My project uses DirectX 10 and some of its boilerplate to render a scene, however, it crashes with an error message "Could not initialize the model object." As far as I understand, making it up to this point means that, at the very least, the model has been successfully created, so the error must be in one of the files below, which is fortunate as the most difficult tasks are handled by the FallBodyClass.cpp that hosts OpenCL API interactions. If needed, I can try attaching parts of it in a later edit.
During debug, my IDE shows that all components of m_Model (m_vertexBuffer, m_indexBuffer etc) are shown as with _vfptr . I do not know what to make of it, but it does seem to confirm that modelclass.cpp is the point of failure.
graphicsclass.cpp
GraphicsClass::GraphicsClass()
{
m_Direct3D = 0;
m_Model = 0;
m_ColorShader = 0;
m_bodies = BODIES;
}
GraphicsClass::GraphicsClass(const GraphicsClass& other)
{}
GraphicsClass::~GraphicsClass()
{}
bool GraphicsClass::Initialize(int screenWidth, int screenHeight, HWND hwnd)
{
bool result;
// Create the Direct3D object.
m_Direct3D = new D3DClass;
if (!m_Direct3D)
{
return false;
}
// Initialize the Direct3D object.
result = m_Direct3D->Initialize(screenWidth, screenHeight, VSYNC_ENABLED, hwnd, FULL_SCREEN, SCREEN_DEPTH, SCREEN_NEAR);
if (!result)
{
MessageBox(hwnd, L"Could not initialize Direct3D", L"Error", MB_OK);
return false;
}
// Create the model object.
m_Model = new ModelClass(m_bodies);
if (!m_Model)
{
return false;
}
// Initialize the model object.
result = m_Model->Initialize(m_Direct3D->GetDevice());
if (!result)
{
MessageBox(hwnd, L"Could not initialize the model object.", L"Error", MB_OK);
return false;
}
modelclass.cpp
ModelClass::ModelClass(int bodies)
{
m_vertexBuffer = 0;
m_indexBuffer = 0;
m_positions = 0;
m_velocities = 0;
m_bodySystem = 0;
m_bodies = bodies;
}
ModelClass::ModelClass(const ModelClass& other)
{}
ModelClass::~ModelClass()
{}
bool ModelClass::Initialize(ID3D10Device* device)
{
bool result;
TwoLines twoLinesConstants = CalculateLinesConstants(M_PI_4);
m_positions = new float[COORD_DIM * m_bodies];
m_velocities = new float[VEL_DIM * m_bodies];
m_bodySystem = new class FallBodyClass(m_bodies, &m_positions, &m_velocities, twoLinesConstants, result);
if (!result) {
return false;
}
// Initialize the vertex and index buffer that hold the geometry for the triangle.
result = InitializeBuffers(device, twoLinesConstants);
if(!result)
{
return false;
}
return true;
}
FallBodyclass.cpp
FallBodyClass::FallBodyClass(int bodies, float ** positionsCPU, float ** velocitiesCPU, TwoLines twoLines, bool & success)
:bodies(bodies)
{
cl_int ret;
// getting the first available platform
cl_platform_id clPlatformID[2];
cl_platform_id GPUplatform;
cl_uint num_platforms;
//char str[1024];
ret = clGetPlatformIDs(2, clPlatformID, &num_platforms);
GPUplatform = clPlatformID[0]; //choose GPU platform
//error |= clGetPlatformInfo(GPUplatform, CL_PLATFORM_NAME, 0, NULL, NULL);
//clGetPlatformInfo(GPUplatform, CL_PLATFORM_VENDOR, sizeof(str), str, NULL);
// getting the first GPU device
ret |= clGetDeviceIDs(GPUplatform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);
if (ret != CL_SUCCESS)
{
success = false;
return;
}
//clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(str), str, NULL);
// creating the context
context = clCreateContext(0, 1, &device, NULL, NULL, &ret);
if (ret != CL_SUCCESS)
{
success = false;
return;
}
cl_queue_properties props[] = {
CL_QUEUE_PROFILING_ENABLE
};
// creating the command queue
queue = clCreateCommandQueueWithProperties(context, device, props, &ret);
if (ret != CL_SUCCESS)
{
success = false;
return;
}
// setting the local variables
// (at the same time one of them supposed to be 0 and another to be 1)
read = 0;
write = 1;
// reading the kernel
FILE * f = NULL;
char fileName[18] = "kernel.cl";
f = fopen(fileName, "rb");
if(f == NULL)
{
success = false;
return;
}
// getting the length of the source code for the kernel
fseek(f, 0, SEEK_END);
size_t codeLength = ftell(f);
rewind(f);
char * code = (char *)malloc(codeLength + 1);
if (fread(code, codeLength, 1, f) != 1)
{
fclose(f);
free(code);
success = false;
return;
}
// closing the file and 0-terminating the source code
fclose(f);
code[codeLength] = '\0';
// creating the program
program = clCreateProgramWithSource(context, 1, (const char **)&code, &codeLength, &ret);
if (ret != CL_SUCCESS)
{
success = false;
return;
}
// clearing the memory
free(code);
// building the program
ret |= clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
// creating the kernel
kernel = clCreateKernel(program, "impactManager", &ret);
// setting the local size of the group the largest possible in order to load all computational units
int numGroups;
ret |= clGetDeviceInfo(device, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(numGroups), &numGroups, NULL);
localSize = bodies / numGroups;
// allocating pinned buffers for velocities and positions, and stuck
positionsCPUBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, COORD_DIM * bodies * sizeof(float) , NULL, NULL);
velocitiesCPUBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, VEL_DIM * bodies * sizeof(float) , NULL, NULL);
linesCPUBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, 8 * sizeof(float), NULL, NULL);
// get pointers to arrays to operate with the buffers (array map buffers here (to program) as float-arrays)
*positionsCPU = (float *)clEnqueueMapBuffer(queue, positionsCPUBuffer, CL_TRUE, CL_MAP_WRITE, 0, COORD_DIM * bodies * sizeof(float), 0, NULL, NULL, NULL);
*velocitiesCPU = (float *)clEnqueueMapBuffer(queue, velocitiesCPUBuffer, CL_TRUE, CL_MAP_WRITE, 0, VEL_DIM * bodies * sizeof(float), 0, NULL, NULL, NULL);
float * linesCPU = (float *)clEnqueueMapBuffer(queue, linesCPUBuffer, CL_TRUE, CL_MAP_WRITE, 0, 8 * sizeof(float), 0, NULL, NULL, NULL);
// initialization of the bodies' positions and velocities, and stuck
initBodies(*positionsCPU, *velocitiesCPU);
initLines(twoLines, linesCPU);
// unmapping the pointers to arrays (invalidates array pointers)
clEnqueueUnmapMemObject(queue, positionsCPUBuffer, *positionsCPU, 0, NULL, NULL);
clEnqueueUnmapMemObject(queue, velocitiesCPUBuffer, *velocitiesCPU, 0, NULL, NULL);
clEnqueueUnmapMemObject(queue, linesCPUBuffer, linesCPU, 0, NULL, NULL);
// allocate two arrays on GPU for positions and velocities
for (int i = 0; i < 2; ++i) {
positionsGPU[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, COORD_DIM * bodies * sizeof(float), NULL, NULL);
ret |= clEnqueueWriteBuffer(queue, positionsGPU[i], CL_TRUE, 0, COORD_DIM * bodies * sizeof(float), *positionsCPU, 0, NULL, NULL);
velocitiesGPU[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, VEL_DIM * bodies * sizeof(float), NULL, NULL);
ret |= clEnqueueWriteBuffer(queue, velocitiesGPU[i], CL_TRUE, 0, VEL_DIM * bodies * sizeof(float), *velocitiesCPU, 0, NULL, NULL);
}
linesGPU = clCreateBuffer(context, CL_MEM_READ_WRITE, 8 * sizeof(float), NULL, NULL);
ret |= clEnqueueWriteBuffer(queue, linesGPU, CL_TRUE, 0, 8 * sizeof(float), linesCPU, 0, NULL, NULL);
if (ret != CL_SUCCESS)
{
success = false;
return;
}
}
void FallBodyClass::initLines(IN TwoLines l, OUT float *linesCPU)
{
linesCPU[0] = l.a1;
linesCPU[1] = l.b1;
linesCPU[2] = l.R1.x;
linesCPU[3] = l.R1.y;
linesCPU[4] = l.a2;
linesCPU[5] = l.b2;
linesCPU[6] = l.R2.x;
linesCPU[7] = l.R2.y;
}
// initialization of the bodies' positions and velocities
void FallBodyClass::initBodies(float * positionsCPU, float * velocitiesCPU)
{
float scale = 0.20f;
// initialization of the memory
memset(positionsCPU, 0, COORD_DIM * bodies * sizeof(float));
memset(velocitiesCPU, 0, VEL_DIM * bodies * sizeof(float));
// for the randomization
srand((unsigned int)time(NULL));
for (int i = 0; i < bodies; i++)
{
positionsCPU[COORD_DIM * i] = 1.8*((rand() / (float)RAND_MAX) - 0.5); //x axis
positionsCPU[COORD_DIM * i + 1] = 0.9; //y axis
positionsCPU[COORD_DIM * i + 2] = 0.0f; //z axis
positionsCPU[COORD_DIM * i + 3] = 0.0f; // stuck variable
// velocities are zeros
velocitiesCPU[VEL_DIM* i] = 0.0;
velocitiesCPU[VEL_DIM* i + 1] = -2 * (rand() / (float)RAND_MAX);
velocitiesCPU[VEL_DIM* i + 2] = 0.0;
}
}
// updating the bodies' positions and velocities. Stuck is updated inside too
void FallBodyClass::update(float dt, float * positionsCPU, float * velocitiesCPU, bool & success)
{
cl_int error = CL_SUCCESS;
size_t global_work_size;
size_t local_work_size;
success = true;
if (localSize > bodies)
localSize = bodies;
local_work_size = localSize;
global_work_size = bodies;
// passing the arguments
// we write the new positions and velocities and read the previous ones
error |= clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&positionsGPU[write]);
error |= clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&velocitiesGPU[write]);
error |= clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&positionsGPU[read]);
error |= clSetKernelArg(kernel, 3, sizeof(cl_mem), (void *)&velocitiesGPU[read]);
error |= clSetKernelArg(kernel, 4, sizeof(cl_float), (void *)&dt);
error |= clSetKernelArg(kernel, 5, sizeof(cl_mem), (void *)&linesGPU);
// just swap read and write in order not to copy the arrays
int temp;
temp = write;
write = read;
read = temp;
// executing the kernel
error |= clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_work_size, &local_work_size, 0, NULL, NULL);
// synchronization
clFinish(queue);
// asynchronously reading the updated values
error |= clEnqueueReadBuffer(queue, positionsGPU[read], CL_FALSE, 0, COORD_DIM * bodies * sizeof(float), positionsCPU, 0, NULL, NULL);
if (error != CL_SUCCESS)
{
success = false;
}
error |= clEnqueueReadBuffer(queue, velocitiesGPU[read], CL_FALSE, 0, VEL_DIM * bodies * sizeof(float), velocitiesCPU, 0, NULL, NULL);
if (error != CL_SUCCESS)
{
success = false;
}
///////////
bool toReboot = positionsCPU[3]; //fourth index of the [0] first element
//bool toReboot = false;
////////////
if (toReboot) {
positionsCPU = (float *)clEnqueueMapBuffer(queue, positionsCPUBuffer, CL_TRUE, CL_MAP_WRITE, 0, COORD_DIM * bodies * sizeof(float), 0, NULL, NULL, NULL);
velocitiesCPU = (float *)clEnqueueMapBuffer(queue, velocitiesCPUBuffer, CL_TRUE, CL_MAP_WRITE, 0, VEL_DIM * bodies * sizeof(float), 0, NULL, NULL, NULL);
initBodies(positionsCPU, velocitiesCPU);
// unmapping the pointers
clEnqueueUnmapMemObject(queue, positionsCPUBuffer, positionsCPU, 0, NULL, NULL);
clEnqueueUnmapMemObject(queue, velocitiesCPUBuffer, velocitiesCPU, 0, NULL, NULL);
//update values on GPU side
error |= clEnqueueWriteBuffer(queue, positionsGPU[read], CL_TRUE, 0, COORD_DIM * bodies * sizeof(float), positionsCPU, 0, NULL, NULL);
error |= clEnqueueWriteBuffer(queue, velocitiesGPU[read], CL_TRUE, 0, VEL_DIM * bodies * sizeof(float), velocitiesCPU, 0, NULL, NULL);
}
return;
}
FallBodyClass::~FallBodyClass(void)
{
// synchronization (if something has to be done)
clFinish(queue);
// releasing all objects
clReleaseMemObject(linesGPU);
clReleaseMemObject(linesCPUBuffer);
clReleaseMemObject(velocitiesGPU[0]);
clReleaseMemObject(velocitiesGPU[1]);
clReleaseMemObject(positionsGPU[0]);
clReleaseMemObject(positionsGPU[1]);
clReleaseMemObject(positionsCPUBuffer);
clReleaseMemObject(velocitiesCPUBuffer);
clReleaseKernel(kernel);
clReleaseProgram(program);
clReleaseCommandQueue(queue);
clReleaseContext(context);
}
Related
I tried to make parallel bfs in openCL but I didn't have enough experience with c++.
So this is probably memory error, but I really don't know how to fix it.
I also can't find what does error value -51 means.
As a result I got "Unhandled exception at 0x00007FFCFB06A549 (amdocl64.dll) in my project.exe: 0xC0000005: Access violation reading location 0xFFFFFFFFFFFFFFFF" in next line.
main
Graph G(AdjacencyList, Directed);
int startVertex;
vector<int> distance;
vector<bool> visited;
distance = vector<int>(G.numVertices);
visited = vector<bool>(G.numVertices);
bool done = false;
const bool true_value = true;
int level = 0;
// Allocation on device
const int size = G.numVertices * sizeof(int);
const int adjacencySize = G.adjacencyList.size() * sizeof(int);
//OpenCL
cl_int status;
cl_int ret;
cl_platform_id platform_id;
clGetPlatformIDs(1, &platform_id, NULL);
cl_device_id device_id;
ret = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);
cl_context context = clCreateContext(NULL, 1, &device_id, NULL, NULL, &status);
cl_command_queue command_queue = clCreateCommandQueueWithProperties(context, device_id, NULL, &status);
cl_mem d_adjacencyList = clCreateBuffer(context, CL_MEM_READ_WRITE, adjacencySize, NULL, &status);
cl_mem d_edgesOffset = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &status);
cl_mem d_edgesSize = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &status);
cl_mem d_distance = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &status);
cl_mem d_done = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(bool), NULL, &status);
status = clEnqueueWriteBuffer(command_queue, d_adjacencyList, CL_TRUE, 0, adjacencySize, &G.adjacencyList[0], 0, NULL, NULL);
status = clEnqueueWriteBuffer(command_queue, d_edgesOffset, CL_TRUE, 0, size, &G.edgesOffset[0], 0, NULL, NULL);
status = clEnqueueWriteBuffer(command_queue, d_edgesSize, CL_TRUE, 0, size, &G.edgesSize[0], 0, NULL, NULL);
distance = vector<int>(G.numVertices, INT_MAX);
distance[start] = 0;
status = clEnqueueWriteBuffer(command_queue, d_distance, CL_TRUE, 0, size, distance.data(), 0, NULL, NULL);
char* source_str = NULL;
size_t source_size;
FILE* fp;
fp = fopen("bfs.cl", "r");
if (!fp)
{
cout << "Failed to load Kernel\n";
exit(1);
}
source_str = (char*)malloc(MAX_SOURCE_SIZE);
source_size = fread(source_str, 1, MAX_SOURCE_SIZE, fp);
cl_program program = clCreateProgramWithSource(context, 1, (const char**)&source_str, (const size_t*)&source_size, &status);
status = clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);
cl_kernel kernel = clCreateKernel(program, "bfs", &status);
status = clSetKernelArg(kernel, 0, sizeof(int), (void*)&G.numVertices);
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void*)&d_adjacencyList);
status = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void*)&d_edgesOffset);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), (void*)&d_edgesOffset);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), (void*)&d_edgesSize);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), (void*)&d_distance); //here retirns -51
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), (void*)&level);
status = clSetKernelArg(kernel, 7, sizeof(cl_mem), (void*)&d_done);
kernel
__kernel void bfs(int n, __global int *adjacencyList,__global int *edgesOffset,__global int *edgesSize,__global int *distance, int level,__global bool *done) {
int tid = get_global_id(0);
if (tid < n) {
if (distance[tid] == level) {
for (int i = edgesOffset[tid]; i < edgesOffset[tid] + edgesSize[tid]; ++i) {
int v = adjacencyList[i];
if (distance[v] == INT_MAX) {
*done = false;
distance[v] = level + 1;
}
}
}
}
}
Hi #Parrison welcome to StackOverflow!
All the OpenCL error codes are defined in cl.h. In the latest (version 3) cl.h you will find the error codes defined between lines 194 and 270, where on line 241 you will find:
#define CL_INVALID_ARG_SIZE -51
So the OpenCL ICD reckons that you have passed the wrong variable size for distance.
However, I can see many other errors before this one. For example, you need to set the size of the OpenCL buffers based on the sizes of OpenCL variable not native variables, e.g.:
cl_int instead of int
cl_float instead of float
and especially cl_bool instead of bool.
There is no guarantee that an OpenCL cl_int is the same size a host int and an OpenCL cl_bool is defined as an unsigned int which is highly unlikely to be the same size as a bool!
Ensure that all the parameters to your OpenCL kernel are defined correctly and that
you are creating the correct buffers and variables for them in the main program.
https://i.stack.imgur.com/TA9v6.png
I have been trying to get to compile a kernel that assigns certain indices to an std::vector using OpenCL through clEnqueueReadBuffer function but it does not seem to work correctly since the first result is the only assigned in the std::vector
the source code for the host in c++ is the following:
cl_mem originalPixelsBuffer = clCreateBuffer(p1.context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, sizeof(Color) * imageObj->SourceLength(), source, &p1.status);
CheckErrorCode(p1.status, p1.program, p1.devices[0], "Failed to Create buffer 0");
cl_mem targetBuffer = clCreateBuffer(p1.context, CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR, sizeof(Color) * imageObj->OutputLength(), target, &p1.status);
CheckErrorCode(p1.status, p1.program, p1.devices[0], "Failed to Create buffer 1");
//write buffers
p1.status = clEnqueueWriteBuffer(p1.commandQueue, originalPixelsBuffer, CL_FALSE, 0, sizeof(Color) * imageObj->SourceLength(), source, 0, NULL, NULL);
CheckErrorCode(p1.status, p1.program, p1.devices[0], "Failed to write buffer 0");
p1.status = clEnqueueWriteBuffer(p1.commandQueue, targetBuffer, CL_TRUE, 0, sizeof(Color) * imageObj->OutputLength(), target, 0, NULL, NULL);
CheckErrorCode(p1.status, p1.program, p1.devices[0], "Failed to write buffer 1");
size_t globalWorkSize[2] = { imageObj->originalWidth * 4, imageObj->originalHeight * 4 };
size_t localWorkSize[2]{ 64,64 };
SetLocalWorkSize(IsDivisibleBy64(localWorkSize[0]), localWorkSize);
//execute kernel
p1.status = clEnqueueNDRangeKernel(p1.commandQueue, Kernel, 1, NULL, globalWorkSize, IsDisibibleByLocalWorkSize(globalWorkSize, localWorkSize) ? localWorkSize : NULL, 0, NULL, NULL);
CheckErrorCode(p1.status, p1.program, p1.devices[0], "Failed to clEnqueueDRangeKernel");
//read buffer
p1.status = clEnqueueReadBuffer(p1.commandQueue, targetBuffer, CL_TRUE, 0, sizeof(Color) * imageObj->OutputLength(), target, 0, NULL, NULL);
CheckErrorCode(p1.status, p1.program, p1.devices[0], "Failed to write buffer 1");
the kernel code:
__kernel void interp(__global struct Color* source,__global struct Color* target,uint64 width,uint64 height,uint64 ratio,uint64 limit, uint64 originalHeight)
{
__private fp32 wIndex = (int64)get_global_id(0);
__private fp32 hIndex = (int64)get_global_id(1);
if(((int64)wIndex)%ratio==MATCH && ((int64)hIndex)%ratio ==MATCH)
{
__private int64 Index = (wIndex/ratio) * (originalHeight/ratio) + (hIndex/ratio);
if(Index < limit)
{
__private int64 tIndex = wIndex * height + hIndex;
target[tIndex].R = source[Index].R;
target[tIndex].G = source[Index].G;
target[tIndex].B = source[Index].B;
target[tIndex].A = source[Index].A;
}
}
}```
I am a beginner at OpenCL. I tried to run a very simple kernel code, adding 1 to each value of vector. Everything runs fine, returns no error code (I checked return value after each step). The source Code :
cl_device_id device_id = NULL;
cl_context context = NULL;
cl_command_queue command_queue = NULL;
cl_mem memobj , resobj = NULL;
cl_program program = NULL;
cl_kernel kernel = NULL;
cl_platform_id platform_id = NULL;
cl_uint ret_num_devices;
cl_uint ret_num_platforms;
cl_int ret;
size_t work_units_per_kernels;
int input[10] = {1,2,3,4,5,6,7,8,9,10};
int output[10];
int length = 10 ;
FILE *fp;
char fileName[] = "/home/tuan/OpenCLPlayaround/hello.cl";
char *source_str;
size_t source_size;
/* Load the source code containing the kernel*/
fp = fopen(fileName, "r");
if (!fp) {
fprintf(stderr, "Failed to load kernel.\n");
exit(1);
}
source_str = (char*)malloc(0x100000);
source_size = fread(source_str,1,0x100000, fp);
fclose(fp);
ret = clGetPlatformIDs(1, &platform_id, &ret_num_platforms);
std::cout<<ret<<" code"<<std::endl;
ret = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_DEFAULT, 1, &device_id, &ret_num_devices);
std::cout<<ret<<" code"<<std::endl;
context = clCreateContext(NULL, 1, &device_id, NULL, NULL, &ret);
std::cout<<ret<<" code"<<std::endl;
command_queue = clCreateCommandQueue(context, device_id, 0, &ret);
//Check Concept of memory
memobj = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,length * sizeof(int), input, &ret);
resobj = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, length * sizeof(int), output, &ret);
std::cout<<ret<<" code"<<std::endl;
program = clCreateProgramWithSource(context,1,(const char**)&source_str, (const size_t*)&source_size, &ret);
ret = clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);
kernel = clCreateKernel(program, "hello", &ret);
ret = clSetKernelArg(kernel,0, sizeof(memobj),(void *)&memobj);
ret = clSetKernelArg(kernel,1, sizeof(resobj),(void *)&resobj);
ret = clEnqueueTask(command_queue, kernel, 0, NULL,NULL);
ret = clEnqueueReadBuffer(command_queue, resobj, CL_TRUE, 0, length* sizeof(int),output, 0, NULL, NULL);
for (int i = 0 ; i <10 ; i++) {
std::cout<<output[i]<<" "<<std::endl;
}
return 0;
The result is somewhat bizarre, while it should be {2,3,4,5,6,7,8,9,10,11} :
2
-16777216
65535
1
-1242789408
32767
4201449
0
2
0
And my kernel :
__kernel void hello(__global int* a, __global int* b)
{
int sam = 0;
int gid = get_global_id(0);
b[gid] = sam + a[gid] +1 ;
}
Can somebody explain why ? Its bursting my head for hours !
clEnqueueTask is equivalent to calling clEnqueueNDRangeKernel with work_dim = 1, global_work_offset = NULL, global_work_size[0] set to 1, and local_work_size[0] set to 1.
so use clEnqueueNDRangeKernel.
I am trying to compute the euclidean distance of a set of 5D points (pixels) to a 5D single point (center) and store in another result vector, I want to use vector indexing to store all info in a single vector so for the ith pixel, the 5 dimensions are (5i) , (5i+1) , ...
I am new to OpenCL and I just edited a sample code on the internet for my own intentions. The theory is right but the code doesn't show the right answers !
Here is the kernel:
//d_kernel.cl
__kernel void distance_kernel(__global double *pixelInfo,
__global double *clusterCentres,
__global double *distanceFromClusterCentre)
{
int index = get_global_id(0);
int d, dl, da, db, dx, dy;
dl = pixelInfo[5 * index] - clusterCentres[0];
dl = dl * dl;
da = pixelInfo[5 * index + 1] - clusterCentres[1];
da = da * da;
db = pixelInfo[5 * index + 2] - clusterCentres[2];
db = db * db;
dx = pixelInfo[5 * index + 3] - clusterCentres[3];
dx = dx * dx;
dy = pixelInfo[5 * index + 4] - clusterCentres[4];
dy = dy * dy;
distanceFromClusterCentre[index] = dx + dy + dl + da + db;
}
and here is the HOST CODE:
#include <iostream>
#include <CL/cl.h>
#include <vector>
using namespace std;
#define MAX_SOURCE_SIZE (0x100000)
int main(int argc, char **argv)
{
// Create the two input vectors
int i;
const int pixelsNumber = 1024;
const int clustersNumber = 1;
std::vector<double> pixelInfo;
pixelInfo.resize(5 * pixelsNumber);
std::fill(pixelInfo.begin(), pixelInfo.end(), 500);
std::vector<double> clusterCentres;
clusterCentres.resize(5 * clustersNumber);
std::fill(clusterCentres.begin(), clusterCentres.end(), 200);
std::vector<double> distanceFromClusterCentre;
distanceFromClusterCentre.resize(pixelsNumber);
std::fill(distanceFromClusterCentre.begin(), distanceFromClusterCentre.end(), 0);
// Load the kernel source code into the array source_str
FILE *fp;
char *source_str;
size_t source_size;
fp = fopen("d_kernel.cl", "r");
if (!fp) {
fprintf(stderr, "Failed to load kernel.\n");
exit(1);
}
source_str = (char*)malloc(MAX_SOURCE_SIZE);
source_size = fread(source_str, 1, MAX_SOURCE_SIZE, fp);
fclose(fp);
// Get platform and device information
cl_platform_id platform_id = NULL;
cl_device_id device_id = NULL;
cl_uint ret_num_devices;
cl_uint ret_num_platforms;
cl_int ret = clGetPlatformIDs(1, &platform_id, &ret_num_platforms);
ret = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_DEFAULT, 1,
&device_id, &ret_num_devices);
// Create an OpenCL context
cl_context context = clCreateContext(NULL, 1, &device_id, NULL, NULL, &ret);
// Create a command queue
cl_command_queue command_queue = clCreateCommandQueue(context, device_id, 0, &ret);
// Create memory buffers on the device for each vector
cl_mem pixelInfo_mem = clCreateBuffer(context, CL_MEM_READ_ONLY,
5 * pixelsNumber * sizeof(int), NULL, &ret);
cl_mem clusterCentres_mem = clCreateBuffer(context, CL_MEM_READ_ONLY,
5 * clustersNumber * sizeof(int), NULL, &ret);
cl_mem distanceFromClusterCentre_mem = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
pixelsNumber * sizeof(int), NULL, &ret);
// Copy the vectors to their respective memory buffers
ret = clEnqueueWriteBuffer(command_queue, pixelInfo_mem, CL_TRUE, 0,
5 * pixelsNumber * sizeof(int), pixelInfo.data(), 0, NULL, NULL);
ret = clEnqueueWriteBuffer(command_queue, clusterCentres_mem, CL_TRUE, 0,
5 * clustersNumber * sizeof(int), clusterCentres.data(), 0, NULL, NULL);
// Create a program from the kernel source
cl_program program = clCreateProgramWithSource(context, 1,
(const char **)&source_str, (const size_t *)&source_size, &ret);
// Build the program
ret = clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);
// Create the OpenCL kernel
cl_kernel kernel = clCreateKernel(program, "vector_add", &ret);
// Set the arguments of the kernel
ret = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&pixelInfo_mem);
ret = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&clusterCentres_mem);
ret = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&distanceFromClusterCentre_mem);
// Execute the OpenCL kernel on the list
size_t global_item_size = pixelsNumber; // Process the entire lists
size_t local_item_size = 64; // Divide work items into groups of 64
ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL,
&global_item_size, &local_item_size, 0, NULL, NULL);
// Read the memory buffer result on the device to the local vector result
ret = clEnqueueReadBuffer(command_queue, distanceFromClusterCentre_mem, CL_TRUE, 0,
pixelsNumber * sizeof(int), distanceFromClusterCentre.data(), 0, NULL, NULL);
// Display the result to the screen
for (i = 0; i < pixelsNumber; i++)
{
cout << "Pixel " << i << ": " << distanceFromClusterCentre[i] << endl;
//system("PAUSE");
}
// Clean up
ret = clFlush(command_queue);
ret = clFinish(command_queue);
ret = clReleaseKernel(kernel);
ret = clReleaseProgram(program);
ret = clReleaseMemObject(pixelInfo_mem);
ret = clReleaseMemObject(clusterCentres_mem);
ret = clReleaseMemObject(distanceFromClusterCentre_mem);
ret = clReleaseCommandQueue(command_queue);
ret = clReleaseContext(context);
free(pixelInfo.data());
free(clusterCentres.data());
free(distanceFromClusterCentre.data());
system("PAUSE");
return 0;
}
and a part of the RESULT is:
.
.
.
Pixel 501: -1.11874e+306
Pixel 502: -1.16263e+306
Pixel 503: -1.07485e+306
Pixel 504: -1.03079e+306
Pixel 505: -9.42843e+305
Pixel 506: -9.86903e+305
Pixel 507: -8.98954e+305
Pixel 508: -9.86903e+305
Pixel 509: -8.98954e+305
Pixel 510: -9.43014e+305
Press any key to continue . . .
Pixel 511: -8.55065e+305
Pixel 512: 0
Pixel 513: 0
Pixel 514: 0
Pixel 515: 0
Pixel 516: 0
Pixel 517: 0
Pixel 518: 0
Pixel 519: 0
Pixel 520: 0
.
.
.
after index 511 the rest of the vector is zero !
You created your vectors of double's and then you treat them as there were ints (created buffer for ints, writing data to int buffers and reading back results as there were ints). To avoid such mistakes you could write your code this way:
cl_mem pixelInfo_mem = clCreateBuffer(context, CL_MEM_READ_ONLY, pixelInfo.size() * sizeof(pixelInfo[0]), NULL, &ret);
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
I have a very curious problem with clEnqueueWriteBuffer. In my current project, I would like to copy ~500 images (1GB) onto the graphics card and average some pixels. The images are stored in one big double* Array (size: width*height*nImages). If I copy 300 images into the VRAM and read it out using clEnqueueReadBuffer, I get exactly what I had stored in RAM:
RAM: 14450,5006076793 14450,5006076793 14456,8079379383 14455,2294939826 14444,7361060619
VRAM: 14450,5006076793 14450,5006076793 14456,8079379383 14455,2294939826 14444,7361060619
However, if I load more than 350 images, the content of my cl_mem object is corrupt:
RAM:14450,5006076793 14450,5006076793 14456,8079379383 14455,2294939826 14444,7361060619
VRAM:-6,27743856220419E+66 -6,27743856220419E+66 -6,27743856220419E+66 -6,27743856220419E+66 -6,27743856220419E+66
I would be very happy if you could help me out!
Here is my code:
private: System::Void button7_Click(System::Object^ sender, System::EventArgs^ e) {
std::string text;
text = StringConvA(maskedTextBox1->Text);
textBox1->Text += "You want a bin size of " + atoi(text.c_str()) + ". You have "+ nforegroundImages+" images.\r\n";
binWidth = atoi(text.c_str());
nbins = (int)ceil((double)nforegroundImages / (double)binWidth);
textBox1->Text += "That is going to give you "+nbins+" bins\r\n";
//create context and cmd_queue
context = clCreateContext(NULL, nDevices, &deviceID[0], NULL, NULL, &err);
cmd_queue = clCreateCommandQueue(context, deviceID[0], NULL, &err);
//allocate result memory
//each result image will have width*height double entries. res_im is an array of pointer to double.
res_im = (double*)malloc(width*height*sizeof(double)*nbins);
cl_mem imageData_mem, result_mem, nWavenumber_mem, binSize_mem, imageSizeInPixels_mem, nbins_mem;
imageData_mem = clCreateBuffer(context, CL_MEM_READ_ONLY, width * height * sizeof(double)*nforegroundImages, NULL, NULL);
result_mem = clCreateBuffer(context, CL_MEM_READ_WRITE, width * height * sizeof(double)*nbins, NULL, NULL);
nWavenumber_mem = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(int), NULL, NULL);
binSize_mem = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(int), NULL, NULL);
imageSizeInPixels_mem = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(int), NULL, NULL);
nbins_mem = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(int), NULL, NULL);
clFinish(cmd_queue);
int imageSizeInPixels = width*height;
err = clEnqueueWriteBuffer(cmd_queue, imageData_mem, CL_TRUE, 0, width*height*sizeof(double)*nforegroundImages, (void*)images, 0, NULL, NULL); //this is where the images are copied into VRAM. If nforegroundImages>300, the data in VRAM is wrong, otherwise it is the same as in the images array
err = clEnqueueWriteBuffer(cmd_queue, nWavenumber_mem, CL_TRUE, 0, sizeof(int), (void*)&nforegroundImages, 0, NULL, NULL);
err = clEnqueueWriteBuffer(cmd_queue, binSize_mem, CL_TRUE, 0, sizeof(int), (void*)&binWidth, 0, NULL, NULL);
err = clEnqueueWriteBuffer(cmd_queue, imageSizeInPixels_mem, CL_TRUE, 0, sizeof(int), (void*)&imageSizeInPixels, 0, NULL, NULL);
err = clEnqueueWriteBuffer(cmd_queue, nbins_mem, CL_TRUE, 0, sizeof(int), (void*)&nbins, 0, NULL, NULL);
clFinish(cmd_queue);
//read the content of imageData_mem and store it in test array
double * test = (double*)malloc(width*height*sizeof(double)*nforegroundImages);
err = clEnqueueReadBuffer(cmd_queue, imageData_mem, CL_TRUE, 0, width*height*sizeof(double)*nforegroundImages,
test, 0, NULL, NULL);
clFinish(cmd_queue);
//compare original value from the images array to the value retrieved from the VRAM
textBox1->Text += images[1] + "\t" + images[1] + "\t" + images[10] + "\t" + images[100] + "\t" + images[1000] + "\t\r\n"; //original data
textBox1->Text += test[1] + "\t" + test[1] + "\t" + test[10] + "\t" + test[100] + "\t" + test[1000] + "\t\r\n"; //retrieved from imageData_mem
free(test);
//build the program from the source file and print the program build log
cl_program program[2];
cl_kernel kernel[2];
const char * filename = "addKernel.c";
char *program_source = load_program_source(filename);
program[0] = clCreateProgramWithSource(context, 1, (const char**)&program_source,
NULL, &err);
if (err == CL_OUT_OF_HOST_MEMORY){
textBox1->Text += "Error: out of Host Memory!\r\n";
}
else if (err == CL_INVALID_CONTEXT){
textBox1->Text += "Error: invalid Context!\r\n";
}
else if (err == CL_INVALID_VALUE){
textBox1->Text += "Error: invalid Value!\r\n";
}
err = clBuildProgram(program[0], 0, NULL, NULL, NULL, NULL);
textBox1->Text += "Program build error: " + err + "\r\n";
cl_build_status status;
size_t logSize;
clGetProgramBuildInfo(program[0], deviceID[0], CL_PROGRAM_BUILD_STATUS, sizeof(cl_build_status), &status, NULL);
clGetProgramBuildInfo(program[0], deviceID[0], CL_PROGRAM_BUILD_LOG, 0, NULL, &logSize);
char* programLog;
programLog = (char*)calloc(logSize + 1, sizeof(char));
clGetProgramBuildInfo(program[0], deviceID[0], CL_PROGRAM_BUILD_LOG, logSize + 1, programLog, NULL);
this->textBox1->Text += "Program build info: error=" + err + ", status=" + status + ", programLog:\r\n" + *programLog + "\r\n" + "In case of an error please make sure that openCL has been initialized\r\n";
kernel[0] = clCreateKernel(program[0], "filterSpectrum", &err);
//(__global double *imageData, __global double *result, __constant int *nWavenumbers, __constant int *binSize, __constant int *imageSizeInPixels,__constant int * nbins)
// Now setup the arguments to our kernel
err = clSetKernelArg(kernel[0], 0, sizeof(cl_mem), &imageData_mem);
err |= clSetKernelArg(kernel[0], 1, sizeof(cl_mem), &result_mem);
err |= clSetKernelArg(kernel[0], 2, sizeof(cl_mem), &nWavenumber_mem);
err |= clSetKernelArg(kernel[0], 3, sizeof(cl_mem), &binSize_mem);
err |= clSetKernelArg(kernel[0], 4, sizeof(cl_mem), &imageSizeInPixels_mem);
err |= clSetKernelArg(kernel[0], 5, sizeof(cl_mem), &nbins_mem);
size_t local_work_size = 32;
// Run the calculation by enqueuing it and forcing the
// command queue to complete the task
size_t global_work_size = width*height;
err = clEnqueueNDRangeKernel(cmd_queue, kernel[0], 1, NULL,&global_work_size, &local_work_size, 0, NULL, NULL);
clFinish(cmd_queue);
// Once finished read back the results from the answer
// array into the results array
err = clEnqueueReadBuffer(cmd_queue, result_mem, CL_TRUE, 0, width*height*sizeof(double)*nbins,
res_im, 0, NULL, NULL);
clFinish(cmd_queue);
textBox1->Text += "result values " + res_im[1] + "\t" + res_im[100] + "\t" + res_im[1000] + "\t" + res_im[10000] + "\t" + res_im[100000] + "\t" + res_im[1000000] + "\r\n";
hScrollBar2->Maximum = nbins+3;
clReleaseMemObject(imageSizeInPixels_mem);
clReleaseMemObject(imageData_mem);
clReleaseMemObject(result_mem);
clReleaseMemObject(nWavenumber_mem);
clReleaseMemObject(binSize_mem);
clReleaseMemObject(nbins_mem);
clReleaseCommandQueue(cmd_queue);
clReleaseContext(context);
}
You are most likely requesting more memory than the driver will allow in a single allocation. It looks like you aren't checking most of the error codes that the OpenCL runtime functions return; doing this makes it much easier to diagnose problems with OpenCL programs. You really should do this for every API call.
You can find out what the largest single memory allocation your device supports is with the following code snippet:
cl_ulong maxMemAlloc;
clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &maxMemAlloc, NULL);
textBox1->Text += "Maximum memory allocation size is " + maxMemAlloc + " bytes\r\n";
It's often the case that the largest memory allocation is much less than the total size of the GPU memory. The OpenCL specification only requires that it is at least 1/4 of the maximum size, or at least 128 MB.