green on your LED.
See Code Bellow:
// Set your LED Pins.
const int rPin = 9;
const int gPin = 10;
const int bPin = 11;
// Set the variables that will assign a value to each Color Pin.
int rVal = 255;
int gVal = 255;
int bVal = 255;
// Fade Red Pin (In / Out).
void FadeRed(int red)
{
// When Red Value on Red Pin is Inferior to the New Value: Fade In.
if (rVal < red)
{
// Fade Out.
for (int r = rVal; r <= red; r++)
{
// Set the Variable and Pin values.
rVal = r;
analogWrite(rPin, rVal);
// Delay Slighlty (Synchronously). For Asynchronous Delay; you may try using "millis".
delay(6);
}
}
// When Red Value on Red Pin is Superior to the New Value: Fade Out.
else
{
for (int r = rVal; r >= red; r--)
{
rVal = r;
analogWrite(rPin, rVal);
delay(6);
}
}
}
// Fade Green Pin (In / Out).
void FadeGreen(int green)
{
if (gVal < green)
{
for (int g = gVal; g <= green; g++)
{
gVal = g;
analogWrite(gPin, gVal);
delay(6);
}
}
else
{
for (int g = gVal; g >= green; g--)
{
gVal = g;
analogWrite(gPin, gVal);
delay(6);
}
}
}
// Fade Blue Pin (In / Out).
void FadeBlue(int blue)
{
if (bVal < blue)
{
for (int b = bVal; b <= blue; b++)
{
bVal = b;
delay(6);
analogWrite(bPin, b);
}
}
else
{
for (int b = bVal; b >= blue; b--)
{
bVal = b;
delay(6);
analogWrite(bPin, b);
}
}
}
void FadeColor(int red, int green, int blue)
{
// Debug Only.
Serial.println("\n[+] Received Values");
Serial.println(red);
Serial.println(green);
Serial.println(blue);
// Code.
FadeRed(red);
FadeGreen(green);
FadeBlue(blue);
// Debug Only.
Serial.println("\n[+] Pin Values \n");
Serial.println(rVal);
Serial.println(gVal);
Serial.println(bVal);
}
/* Set RGB LED Color According to String Value. (i.e: RGB000000000) */
void SetColor(String color)
{
// Retrieve the New Color from String.
/* Split a String : Start Position; End Position */
String red = color.substring(3, 6); /* Get the 1st 3 Characters Corresponding to RED */
String green = color.substring(6, 9); /* Get the 2nd 3 Characters Corresponding to GREEN */
String blue = color.substring(9, 12); /* Get the Last 3 Characters Corresponding to BLUE */
int r = atoi(red.c_str());
int g = atoi(green.c_str());
int b = atoi(blue.c_str());
int redVal = 255 - r;
int grnVal = 255 - g;
int bluVal = 255 - b;
FadeColor(redVal, grnVal, bluVal);
}
void setup()
{
pinMode(rPin, OUTPUT);
pinMode(gPin, OUTPUT);
pinMode(bPin, OUTPUT);
pinMode(rPin, HIGH);
pinMode(gPin, HIGH);
pinMode(bPin, HIGH);
analogWrite(rPin, rVal);
analogWrite(gPin, gVal);
analogWrite(bPin, bVal);
}
Here's a fast linear fade between two RGB values stored in uint32_t as 0x00RRGGBB as is used in many addressable RGB pixel strips such as in NeoPixel (and is inspired by some of the code in the NeoPixel Arduino library).
It doesn't take colour space into consideration but still looks nice and smooth in practice.
uint32_t fadeColor(uint32_t const x, uint32_t const y, uint8_t const fade)
{
// boundary cases don't work with bitwise stuff below
if (fade == 0)
{
return x;
}
else if (fade == 255)
{
return y;
}
uint16_t const invFadeMod = (255 - fade) + 1;
uint16_t const fadeMod = fade + 1;
// overflows below to give right result in significant byte
uint8_t const xx[3] // r g b
{
static_cast<uint8_t>((uint8_t(x >> 16) * invFadeMod) >> 8),
static_cast<uint8_t>((uint8_t(x >> 8) * invFadeMod) >> 8),
static_cast<uint8_t>((uint8_t(x >> 0) * invFadeMod) >> 8),
};
uint8_t const yy[3] // r g b
{
static_cast<uint8_t>((uint8_t(y >> 16) * fadeMod) >> 8),
static_cast<uint8_t>((uint8_t(y >> 8)* fadeMod) >> 8),
static_cast<uint8_t>((uint8_t(y >> 0)* fadeMod) >> 8),
};
return ((uint32_t)(xx[0] + yy[0]) << 16) | ((uint32_t)(xx[1] + yy[1]) << 8) | (xx[2] + yy[2]);
}

Strange issue trying fade on arduino on multiple LEDs

I am trying to test out Fade on multiple LEDs on an Arduino Uno. Here's the code i have written
int led[2] = {9,10}; // the pin that the LED is attached to
int brightness[2] = {0,0}; // how bright the LED is
int fadeAmount[2] = {5,15}; // how many points to fade the LED by
long previousMillis[2] = {0,0}; // will store last time LED was updated
long interval[2] = {30, 50};
// the setup routine runs once when you press reset:
void setup() {
// declare pin 9 to be an output:
pinMode(led[0], OUTPUT);
pinMode(led[1], OUTPUT);
Serial.begin(9600);
}
// the loop routine runs over and over again forever:
void loop() {
// set the brightness of pins:
for (int counter = 0; counter < 2; counter++) {
unsigned long currentMillis = millis();
analogWrite(led[counter], brightness[counter]);
Serial.print("LED ");
Serial.print(led[counter]);
Serial.print(": Brightness ");
Serial.println(brightness[counter]);
if (currentMillis - previousMillis[counter] > interval[counter]) {
// change the brightness for next time through the loop:
brightness[counter] = brightness[counter] + fadeAmount[counter];
// reverse the direction of the fading at the ends of the fade:
if (brightness[counter] == 0 || brightness[counter] == 255) {
fadeAmount[counter] = -fadeAmount[counter] ;
}
}
}
}
Here's the weird thing. If i comment out the Serial stuff (print and begin), the fades don't work. They just "flicker" a little.
Any idea what is wrong?
I figured it out. It looks like I forgot a line of code.
previousMillis[counter] = currentMillis;
I should have put that in on the first if statement in the code. I guess the act of observing by using the serial print slowed things down enough that the code seemed to work.
Boy, do i feel foolish.