I want to solve the screened Poisson equation described in this paper, in order to compute an image from a coarse approximation and its vertical and horizontal gradients. I am using FFTW3 for the first time for this. However, I have very weird results.
My coarse approximation of the image looks like this:
But the output of my solution looks like this:
.
To debug it, I tried multiple things –
First, I suspected that my computation of the spatial frequencies was off, so I tried to compute the horizontal gradient of the image in the Fourier domain, which resulted in this:
.
Finally, when I only compute the FT of my image and its inverse transform, I get this:
But when I simply copy the FT in a new array and compute its inverse FT, I get this:
.
Here is my function:
void RayTrace::computeFT(double* &image_in, double* &dx_in, double* &dy_in, double* &result){
fftw_complex image_FT[width*height];
fftw_complex dx_FT[width*height];
fftw_complex dy_FT[width*height];
fftw_plan image_plan = fftw_plan_dft_r2c_2d(width, height, image_in, image_FT, FFTW_ESTIMATE);
fftw_plan dx_plan = fftw_plan_dft_r2c_2d(width, height, dx_in, dx_FT, FFTW_ESTIMATE);
fftw_plan dy_plan = fftw_plan_dft_r2c_2d(width, height, dy_in, dy_FT, FFTW_ESTIMATE);
//compute the FTs
fftw_execute(image_plan);
fftw_execute(dx_plan);
fftw_execute(dy_plan);
//delete plans after that
fftw_destroy_plan(image_plan);
fftw_destroy_plan(dx_plan);
fftw_destroy_plan(dy_plan);
fftw_cleanup();
//modify the image in the Fourier domain
fftw_complex result_FT[width*height];
for(int i=0 ; i<height ; i++){
for(int j=0 ; j<width ; j++){
float sx = (i>height/2 ? i-height : i) / float(height);
float sy = (j>width/2 ? j-width : j) / float(width);
int idx = i*width+j;
//These are the things that I tried to do
//compute the screened Poisson solution
result_FT[idx][0] = (alpha*image_FT[idx][0] + 2*M_PI*sx*dx_FT[idx][1] + 2*M_PI*sy*dy_FT[idx][1])/(alpha + 4*M_PI*M_PI*(sx*sx+sy*sy));
result_FT[idx][1] = (alpha*image_FT[idx][1] - 2*M_PI*sx*dx_FT[idx][0] - 2*M_PI*sy*dy_FT[idx][0])/(alpha + 4*M_PI*M_PI*(sx*sx+sy*sy));
//horizontal gradient
result_FT[idx][0] = -2*M_PI*sx*image_FT[idx][1];
result_FT[idx][1] = 2*M_PI*sx*image_FT[idx][0];
//simple copy
result_FT[idx][0] = image_FT[idx][0];
result_FT[idx][1] = image_FT[idx][1];
}
}
//inverse transform
fftw_plan r_back_plan = fftw_plan_dft_c2r_2d(width, height, image_FT, result, FFTW_ESTIMATE);
fftw_execute(r_back_plan);
//delete plan after that
fftw_destroy_plan(r_back_plan);
fftw_cleanup();
//normalize the result
float norm = height * width;
for(int i=0 ; i<height ; i++){
for(int j=0 ; j<width ; j++){
result[i*width + j] /= norm;
}
}
}
Please tell me if you see an error in my implementation
Also, here is the method from which I call the method, once for each color component in my image:
void RayTrace::computeGradient(glm::vec3* &image, glm::vec3* &xGradient, glm::vec3* &zGradient, glm::vec3* &gradient){
//compute the gradient of the image in the fourier domain
double *r_in = new double[width*height];
double *r_dx_in = new double[width*height];
double *r_dy_in = new double[width*height];
double *r_out = new double[width*height];
double *g_in = new double[width*height];
double *g_dx_in = new double[width*height];
double *g_dy_in = new double[width*height];
double *g_out = new double[width*height];
double *b_in = new double[width*height];
double *b_dx_in = new double[width*height];
double *b_dy_in = new double[width*height];
double *b_out = new double[width*height];
for(int i=0 ; i<height ; i++){
for(int j=0 ; j<width ; j++){
r_in[i*width + j] = image[i*width + j].x;
r_dx_in[i*width + j] = xGradient[i*width + j].x;
r_dy_in[i*width + j] = zGradient[i*width + j].x;
g_in[i*width + j] = image[i*width + j].y;
g_dx_in[i*width + j] = xGradient[i*width + j].y;
g_dy_in[i*width + j] = zGradient[i*width + j].y;
b_in[i*width + j] = image[i*width + j].z;
b_dx_in[i*width + j] = xGradient[i*width + j].z;
b_dy_in[i*width + j] = zGradient[i*width + j].z;
}
}
std::cout << width << " " << height << std::endl;
computeFT(r_in, r_dx_in, r_dy_in, r_out);
computeFT(g_in, g_dx_in, g_dy_in, g_out);
computeFT(b_in, b_dx_in, b_dy_in, b_out);
for(int i=0 ; i<height ; i++){
for(int j=0 ; j<width ; j++){
gradient[i*width + j] = glm::vec3(r_out[i*width + j], g_out[i*width + j], b_out[i*width + j]);
}
}
delete r_in;
delete r_out;
delete r_dx_in;
delete r_dy_in;
delete g_in;
delete g_out;
delete g_dx_in;
delete g_dy_in;
delete b_in;
delete b_out;
delete b_dx_in;
delete b_dy_in;
}
EDIT: It turns out that my path tracer output was not normalized at all, therefore the values in my arrays ranged from 1e-3 to 1e6, so I guess FFTW had trouble scaling that. Now that I normalized it, I can get my image back after computing its FFT and then its IFFT without modification which is some progress. However, the gradient computation gives this:
So I guess there is still a problem with my spatial frequency computation
Related
For a project I need to propagate a gaussian in real space using the Fourier transform of a gaussian centered at the origin using
What I want to calculate
Here is the latex code, since I can't include images yet
N(x | \mu, \sigma) = F^{-1}{F{ N(x |0, \sigma)} e^{-i\ 2\pi \mu\omega} \right},
where \omega is the frequency in Fourier space.
Now the problem I am having is I don't know how to calculate the frequency for some bin after doing the fft with fftw. Here is the code of what I am trying to do.
int main(){
int N = 128; //Number of "pixels" in real space
int N_fft = N/2 + 1;
double *in, *result, *x;
fftw_complex *out;
fftw_plan fw, bw;
in = (double*) fftw_malloc(sizeof(double) * N);
x = (double*) malloc(sizeof(double) * N);
out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N_fft);
result = (double*) fftw_malloc(sizeof(double) * N);
fw = fftw_plan_dft_r2c_1d(N, in, out, FFTW_ESTIMATE);
bw = fftw_plan_dft_c2r_1d(N, out, result, FFTW_ESTIMATE);
double min_x = -9.0, max_x = 9.0; //Limits in real space
for (int i=0; i<N; i++){
x[i] = min_x + 2*max_x*i / (N - 1);
in[i] = std::exp(-(x[i]) * (x[i]));
}
for (int i=0; i<N_fft; i++){
out[i][0] = 0.0;
out[i][1] = 0.0;
}
fftw_execute(fw);
double w;
fftw_complex z;
double w_norm;
for (int i=0; i<N_fft; i++){
w = -2*M_PI*i / (max_x - min_x); //WHAT I DON'T KNOW
// Calculating the product with the exponential for translating the gaussian
z[0] = out[i][0]*std::cos(w) - out[i][1]*std::sin(w);
z[1] = out[i][0]*std::sin(w) + out[i][0]*std::cos(w);
out[i][0] = z[0];
out[i][1] = z[1];
}
fftw_execute(bw);
for (int i=0; i<N; i++){
std::cout << x[i] << " " << result[i]/N << " " << std::exp(-x[i] * x[i]) << std::endl;
}
fftw_destroy_plan(fw);
fftw_free(in);
fftw_free(out);
return 0;
}
For the moment I've tried using w-nth = -2*np.pi * 1/(max_x - min_x) * n, which worked in python, but for some reason it doesn't work in c++
Here is the result I am obtaining with c++
result
Here ref is the gaussian centered at 0, the one I obtaing should be centered at 1.0, but that's clearly is not happening.
Here is the latex code, since I can't include images yet
(Here is the latex code, since I can't include images yet)
Generally, the more obvious is the mistake, the more time it takes to find it.
This was verified here.
The mistake is simply here:
z[1] = out[i][0]*std::sin(w) + out[i][0]*std::cos(w);
It should be:
z[1] = out[i][0]*std::sin(w) + out[i][1]*std::cos(w);
Besides, I don't know why you didn't use N__ft = N, but I guess it is related the way fftw works.
This is my first attempt to generate a spectrogram of a sinusoidal signal with C++.
To generate the spectrogram:
I divided the real sinusoidal signal into B blocks
Applied Hanning window on each block (I assumed there is no overlap). This should give me the inputs for the fft, in[j][k] where k is the block number
Apply fft on in[j][k] for each block and store it.
Here is the script:
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <fftw3.h>
#include <iostream>
#include <cmath>
#include <fstream>
using namespace std;
int main(){
int i;
int N = 500; // sampled
int Windowsize = 100;
double Fs = 200; // sampling frequency
double T = 1 / Fs; // sample time
double f = 50; // frequency
double *in;
fftw_complex *out;
double t[N]; // time vector
fftw_plan plan_forward;
std::vector<double> signal(N);
int B = N / Windowsize; //number of blocks
in = (double*)fftw_malloc(sizeof(double) * N);
out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
//Generating the signal
for(int i = 0; i < = N; i++){
t[i] = i * T;
signal[i] = 0.7 * sin(2 * M_PI * f * t[i]);// generate sine waveform
}
//Applying the Hanning window function on each block B
for(int k = 0; i <= B; k++){
for(int j = 0; j <= Windowsize; j++){
double multiplier = 0.5 * (1 - cos(2 * M_PI * j / (N-1))); // Hanning Window
in[j][k] = multiplier * signal[j];
}
plan_forward = fftw_plan_dft_r2c_1d (Windowsize, in, out, FFTW_ESTIMATE );
fftw_execute(plan_forward);
v[j][k]=(20 * log(sqrt(out[i][0] * out[i][0] + out[i][1] * out[i][1]))) / N;
}
fftw_destroy_plan(plan_forward);
fftw_free(in);
fftw_free(out);
return 0;
}
So, the question is: What is the correct way to declare in[j][k] and v[j][k] variables.
Update:I have declared my v [j] [k] as a matrix : double v [5][249]; according to this site :http://www.cplusplus.com/doc/tutorial/arrays/ so now my script looks like:
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <fftw3.h>
#include <iostream>
#include <cmath>
#include <fstream>
using namespace std;
int main()
{
int i;
double y;
int N=500;//Number of pints acquired inside the window
double Fs=200;//sampling frequency
int windowsize=100;
double dF=Fs/N;
double T=1/Fs;//sample time
double f=50;//frequency
double *in;
fftw_complex *out;
double t[N];//time vector
double tt[5];
double ff[N];
fftw_plan plan_forward;
double v [5][249];
in = (double*) fftw_malloc(sizeof(double) * N);
out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
plan_forward = fftw_plan_dft_r2c_1d ( N, in, out, FFTW_ESTIMATE );
for (int i=0; i<= N;i++)
{
t[i]=i*T;
in[i] =0.7 *sin(2*M_PI*f*t[i]);// generate sine waveform
}
for (int k=0; k< 5;k++){
for (int i = 0; i<windowsize; i++){
double multiplier = 0.5 * (1 - cos(2*M_PI*i/(windowsize-1)));//Hanning Window
in[i] = multiplier * in[i+k*windowsize];
fftw_execute ( plan_forward );
for (int i = 0; i<= (N/2); i++)
{
v[k][i]=(20*log10(sqrt(out[i][0]*out[i][0]+ out[i][1]*out[i] [1])));//Here I have calculated the y axis of the spectrum in dB
}
}
}
for (int k=0; k< 5;k++)//Center time for each block
{
tt[k]=(2*k+1)*T*(windowsize/2);
}
fstream myfile;
myfile.open("example2.txt",fstream::out);
myfile << "plot '-' using 1:2" << std::endl;
for (int k=0; k< 5;k++){
for (int i = 0; i<= ((N/2)-1); i++)
{
myfile << v[k][i]<< " " << tt[k]<< std::endl;
}
}
myfile.close();
fftw_destroy_plan ( plan_forward );
fftw_free ( in );
fftw_free ( out );
return 0;
}
I do not get errors anymore but the spectrogram plot is not right.
As indicated in FFTW's documentation, the size of the output (out in your case) when using fftw_plan_dft_r2c_1d is not the same as the size of the input. More specifically for an input of N real samples, the output consists of N/2+1 complex values. You may then allocate out with:
out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * (N/2 + 1));
For the spectrogram output you will then similarly have (N/2+1) magnitudes for each of the B blocks, resulting in the 2D array:
double** v = new double*[B];
for (int i = 0; i < B; i++){
v[i] = new double[(N/2+1)];
}
Also, note that you may reuse the input buffer in for each iteration (filling it with data for a new block). However since you have chosen to compute an N-point FFT and will be storing smaller blocks of Windowsize samples (in this case N=500 and Windowsize=100), make sure to initialize the remaining samples with zeros:
in = (double*)fftw_malloc(sizeof(double) * N);
for (int i = 0; i < N; i++){
in[i] = 0;
}
Note that in addition to the declaration and allocation of the in and v variables, the code you posted suffers from a few additional issues:
When computing the Hanning window, you should divide by the Windowsize-1 not N-1 (since in your case N correspond to the FFT size).
You are taking the FFT of the same block of signal over and over again since you are always indexing with j in the [0,Windowsize] range. You would most likely want to add an offset each time you process a different block.
Since the FFT size does not change, you only need to create the plan once. At the very least if you are going to create your plan at every iteration, you should similarly destroy it (with fftw_destroy_plan) at every iteration.
And a few additional points which may require some thoughts:
Scaling the log-scaled magnitudes by dividing by N might not do what you think. You are much more likely to want to scale the linear-scale magnitudes (ie. divide the magnitude before taking the logarithm). Note that this will result in a constant offset of the spectrum curve, which for many application is not that significant. If the scaling is important for your application, you may have a look at another answer of mine for more details.
The common formula 20*log10(x) typically used to convert linear scale to decibels uses a base-10 logarithm instead of the natural log (base e~2.7182) function which you've used. This would result in a multiplicative scaling (stretching), which may or may not be significant depending on your application.
To summarize, the following code might be more in line with what you are trying to do:
// Allocate & initialize buffers
in = (double*)fftw_malloc(sizeof(double) * N);
for (int i = 0; i < N; i++){
in[i] = 0;
}
out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * (N/2 + 1));
v = new (double*)[B];
for (int i = 0; i < B; i++){
v[i] = new double[(N/2+1)];
}
// Generate the signal
...
// Create the plan once
plan_forward = fftw_plan_dft_r2c_1d (Windowsize, in, out, FFTW_ESTIMATE);
// Applying the Hanning window function on each block B
for(int k = 0; k < B; k++){
for(int j = 0; j < Windowsize; j++){
// Hanning Window
double multiplier = 0.5 * (1 - cos(2 * M_PI * j / (Windowsize-1)));
in[j] = multiplier * signal[j+k*Windowsize];
}
fftw_execute(plan_forward);
for (int j = 0; j <= N/2; j++){
// Factor of 2 is to account for the fact that we are only getting half
// the spectrum (the other half is not return by a R2C plan due to symmetry)
v[k][j] = 2*(out[j][0] * out[j][0] + out[j][1] * out[j][1])/(N*N);
}
// DC component and at Nyquist frequency do not have a corresponding symmetric
// value, so should not have been doubled up above. Correct those special cases.
v[k][0] *= 0.5;
v[k][N/2] *= 0.5;
// Convert to decibels
for (int j = 0; j <= N/2; j++){
// 20*log10(sqrt(x)) is equivalent to 10*log10(x)
// also use some small epsilon (e.g. 1e-5) to avoid taking the log of 0
v[k][j] = 10 * log10(v[k][j] + epsilon);
}
}
// Clean up
fftw_destroy_plan(plan_forward);
fftw_free(in);
fftw_free(out);
// Delete this last one after you've done something useful with the spectrogram
for (int i = 0; i < B; i++){
delete[] v[i];
}
delete[] v;
Looks like you're missing the initial declaration for 'v' altogether, and 'in' is not declared properly.
See this page for a related question about creating 2D arrays in C++. As I understand, fftw_malloc() is basically new() or malloc() but aligns the variable properly for the FFTW algorithm.
Since you're not supplying 'v' to the anything related to FFTW, you could use standard malloc() for that.
everyone I am trying to implement patter matching with FFT but I am not sure what the result should be (I think I am missing something even though a read a lot of stuff about the problem and tried a lot of different implementations this one is the best so far). Here is my FFT correlation function.
void fft2d(fftw_complex**& a, int rows, int cols, bool forward = true)
{
fftw_plan p;
for (int i = 0; i < rows; ++i)
{
p = fftw_plan_dft_1d(cols, a[i], a[i], forward ? FFTW_FORWARD : FFTW_BACKWARD, FFTW_ESTIMATE);
fftw_execute(p);
}
fftw_complex* t = (fftw_complex*)fftw_malloc(rows * sizeof(fftw_complex));
for (int j = 0; j < cols; ++j)
{
for (int i = 0; i < rows; ++i)
{
t[i][0] = a[i][j][0];
t[i][1] = a[i][j][1];
}
p = fftw_plan_dft_1d(rows, t, t, forward ? FFTW_FORWARD : FFTW_BACKWARD, FFTW_ESTIMATE);
fftw_execute(p);
for (int i = 0; i < rows; ++i)
{
a[i][j][0] = t[i][0];
a[i][j][1] = t[i][1];
}
}
fftw_free(t);
}
int findCorrelation(int argc, char* argv[])
{
BMP bigImage;
BMP keyImage;
BMP result;
RGBApixel blackPixel = { 0, 0, 0, 1 };
const bool swapQuadrants = (argc == 4);
if (argc < 3 || argc > 4) {
cout << "correlation img1.bmp img2.bmp" << endl;
return 1;
}
if (!keyImage.ReadFromFile(argv[1])) {
return 1;
}
if (!bigImage.ReadFromFile(argv[2])) {
return 1;
}
//Preparations
const int maxWidth = std::max(bigImage.TellWidth(), keyImage.TellWidth());
const int maxHeight = std::max(bigImage.TellHeight(), keyImage.TellHeight());
const int rowsCount = maxHeight;
const int colsCount = maxWidth;
BMP bigTemp = bigImage;
BMP keyTemp = keyImage;
keyImage.SetSize(maxWidth, maxHeight);
bigImage.SetSize(maxWidth, maxHeight);
for (int i = 0; i < rowsCount; ++i)
for (int j = 0; j < colsCount; ++j) {
RGBApixel p1;
if (i < bigTemp.TellHeight() && j < bigTemp.TellWidth()) {
p1 = bigTemp.GetPixel(j, i);
} else {
p1 = blackPixel;
}
bigImage.SetPixel(j, i, p1);
RGBApixel p2;
if (i < keyTemp.TellHeight() && j < keyTemp.TellWidth()) {
p2 = keyTemp.GetPixel(j, i);
} else {
p2 = blackPixel;
}
keyImage.SetPixel(j, i, p2);
}
//Here is where the transforms begin
fftw_complex **a = (fftw_complex**)fftw_malloc(rowsCount * sizeof(fftw_complex*));
fftw_complex **b = (fftw_complex**)fftw_malloc(rowsCount * sizeof(fftw_complex*));
fftw_complex **c = (fftw_complex**)fftw_malloc(rowsCount * sizeof(fftw_complex*));
for (int i = 0; i < rowsCount; ++i) {
a[i] = (fftw_complex*)fftw_malloc(colsCount * sizeof(fftw_complex));
b[i] = (fftw_complex*)fftw_malloc(colsCount * sizeof(fftw_complex));
c[i] = (fftw_complex*)fftw_malloc(colsCount * sizeof(fftw_complex));
for (int j = 0; j < colsCount; ++j) {
RGBApixel p1;
p1 = bigImage.GetPixel(j, i);
a[i][j][0] = (0.299*p1.Red + 0.587*p1.Green + 0.114*p1.Blue);
a[i][j][1] = 0.0;
RGBApixel p2;
p2 = keyImage.GetPixel(j, i);
b[i][j][0] = (0.299*p2.Red + 0.587*p2.Green + 0.114*p2.Blue);
b[i][j][1] = 0.0;
}
}
fft2d(a, rowsCount, colsCount);
fft2d(b, rowsCount, colsCount);
result.SetSize(maxWidth, maxHeight);
for (int i = 0; i < rowsCount; ++i)
for (int j = 0; j < colsCount; ++j) {
fftw_complex& y = a[i][j];
fftw_complex& x = b[i][j];
double u = x[0], v = x[1];
double m = y[0], n = y[1];
c[i][j][0] = u*m + n*v;
c[i][j][1] = v*m - u*n;
int fx = j;
if (fx>(colsCount / 2)) fx -= colsCount;
int fy = i;
if (fy>(rowsCount / 2)) fy -= rowsCount;
float r2 = (fx*fx + fy*fy);
const double cuttoffCoef = (maxWidth * maxHeight) / 37992.;
if (r2<128 * 128 * cuttoffCoef)
c[i][j][0] = c[i][j][1] = 0;
}
fft2d(c, rowsCount, colsCount, false);
const int halfCols = colsCount / 2;
const int halfRows = rowsCount / 2;
if (swapQuadrants) {
for (int i = 0; i < halfRows; ++i)
for (int j = 0; j < halfCols; ++j) {
std::swap(c[i][j][0], c[i + halfRows][j + halfCols][0]);
std::swap(c[i][j][1], c[i + halfRows][j + halfCols][1]);
}
for (int i = halfRows; i < rowsCount; ++i)
for (int j = 0; j < halfCols; ++j) {
std::swap(c[i][j][0], c[i - halfRows][j + halfCols][0]);
std::swap(c[i][j][1], c[i - halfRows][j + halfCols][1]);
}
}
for (int i = 0; i < rowsCount; ++i)
for (int j = 0; j < colsCount; ++j) {
const double& g = c[i][j][0];
RGBApixel pixel;
pixel.Alpha = 0;
int gInt = 255 - static_cast<int>(std::floor(g + 0.5));
pixel.Red = gInt;
pixel.Green = gInt;
pixel.Blue = gInt;
result.SetPixel(j, i, pixel);
}
BMP res;
res.SetSize(maxWidth, maxHeight);
result.WriteToFile("result.bmp");
return 0;
}
Sample output
This question would probably be more appropriately posted on another site like cross validated (metaoptimize.com used to also be a good one, but it appears to be gone)
That said:
There's two similar operations you can perform with FFT: convolution and correlation. Convolution is used for determining how two signals interact with each-other, whereas correlation can be used to express how similar two signals are to each-other. Make sure you're doing the right operation as they're both commonly implemented throught a DFT.
For this type of application of DFTs you usually wouldn't extract any useful information in the fourier spectrum unless you were looking for frequencies common to both data sources or whatever (eg, if you were comparing two bridges to see if their supports are spaced similarly).
Your 3rd image looks a lot like the power domain; normally I see the correlation output entirely grey except where overlap occurred. Your code definitely appears to be computing the inverse DFT, so unless I'm missing something the only other explanation I've come up with for the fuzzy look could be some of the "fudge factor" code in there like:
if (r2<128 * 128 * cuttoffCoef)
c[i][j][0] = c[i][j][1] = 0;
As for what you should expect: wherever there are common elements between the two images you'll see a peak. The larger the peak, the more similar the two images are near that region.
Some comments and/or recommended changes:
1) Convolution & correlation are not scale invariant operations. In other words, the size of your pattern image can make a significant difference in your output.
2) Normalize your images before correlation.
When you get the image data ready for the forward DFT pass:
a[i][j][0] = (0.299*p1.Red + 0.587*p1.Green + 0.114*p1.Blue);
a[i][j][1] = 0.0;
/* ... */
How you grayscale the image is your business (though I would've picked something like sqrt( r*r + b*b + g*g )). However, I don't see you doing anything to normalize the image.
The word "normalize" can take on a few different meanings in this context. Two common types:
normalize the range of values between 0.0 and 1.0
normalize the "whiteness" of the images
3) Run your pattern image through an edge enhancement filter. I've personally made use of canny, sobel, and I think I messed with a few others. As I recall, canny was "quick'n dirty", sobel was more expensive, but I got comparable results when it came time to do correlation. See chapter 24 of the "dsp guide" book that's freely available online. The whole book is worth your time, but if you're low on time then at a minimum chapter 24 will help a lot.
4) Re-scale the output image between [0, 255]; if you want to implement thresholds, do it after this step because the thresholding step is lossy.
My memory on this one is hazy, but as I recall (edited for clarity):
You can scale the final image pixels (before rescaling) between [-1.0, 1.0] by dividing off the largest power spectrum value from the entire power spectrum
The largest power spectrum value is, conveniently enough, the center-most value in the power spectrum (corresponding to the lowest frequency)
If you divide it off the power spectrum, you'll end up doing twice the work; since FFTs are linear, you can delay the division until after the inverse DFT pass to when you're re-scaling the pixels between [0..255].
If after rescaling most of your values end up so black you can't see them, you can use a solution to the ODE y' = y(1 - y) (one example is the sigmoid f(x) = 1 / (1 + exp(-c*x) ), for some scaling factor c that gives better gradations). This has more to do with improving your ability to interpret the results visually than anything you might use to programmatically find peaks.
edit I said [0, 255] above. I suggest you rescale to [128, 255] or some other lower bound that is gray rather than black.
I have a Nx3 array which I need to fill as a function (so vector isn't an option). I already know how big N as as I feed it into the function as a parameter. I still get this stupid error of "must have a constant value", my code is:
double bspline_plot(double CP[], double Knot[], const int N, int d, int ncontrol, double *A){
// CP are the control points
//Knot is the knot vector
//N is the number of internal point you want in each segment
//d is the degree of the polynomials
double min_x, max_x, dx;
double *x_1;
x_1 = new double[N];
double A[N][2];
int i, j, M, L;
min_x = min(Knot);
max_x = max(Knot);
dx = (max_x - min_x) / N;
for (i = 0; i <= N; i = i + 1)
{
x_1[i] = min_x + dx*i;
}
M = ncontrol;
L = (sizeof(Knot) / sizeof(*Knot));
if (L < d + M + 1) // This checks if the number of control points are positive
{
printf("Incorrectly defined knot vector\n");
return;
}
else //This is the Cox - deBoor algorithm
{
for (i = 0; i <= N; i = i + 1)
{
for (j = 0; j <= L - 1; j = j + 1)
{
A[i][1] = A[i][1] + CP[j, 1] * CdB(j, d, x_1[i], Knot);
A[i][2] = A[i][2] + CP[j, 2] * CdB(j, d, x_1[i], Knot);
A[i][3] = A[i][3] + CP[j, 3] * CdB(j, d, x_1[i], Knot);
}
A[N][1] = CP[L, 2];
A[N][2] = CP[L, 2];
A[N][3] = CP[L, 1];
}
}
return A;
}
My other option is to feed in an array and then find it's values in the function but that seems a bit silly.
try to use std::vector in following way:
std::vector<std::vector<double>> A( N );
for( auto& row : A )
row.resize( M );
or
std::vector<std::vector<double>> A( N, std::vector<double>( M ));
From a quick inspection, the problem in your C++ code appears to be the following array declaration:
double A[N][2];
You need to dynamically allocate this 2d array as follows:
double** A = new double*[N];
for (int i=0; i<N; ++i)
A[i] = new double[2];
Have a look at this SO article for more information.
In the end I had to split A up into three vectors and change the output of the function from double to void and read in the (now) three vectors as double*. I can then just change the contents of the vectors and it now is showing no errors.
I am having trouble explaining/understanding the following phenomenon:
To test fftw3 i am using the 2d poisson test case:
laplacian(f(x,y)) = - g(x,y) with periodic boundary conditions.
After applying the fourier transform to the equation we obtain : F(kx,ky) = G(kx,ky) /(kx² + ky²) (1)
if i take g(x,y) = sin (x) + sin(y) , (x,y) \in [0,2 \pi] i have immediately f(x,y) = g(x,y)
which is what i am trying to obtain with the fft :
i compute G from g with a forward Fourier transform
From this i can compute the Fourier transform of f with (1).
Finally, i compute f with the backward Fourier transform (without forgetting to normalize by 1/(nx*ny)).
In practice, the results are pretty bad?
(For instance, the amplitude for N = 256 is twice the amplitude obtained with N = 512)
Even worse, if i try g(x,y) = sin(x)*sin(y) , the curve has not even the same form of the solution.
(note that i must change the equation; i divide by two the laplacian in this case : (1) becomes F(kx,ky) = 2*G(kx,ky)/(kx²+ky²)
Here is the code:
/*
* fftw test -- double precision
*/
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <fftw3.h>
using namespace std;
int main()
{
int N = 128;
int i, j ;
double pi = 3.14159265359;
double *X, *Y ;
X = (double*) malloc(N*sizeof(double));
Y = (double*) malloc(N*sizeof(double));
fftw_complex *out1, *in2, *out2, *in1;
fftw_plan p1, p2;
double L = 2.*pi;
double dx = L/(N - 1);
in1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
out2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
out1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
in2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
p1 = fftw_plan_dft_2d(N, N, in1, out1, FFTW_FORWARD,FFTW_MEASURE );
p2 = fftw_plan_dft_2d(N, N, in2, out2, FFTW_BACKWARD,FFTW_MEASURE);
for(i = 0; i < N; i++){
X[i] = -pi + i*dx ;
for(j = 0; j < N; j++){
Y[j] = -pi + j*dx ;
in1[i*N + j][0] = sin(X[i]) + sin(Y[j]) ; // row major ordering
//in1[i*N + j][0] = sin(X[i]) * sin(Y[j]) ; // 2nd test case
in1[i*N + j][1] = 0 ;
}
}
fftw_execute(p1); // FFT forward
for ( i = 0; i < N; i++){ // f = g / ( kx² + ky² )
for( j = 0; j < N; j++){
in2[i*N + j][0] = out1[i*N + j][0]/ (i*i+j*j+1e-16);
in2[i*N + j][1] = out1[i*N + j][1]/ (i*i+j*j+1e-16);
//in2[i*N + j][0] = 2*out1[i*N + j][0]/ (i*i+j*j+1e-16); // 2nd test case
//in2[i*N + j][1] = 2*out1[i*N + j][1]/ (i*i+j*j+1e-16);
}
}
fftw_execute(p2); //FFT backward
// checking the results computed
double erl1 = 0.;
for ( i = 0; i < N; i++) {
for( j = 0; j < N; j++){
erl1 += fabs( in1[i*N + j][0] - out2[i*N + j][0]/N/N )*dx*dx;
cout<< i <<" "<< j<<" "<< sin(X[i])+sin(Y[j])<<" "<< out2[i*N+j][0]/N/N <<" "<< endl; // > output
}
}
cout<< erl1 << endl ; // L1 error
fftw_destroy_plan(p1);
fftw_destroy_plan(p2);
fftw_free(out1);
fftw_free(out2);
fftw_free(in1);
fftw_free(in2);
return 0;
}
I can't find any (more) mistakes in my code (i installed the fftw3 library last week) and i don't see a problem with the maths either but i don't think it's the fft's fault. Hence my predicament. I am all out of ideas and all out of google as well.
Any help solving this puzzle would be greatly appreciated.
note :
compiling : g++ test.cpp -lfftw3 -lm
executing : ./a.out > output
and i use gnuplot in order to plot the curves :
(in gnuplot ) splot "output" u 1:2:4 ( for the computed solution )
Here are some little points to be modified :
You need to account for all small frequencies, including the negative ones ! Index i corresponds to the frequency 2PI i/N but also to the frequency 2PI (i-N)/N. In the Fourier space, the end of the array matters as much as the beginning ! In our case, we keep the smallest frequency : it's 2PI i/N for the first half of the array, and 2PI(i-N)/N on the second half.
Of course, as Paul said, N-1 should be Nin double dx = L/(N - 1); => double dx = L/(N ); N-1 does not correspond to a continious periodic signal. It woud be hard to use it as a test case...
Scaling...I did it empirically
The result i obtain is closer to the expected one, for both cases. Here is the code :
/*
* fftw test -- double precision
*/
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <fftw3.h>
using namespace std;
int main()
{
int N = 128;
int i, j ;
double pi = 3.14159265359;
double *X, *Y ;
X = (double*) malloc(N*sizeof(double));
Y = (double*) malloc(N*sizeof(double));
fftw_complex *out1, *in2, *out2, *in1;
fftw_plan p1, p2;
double L = 2.*pi;
double dx = L/(N );
in1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
out2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
out1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
in2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
p1 = fftw_plan_dft_2d(N, N, in1, out1, FFTW_FORWARD,FFTW_MEASURE );
p2 = fftw_plan_dft_2d(N, N, in2, out2, FFTW_BACKWARD,FFTW_MEASURE);
for(i = 0; i < N; i++){
X[i] = -pi + i*dx ;
for(j = 0; j < N; j++){
Y[j] = -pi + j*dx ;
in1[i*N + j][0] = sin(X[i]) + sin(Y[j]) ; // row major ordering
// in1[i*N + j][0] = sin(X[i]) * sin(Y[j]) ; // 2nd test case
in1[i*N + j][1] = 0 ;
}
}
fftw_execute(p1); // FFT forward
for ( i = 0; i < N; i++){ // f = g / ( kx² + ky² )
for( j = 0; j < N; j++){
double fact=0;
in2[i*N + j][0]=0;
in2[i*N + j][1]=0;
if(2*i<N){
fact=((double)i*i);
}else{
fact=((double)(N-i)*(N-i));
}
if(2*j<N){
fact+=((double)j*j);
}else{
fact+=((double)(N-j)*(N-j));
}
if(fact!=0){
in2[i*N + j][0] = out1[i*N + j][0]/fact;
in2[i*N + j][1] = out1[i*N + j][1]/fact;
}else{
in2[i*N + j][0] = 0;
in2[i*N + j][1] = 0;
}
//in2[i*N + j][0] = out1[i*N + j][0];
//in2[i*N + j][1] = out1[i*N + j][1];
// in2[i*N + j][0] = out1[i*N + j][0]*(1.0/(i*i+1e-16)+1.0/(j*j+1e-16)+1.0/((N-i)*(N-i)+1e-16)+1.0/((N-j)*(N-j)+1e-16))*N*N;
// in2[i*N + j][1] = out1[i*N + j][1]*(1.0/(i*i+1e-16)+1.0/(j*j+1e-16)+1.0/((N-i)*(N-i)+1e-16)+1.0/((N-j)*(N-j)+1e-16))*N*N;
//in2[i*N + j][0] = 2*out1[i*N + j][0]/ (i*i+j*j+1e-16); // 2nd test case
//in2[i*N + j][1] = 2*out1[i*N + j][1]/ (i*i+j*j+1e-16);
}
}
fftw_execute(p2); //FFT backward
// checking the results computed
double erl1 = 0.;
for ( i = 0; i < N; i++) {
for( j = 0; j < N; j++){
erl1 += fabs( in1[i*N + j][0] - out2[i*N + j][0]/(N*N))*dx*dx;
cout<< i <<" "<< j<<" "<< sin(X[i])+sin(Y[j])<<" "<< out2[i*N+j][0]/(N*N) <<" "<< endl; // > output
// cout<< i <<" "<< j<<" "<< sin(X[i])*sin(Y[j])<<" "<< out2[i*N+j][0]/(N*N) <<" "<< endl; // > output
}
}
cout<< erl1 << endl ; // L1 error
fftw_destroy_plan(p1);
fftw_destroy_plan(p2);
fftw_free(out1);
fftw_free(out2);
fftw_free(in1);
fftw_free(in2);
return 0;
}
This code is far from being perfect, it is neither optimized nor beautiful. But it gives almost what is expected.
Bye,