binary check for an operation - bit-manipulation

Suppose a class has n students due to take an exam.
We intend to devise the quickest way to find out if all students have taken the exam.
Since the state is stored in a repository - read and update operation is expensive.
Is this possible through bit shifting/toggling.
If n=5,the initial state is n bytes of 0 - 00000
Each student completing the exam pushes 1 ,starting from right.
00001
00011
00111
......
All bytes composed of 1 indicates closure.
How do we achieve this using bit operations?
Is there a more efficient way to achieve this?

You have all the steps already:
n bits of 0:
status = 0
Each student completing the exam pushes 1 ,starting from right.
status = status << 1 # push previous to left
status = status | 1 # set the lowest bit
All bytes composed of 1 indicates closure.
allOnes = (1<<num_students) -1
closure = (status == allOnes)
Is there a more efficient way to achieve this?
#Alain's comment is correct: The method you describe is just a less memory efficient way of counting from 1 to n. Why not use a simple counter instead?
takers +=1
completed = (takers == num_students)
The storage for this will take lg(n) bits instead of n bits. In either case there will be load/modify/test/store cycle for each taker, so there is no signifcant time savings. The only reason I could think to use the bitfield is if you are concerned that one person may take the test twice and throw off your count.

Related

Cyclic Redundancy check : Single and double bit error

Found this in the book by Forouzan (Data Communications and Networking 5E). But, not able to understand the logic behind this.
This is in the context of topic two isolated single-bit errors
In other words, g(x) must not divide x^t + 1, where t is between 0 and n − 1. However, t = 0 is meaningless and t = 1 is needed as we will see later. This means t should be between 2 and n – 1
why t=1 is excluded here? (x^1 + 1) is two consecutive errors, it must also be detected right using our g(x).
The third image states that (x+1) should be a factor of g(x), but this reduces the maximum length that the CRC is guaranteed to detect 2 bit errors from n-1 to (n/2)-1, but it provides the advantage of being able to detect any odd number of bit errors such as (x^k + x^j + x^i) where k+j+i <= (n/2)-1.
Not mentioned in the book, is that some generators can detect more than 3 errors, but sacrifice the maximum length of a message in order to do this.
If a CRC can detect e errors, then it can also correct floor(e/2) errors, but I'm not aware of an efficient algorithm to do this, other than a huge table lookup (if there is enough space). For example there is a 32 bit CRC (in hex: 1f1922815 = 787·557·465·3·3) that can detect 7 bit errors or correct 3 bit errors for a message size up to 1024 bits, but fast correction requires a 1.4 giga-byte lookup table.
As for the "t = 1 is needed", the book later clarifies this by noting that g(x) = (x+1) cannot detect adjacent bit errors. In the other statement, the book does not special case t = 0 or t = 1, it states, "If a generator cannot divide (x^t + 1), t between 0 and n-1, then all isolated double bit errors can be detected", except that if t = 0, (x^0 + 1) = (1 + 1) = 0, which would be a zero bit error case.

Learning about multithreading. Tried to make a prime number finder

I'm studying for a uni project and one of the requirements is to include multithreading. I decided to make a prime number finder and - while it works - it's rather slow. My best guess is that this has to do with the amount of threads I'm creating and destroying.
My approach was to take the range of primes that are below N, and distribute these evenly across M threads (where M = number of cores (in my case 8)), however these threads are being created and destroyed every time N increases.
Pseudocode looks like this:
for each core
# new thread
for i in (range / numberOfCores) * currentCore
if !possiblePrimeIsntActuallyPrime
if possiblePrime % i == 0
possiblePrimeIsntActuallyPrime = true
return
else
return
Which does work, but 8 threads being created for every possible prime seems to be slowing the system down.
Any suggestions on how to optimise this further?
Use thread pooling.
Create 8 threads and store them in an array. Feed it new data each time one ends and start it again. This will prevent them from having to be created and destroyed each time.
Also, when calculating your range of numbers to check, only check up to ceil(sqrt(N)) as anything after that is guaranteed to either not go into it or the other corresponding factor has already been checked. i.e. ceil(sqrt(24)) is 5.
Once you check 5 you don't need to check anything else because 6 goes into 24 4 times and 4 has been checked, 8 goes into it 3 times and 3 has been checked, etc.

RRD Time since last non-change of counter

I have a RRD DCOUNTER, which gets its data from the water meter: so many units since start of the program which looks at the meter.
So the input might be 2,3,4,5,5,5,5,8,12,13,13,14,14,14,14,14
That means the flow is 1,1,1,0,0,0,0,3,4,1,0,1,0,0,0,0,0
I want a graph showing minutes since last rest
0,1,2,0,1,2,3,0,0,0,0,0,0,1,2,3,4,5
If the flow is never zero, there must be a leak.
Hopefully the graph should rise steadily from bedtime to wakeup, and from leaving to work to coming back.
Ideas?
First, you set up your input data source as a COUNTER type, so that you will be storing the changes, IE the flow.
Now, you can define a calculated datasource (for graphs etc) that counts the minutes since the last zero, using something like:
IF ( flow == 0 )
THEN
timesincerest = 0
ELSE
timesincerest = previous value of timesincerest + 1
END
In RPN, that would be:
timesincerest = flow, 0, GT, PREV(timesincerest), STEPWIDTH, +, 0, IF
This will give you a count of the number of seconds since the last reset.

Trying to decode a FM like signal encoded on audio

I have an audio signal that has a kind of FM encoded signal on it. The encoded signal is using this Biphase mark coding technique <-- see at the end of this page.
This signal is a digital representation of a timecode, in hours, minutes, seconds and frames. It basically works like this:
lets consider that we are working in 25 frames per second;
we know that the code is transmitting 80 bits of information every frame (that is 80 bits per frame x 25 frames per second = 2000 bits per second);
The wave is being sampled at 44100 samples per second. So, if we divide 44100/2000 we see that every bit uses 22,05 samples;
A bit happens when the signal changes sign.
If the wave changes sign and keeps its sign during the whole bit period it is a ZERO. If the wave changes sign two times over one bit period it is a ONE;
What my code does is this:
detects the first zero crossing, that is the clock start (to)
measures the level for to = to + 0.75*bitPeriod... 0.75 to give a tolerance.
if that second level is different, we have a 1, if not we have a 0;
This is the code:
// data is a C array of floats representing the audio levels
float bitPeriod = ceil(44100 / 2000);
int firstZeroCrossIndex = findNextZeroCross(data);
// firstZeroCrossIndex is the value where the signal changed
// for example: data[0] = -0.23 and data[1] = 0.5
// firstZeroCrossIndex will be equal to 1
// if firstZeroCrossIndex is invalid, go away
if (firstZeroCrossIndex < 0) return
float firstValue = data[firstZeroCrossIndex];
int lastSignal = sign(firstValue);
if (lastSignal == 0) return; // invalid, go away
while (YES) {
float newValue = data[firstZeroCrossIndex + 0.75* bitPeriod];
int newSignal = sign(newValue);
if (lastSignal == newSignal)
printf("0");
else
printf("1");
firstZeroCrossIndex += bitPeriod;
// I think I must invert the signal here for the next loop interaction
lastSignal = -newSignal;
if (firstZeroCrossIndex > maximuPossibleIndex)
break;
}
This code appears logical to me but the result coming from it is a total nonsense. What am I missing?
NOTE: this code is executing over a live signal and reads values from a circular ring buffer. sign returns -1 if the value is negative, 1 if the value is positive or 0 if the value is zero.
Cool problem! :-)
The code fails in two independent ways:
You are searching for the first (any) zero crossing. This is good. But then there is a 50% chance, that this transition is the one which occurs before every bit (0 or 1) or whether this transition is one which marks a 1 bit. If you get it wrong in the beginning you end up with nonsense.
You keep on adding bitPeriod (float, 22.05) to firstZeroCrossIndex (int). This means that your sampling points will slowly run out of phase with your analog signal and you will see strange effects when you sample point gets near the signal transitions. You will get nonsense, periodically at least.
Solution to 1: You must search for at least one 0 first, so you know which transition indicates just the next bit and which indicates a 1 bit. In practice you will want to re-synchronize your sampler at every '0' bit.
Solution to 2: Do not add bitPeriod to your sampling point. Instead search for the next transition, like you did in the beginning. The next transition is either 'half a bit' away, or a 'complete bit' away, which gives you the information you want. After a 'half a bit' period you must see another 'half a bit' period. If not, you must re-synchronize since you took a middle transition for a start transition by accident. This is exactly the re-sync I was talking about in 1.

Is a process can send to himself data? Using MPICH2

I have an upper triangular matrix and the result vector b.
My program need to solve the linear system:
Ax = b
using the pipeline method.
And one of the constraints is that the number of process is smaller than the number of
the equations (let's say it can be from 2 to numberOfEquations-1).
I don't have the code right now, I'm thinking about the pseudo code..
My Idea was that one of the processes will create the random upper triangular matrix (A)
the vector b.
lets say this is the random matrix:
1 2 3 4 5 6
0 1 7 8 9 10
0 0 1 12 13 14
0 0 0 1 16 17
0 0 0 0 1 18
0 0 0 0 0 1
and the vector b is [10 5 8 9 10 5]
and I have a smaller amount of processes than the number of equations (lets say 2 processes)
so what I thought is that some process will send to each process line from the matrix and the relevant number from vector b.
so the last line of the matrix and the last number in vector b will be send to
process[numProcs-1] (here i mean to the last process (process 1) )
than he compute the X and sends the result to process 0.
Now process 0 need to compute the 5 line of the matrix and here i'm stuck..
I have the X that was computed by process 1, but how can the process can send to himself
the next line of the matrix and the relevant number from vector b that need to be computed?
Is it possible? I don't think it's right to send to "myself"
Yes, MPI allows a process to send data to itself but one has to be extra careful about possible deadlocks when blocking operations are used. In that case one usually pairs a non-blocking send with blocking receive or vice versa, or one uses calls like MPI_Sendrecv. Sending a message to self usually ends up with the message simply being memory-copied from the source buffer to the destination one with no networking or other heavy machinery involved.
And no, communicating with self is not necessary a bad thing. The most obvious benefit is that it makes the code more symmetric as it removes/reduces the special logic needed to handle self-interaction. Sending to/receiving from self also happens in most collective communication calls. For example, MPI_Scatter also sends part of the data to the root process. To prevent some send-to-self cases that unnecessarily replicate data and decrease performance, MPI allows in-place mode (MPI_IN_PLACE) for most communication-related collectives.
Is it possible? I don't think it's right to send to "myself"
Sure, it is possible to communicate with oneself. There is even a communicator for it: MPI_COMM_SELF. Talking to yourself is not too uncommon.
Your setup sounds like you would rather use MPI collectives. Have a look at MPI_Scatter and MPI_Gather and see if they don't provide you with the functionality, you are looking for.