dynamically allocating memory to matrices - c++

I am trying to convert an array to a matrix, so I dynamically allocated memory to the matrix, but I'm getting an error:
CRT detected that the application wrote to memory after end of heap buffer
int main() {
float a[9] = { 1, 3, 5, 6,4,6,5,6,8};
int b = sizeof(a)/sizeof(a[0]);
int r = sqrt(b) - 1;
float **A_mat = new float*[r];
//A_mat = ;
for (int i = 0; i <= r; i++)
A_mat[i] = new float[r];
for (int j = 0; j <= r; j++) {
for (int i = 0; i <= r; i++) {
A_mat[j][i] = a[i + j * (r+1)];
}
}
cout << "a[0,0] is " << A_mat[0][0] << endl;
cout << "a[0,2] is " << A_mat[0][2] << endl;
cout << "a[1,0] is " << A_mat[1][0] << endl;
cout << "a[2,0] is " << A_mat[2][0] << endl;
for (int i = 0; i <= r; i++) {
delete[] A_mat[i];
}
delete[] A_mat;
system("pause");
}

Your code has two major issues:
Issue 1:
float **A_mat = new float*[r]; // allocating memory for 2 rows because r = sqrt(9) - 1 => r = 2
for (int i = 0; i <= r; i++)
A_mat[i] = new float[r]; // Usage of A_mat[r] for r = 2 is out of bounds. Also, memory is allocated for 2 columns.
Issue 2:
for (int j = 0; j <= r; j++) {
for (int i = 0; i <= r; i++) {
A_mat[j][i] = a[i + j * (r+1)]; // accessing indices (0, 2), (1, 2), (2, 0), (2, 1), (2, 2) are out of bounds
}
}
Instead, you should allocate (r + 1) size memory. Like this:
int main() {
float a[9] = { 1, 3, 5, 6,4,6,5,6,8};
int b = sizeof(a)/sizeof(a[0]);
int r = sqrt(b) - 1;
float **A_mat = new float*[r + 1];
//A_mat = ;
for (int i = 0; i <= r; i++)
A_mat[i] = new float[r + 1];
for (int j = 0; j <= r; j++) {
for (int i = 0; i <= r; i++) {
A_mat[j][i] = a[i + j * (r+1)];
}
}
cout << "a[0,0] is " << A_mat[0][0] << endl;
cout << "a[0,2] is " << A_mat[0][2] << endl;
cout << "a[1,0] is " << A_mat[1][0] << endl;
cout << "a[2,0] is " << A_mat[2][0] << endl;
for (int i = 0; i <= r; i++) {
delete[] A_mat[i];
}
delete[] A_mat;
system("pause");
}
Suggestions:
1) Never use raw pointers. Always look for safer alternatives. In this case, you should go for std::vector.
2) Never use naked new. It is generally the major source of Memory leaks. Though currently, its not the case for you. But it might become an issue in the future.
3) Always remember that array starts from 0-indexing in C++.

You have problem with for loop. The index is from 0 to (r-1). But your for loop from 0 to r. It made out of bound of your array.
1> So please replace this for loop
for (int i = 0; i <= r; i++)
by
for (int i = 0; i < r; i++)
2> And replace this statements
for (int j = 0; j <= r; j++) {
for (int i = 0; i <= r; i++) {
A_mat[j][i] = a[i + j * (r+1)];
}
}
by
for (int j = 0; j < r; j++) {
for (int i = 0; i < r; i++) {
A_mat[j][i] = a[i + j * r];
}
}

Related

how to solve a weighted completion time minimization problem to cplex/c++?

a scheduling problem that wants to minimize a weighted completion time
I would like to pass the image problem to the c++ language and solve it with cplex solver.
Problem:
Min ∑WiCi
xi ∈ 0,1
t= ∆ + ∑_{i} xi*pi1
Ci1 = ∑_{j=1}^{i} xj*pj1
Ci2 = t + ∑_{j=1}^{i} (1−xj)*pj2
Ci ≥ Ci1
Ci ≥ Ci2−Ωxi
Ω = ∆ + ∑_i max(pi1, pi2)
The goal is to minimize the weighted completion time of a problem with one machine with at most one machine reconfiguration. I have a boolean variable Xi that tells me if the job is done before or after the reconfiguration. The variable t is the instant after the reconfiguration(delta is the time to reconfigure the machine). pi1 is the processing time in configuration 1 and pi2 is the processing time in configuration 2. Besides, I have restrictions due to Ci (completion time of a job i).
The example of code I made is not working. I know I have a problem writing the C variable (but I don't know how to solve it).
#include <iostream>
#include <ilcplex/ilocplex.h>
#include <ilcp/cp.h>
#include <vector>
#include <algorithm>
using namespace std;
int main()
{
int nbJob = 4;
int delta = 2;
int nbConf = 2;
vector<int> w_job;
w_job.push_back(1); w_job.push_back(1); w_job.push_back(1); w_job.push_back(1);
vector<vector<int>>p_job;
p_job.resize(nbJob);
p_job[0].push_back(6); p_job[0].push_back(3);
p_job[1].push_back(1); p_job[1].push_back(2);
p_job[2].push_back(10); p_job[2].push_back(2);
p_job[3].push_back(1); p_job[3].push_back(9);
int max_p = 0;
int aux;
for (size_t i = 0; i < nbJob - 1; i++) {
aux = max(p_job[i][0], p_job[i][1]);
max_p = max(max_p, aux);
}
cout << max_p << endl;
int max_w = 0;
aux = 0;
for (size_t i = 0; i < nbJob - 1; i++) {
aux = max(w_job[i], w_job[i + 1]);
max_w = max(aux, max_w);
}
cout << max_w << endl;
int omega = 0;
for (size_t i = 0; i < nbJob; i++) {
omega += max(p_job[i][0], p_job[i][1]);
}
omega += delta;
cout << omega << endl;
try {
IloEnv env;
IloModel model(env);
IloBoolVarArray x(env, nbJob);
for (size_t i = 0; i < nbJob; i++) {
IloBoolVar xi(env, 0, 1, "xi");
x[i] = xi;
}
IloArray<IloExprArray> C(env, nbJob);
for (size_t i = 0; i < nbJob; i++) {
IloExprArray Ci(env);
for (size_t j = 0; j < nbConf; j++) {
IloExpr Cij(env);
Ci.add(Cij);
}
C[i] = Ci;
}
IloNumVarArray C_final(env, nbJob);
for (size_t i = 0; i < nbJob; i++) {
IloNumVar C_finali(env, 0, IloInfinity, ILOINT); //
C_final[i] = C_finali;
}
IloExpr t(env);
for (int i = 0; i < nbJob; i++) {
t += x[i] * p_job[i][0];
}
t += delta;
for (size_t i = 0; i < nbJob; i++) {
for (size_t j = 0; j < nbJob; j++) {
if (j <= i) {
C[i][0] += x[j] * p_job[j][0];
}
}
}
for (size_t i = 0; i < nbJob; i++) {
for (size_t j = 0; j < nbJob; j++) {
if (j <= i) {
C[i][1] += ((1 - x[j]) * p_job[j][1]);
}
}
C[i][1] += t;
}
for (size_t i = 0; i < nbJob; i++) {
model.add(C_final[i] >= C[i][0]);
}
for (size_t i = 0; i < nbJob; i++) {
model.add(C_final[i] >= C[i][1] - (omega * x[i]));
}
IloExpr wiCi(env);
for (size_t i = 0; i < nbJob; i++) {
wiCi += w_job[i] * C_final[i];
}
model.add(IloMinimize(env, wiCi));
IloCplex solver(model);
solver.solve();
for (int i = 0; i < nbJob; i++) {
cout << "C " << i + 1 << " = " << solver.getValue(C_final[i]) << " x" << i+1 << " = " << solver.getValue(x[i]) << endl;
}
cout << endl;
cout << "t = " << solver.getValue(t) << endl;
cout << "wiCi = " << solver.getObjValue() << endl << endl;
}
catch (IloException e) {
cout << e.getMessage();
}
}

I am tryin to to a row echelon reduction code (not reduced row echelon) I have a working code but i am trying to clean up the for loops

this is the code that is have i am trying to get the take the for loops that i have and condense them
into a loop but i am not sure how. If there is anyone that can help me out i would appreciate it. The fist set of for loops are taking the inverse and then it is muiltiplying through the positions of the array. Right now the for loops are going through on position for each loop and i know there is a better way but i cant think of how to do it.
using namespace std;
#include<iostream>
#include<fstream>
#include<iomanip>
#include<Windows.h>
// User-defined function declarations (prototypes)
void readit();
void calcit(float[5][6], float[5][6]);
void writeit(float [5][6], float[5][6], float[5]);
// Declaration and definition of the main()
int main()
{
readit();
return 0;
}
void readit()
{
// Local variable declarations
float origarray[5][6], reducedarray[5][6];
// Filestream declaration and error trap
ifstream infile("C:\\EGR111\\rowechelondata.txt");
if(!infile)
{
cout << "There is no file, or the filestream is corrupted. Correct the problem and "
<< "try again!";
Sleep(2000);
exit(0);
}
// File read. 'i' is row index and 'j' is column index.
for(int i = 0; i < 5; i++)
{
for(int j = 0; j < 6; j++)
{
infile >> origarray[i][j];
reducedarray[i][j] = origarray[i][j];
}
}
calcit(origarray, reducedarray);
}
void calcit(float origarray[5][6], float reducedarray[5][6])
{
// Local variable declaration
float roots[5] = {};
cout << setprecision(4) << endl;
// Multiply first row by its leading coefficient, such that the result is '1'
for(int i = 0; i < 1; i++)
{
for(int j = 0; j < 6; j++)
{
reducedarray[i][j] = origarray[i][j] * (1.0 / origarray[0][0]);
}
}
// Multiply second row by its leading coefficient, such that the result is '1'
for(int i = 1; i < 2; i++)
{
for(int j = 0; j < 6; j++)
{
reducedarray[i][j] = origarray[i][j] * (1.0 / origarray[1][0]);
}
}
// Multiply third row by its leading coefficient, such that the result is '1'
for(int i = 2; i < 3; i++)
{
for(int j = 0; j < 6; j++)
{
reducedarray[i][j] = origarray[i][j] * (1.0 / origarray[2][0]);
}
}
// Multiply fourth row by its leading coefficient, such that the result is '1'
for(int i = 3; i < 4; i++)
{
for(int j = 0; j < 6; j++)
{
reducedarray[i][j] = origarray[i][j] * (1.0 / origarray[3][0]);
}
}
// Multiply fifth row by its leading coefficient, such that the result is '1'
for(int i = 4; i < 5; i++)
{
for(int j = 0; j < 6; j++)
{
reducedarray[i][j] = origarray[i][j] * (1.0 / origarray[4][0]);
}
}
// Subtract the first row of the reduced array into the subsequent rows
for(int i = 1; i < 5; i++)
{
for(int j = 0; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] - reducedarray[0][j];
}
}
// Multiply array position [1][1] by its leading coefficient, such that the result is '1'
for(int i = 1; i < 2; i++)
{
for(int j = 1; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] * (1.0 / reducedarray[1][1]);
}
}
// Multiply array position [2][1] by its leading coefficient, such that the result is '1'
for(int i = 2; i < 3; i++)
{
for(int j = 1; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] * (1.0 / reducedarray[2][1]);
}
}
// Multiply array position [3][1] by its leading coefficient, such that the result is '1'
for(int i = 3; i < 4; i++)
{
for(int j = 1; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] * (1.0 / reducedarray[3][1]);
}
}
// Multiply array position [4][1] by its leading coefficient, such that the result is '1'
for(int i = 4; i < 5; i++)
{
for(int j = 1; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] * (1.0 / reducedarray[4][1]);
}
}
// Subtract the second row of the reduced array into the subsequent rows
for(int i = 2; i < 5; i++)
{
for(int j = 1; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] - reducedarray[1][j];
}
}
// Multiply array position [2][2] by its leading coefficient, such that the result is '1'
for(int i = 2; i < 3; i++)
{
for(int j = 2; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] * (1.0 / reducedarray[2][2]);
}
}
// Multiply array position [3][2] by its leading coefficient, such that the result is '1'
for(int i = 3; i < 4; i++)
{
for(int j = 2; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] * (1.0 / reducedarray[3][2]);
}
}
// Multiply array position [4][2] by its leading coefficient, such that the result is '1'
for(int i = 4; i < 5; i++)
{
for(int j = 2; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] * (1.0 / reducedarray[4][2]);
}
}
// Subtract the third row of the reduced array into the subsequent rows
for(int i = 3; i < 5; i++)
{
for(int j = 2; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] - reducedarray[2][j];
}
}
// Multiply array position [3][3] by its leading coefficient, such that the result is '1'
for(int i = 3; i < 4; i++)
{
for(int j = 3; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] * (1.0 / reducedarray[3][3]);
}
}
// Multiply array position [4][3] by its leading coefficient, such that the result is '1'
for(int i = 4; i < 5; i++)
{
for(int j = 3; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] * (1.0 / reducedarray[4][3]);
}
}
// Subtract the fourth row of the reduced array into the subsequent row
for(int i = 4; i < 5; i++)
{
for(int j = 3; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] - reducedarray[3][j];
}
}
// Multiply array position [4][4] by its leading coefficient, such that the result is '1'
for(int i = 4; i <= 4; i++)
{
for(int j = 4; j < 6; j++)
{
reducedarray[i][j] = reducedarray[i][j] * (1.0 / reducedarray[4][4]);
}
}
// Back solve to assign roots for each row
for(int i = 4; i >= 0; i--)
{
for(int j = 5; j >= 0; j--)
{
roots[i] = reducedarray[4][5];
roots[4] = roots[i];
}
}
for(int i = 3; i >= 0; i--)
{
for(int j = 5; j >= 0; j--)
{
roots[i] = reducedarray[3][5] - (reducedarray[3][4] * roots[4]);
roots[3] = roots[i];
}
}
for(int i = 2; i >= 0; i--)
{
for(int j = 5; j >= 0; j--)
{
roots[i] = reducedarray[2][5] - (reducedarray[2][4] * roots[4]) -
(reducedarray[2][3] * roots[3]);
roots[2] = roots[i];
}
}
for(int i = 1; i >= 0; i--)
{
for(int j = 5; j >= 0; j--)
{
roots[i] = reducedarray[1][5] - (reducedarray[1][4] * roots[4]) -
(reducedarray[1][3] * roots[3]) - (reducedarray[1][2] * roots[2]);
roots[1] = roots[i];
}
}
for(int i = 0; i >= 0; i--)
{
for(int j = 5; j >= 0; j--)
{
roots[i] = reducedarray[0][5] - (reducedarray[0][4] * roots[4]) -
(reducedarray[0][3] * roots[3]) - (reducedarray[0][2] * roots[2]) -
(reducedarray[0][1] * roots[1]);
roots[0] = roots[i];
}
}
writeit(origarray, reducedarray, roots);
}
void writeit(float origarray[5][6], float reducedarray[5][6], float roots[5])
{
cout << "The Original Array" << endl << endl;
for(int i = 0; i < 5; i++)
{
for(int j = 0; j < 6; j++)
{
cout << setw(6) << origarray[i][j] << setw(4) << "";
}
cout << endl << endl;
}
cout << endl << endl;
cout << "The Reduced Array" << endl << endl;
for(int i = 0; i < 5; i++)
{
for(int j = 0; j < 6; j++)
{
cout << setw(6) << reducedarray[i][j] << setw(4) << "";
}
cout << endl << endl;
}
cout << endl << endl;
cout << "The Roots of the equations are: " << endl << endl;
cout << setw(6) << "A = " << setw(6) << roots[0] << endl << endl;
cout << setw(6) << "B = " << setw(6) << roots[1] << endl << endl;
cout << setw(6) << "C = " << setw(6) << roots[2] << endl << endl;
cout << setw(6) << "D = " << setw(6) << roots[3] << endl << endl;
cout << setw(6) << "E = " << setw(6) << roots[4] << endl << endl;
cout << endl << endl;
}
Where m=number of columns in matrix and n=number of rows in matrix.
Just the needed segment:
void calcit(float origarray[5][6], float reducedarray[5][6])
{
float roots[5] = {};
int n=5,m=6;
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
reducedarray[i][j]=origarray[i][j]*(1.0/origarray[i][0]);
}
}
for(int i = 1; i < 5; i++){
for(int j = 0; j < 6; j++){
reducedarray[i][j] -= reducedarray[0][j];
}
}
int num=1;
for(int i=1;i<m;i++){
for(int j=num;j<n;j++){
for(int k=i;k<m;k++)
reducedarray[j][k] = reducedarray[j][k] * (1.0 / reducedarray[j][i]);
}
for(int j=num+1;j<n;j++){
for(int k=num;k<m;k++){
reducedarray[j][k] -= reducedarray[i][k];
}
}
num++;
}
for(int i=n-1;i>=0;i--){
float ans=reducedarray[i][m-1];
for(int j=m-2;j>=i+1;j--){
ans-=(reducedarray[i][j]*roots[j]);
}
roots[i]=ans;
}
writeit(origarray, reducedarray, roots);
}
Whole code:
#include<iostream>
#include<fstream>
#include<iomanip>
#include<Windows.h>
using namespace std;
// User-defined function declarations (prototypes)
void readit();
void calcit(float[5][6], float[5][6]);
void writeit(float [5][6], float[5][6], float[5]);
// Declaration and definition of the main()
int main()
{
readit();
return 0;
}
void readit()
{
// Local variable declarations
float origarray[5][6], reducedarray[5][6];
// Filestream declaration and error tra
cout << setprecision(4) << endl;
// File read. 'i' is row index and 'j' is column index.
for(int i = 0; i < 5; i++)
{
for(int j = 0; j < 6; j++)
{
cin >> origarray[i][j];
reducedarray[i][j] = origarray[i][j];
}
}
calcit(origarray, reducedarray);
}
void calcit(float origarray[5][6], float reducedarray[5][6])
{
float roots[5] = {};
int n=5,m=6;
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
reducedarray[i][j]=origarray[i][j]*(1.0/origarray[i][0]);
}
}
for(int i = 1; i < 5; i++){
for(int j = 0; j < 6; j++){
reducedarray[i][j] -= reducedarray[0][j];
}
}
int num=1;
for(int i=1;i<m;i++){
for(int j=num;j<n;j++){
for(int k=i;k<m;k++)
reducedarray[j][k] = reducedarray[j][k] * (1.0 / reducedarray[j][i]);
}
for(int j=num+1;j<n;j++){
for(int k=num;k<m;k++){
reducedarray[j][k] -= reducedarray[i][k];
}
}
num++;
}
for(int i=n-1;i>=0;i--){
float ans=reducedarray[i][m-1];
for(int j=m-2;j>=i+1;j--){
ans-=(reducedarray[i][j]*roots[j]);
}
roots[i]=ans;
}
writeit(origarray, reducedarray, roots);
}
void writeit(float origarray[5][6], float reducedarray[5][6], float roots[5])
{
cout << "The Original Array" << endl << endl;
for(int i = 0; i < 5; i++)
{
for(int j = 0; j < 6; j++)
{
cout << setw(6) << origarray[i][j] << setw(4) << "";
}
cout << endl << endl;
}
cout << endl << endl;
cout << "The Reduced Array" << endl << endl;
for(int i = 0; i < 5; i++)
{
for(int j = 0; j < 6; j++)
{
cout << setw(6) << reducedarray[i][j] << setw(4) << "";
}
cout << endl << endl;
}
cout << endl << endl;
cout << "The Roots of the equations are: " << endl << endl;
for(int i=0;i<5;i++){
cout<<(char)('A'+i)<<" = "<<setw(6)<<roots[i]<<endl;
}
}
Please, kindly, check if it is working. If it does not work, please notify me in the comments of this post.
Also, i'm not sure why are you using double endl (cout<<endl<<endl;),there is an alternative to this: cout<<"\n\n"; (note that this doesn't flush the output buffer)

What happens with the dynamic memory allocation, of a matrix with different size of columns on each line?

I'm trying to create a matrix in C++, having a shape of a triangle like this :
n = number of lines;
If i input n = 4, for example, my matrix should look like this :
1
23
456
78910
I've managed to do the following code :
int n;
cout << "Introduceti n: ";
cin >> n;
int** a = new int*[n];
for (int i = 0; i < n; i++) {
a[i] = new int[i+1];
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < i+1; j++) {
*(*(a + i) + j) = (i * i + i) / 2 + j +1;
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < i+1; j++) {
cout << *(*(a + i) + j) << "|";
}
cout << endl;
}
The question is : why can i access a[0][1] and it shows me a value, if i instructed my pointer to stop initializing at a[0][0] ?
You can access memory, regardless of it being initialized or allocated.
It is up to you to code avoiding those likely unwanted events, or having mechanisms in place to detect them.
So,
why can i access a[0][1]...
As said above
... and it shows me a value, ...
Because every bit in memory has some value.
Try code below, and you will probably understand what you are doing.
The least memory you can take is by ensuring you have contiguous allocation. So you would rather allocate storage in a linear array for (n*(n+1)/2) ints (the size of your triangular matrix), and then simply define functions/macros for accessing element (i,j). It may take not more than 20 lines of code... if you want to work fail-safe, you can include a few checks for a couple more lines.
#include <iostream>
using namespace std;
int main() {
int n;
cout << "Introduceti n: ";
cin >> n;
int **a = new int*[n];
for (int i = 0; i < n; i++) {
a[i] = new int[i + 1];
}
cout << "Size of int is " << sizeof(int) << endl;
for (int i = 0; i < n; i++) {
for (int j = 0; j < i + 1; j++) {
*(*(a + i) + j) = (i * i + i) / 2 + j + 1;
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < i + 1; j++) {
cout << *(*(a + i) + j) << "|";
}
cout << endl;
}
cout << "a[0][0] #" << &(a[0][0]) << "=" << a[0][0] << endl;
cout << "a[0][1] #" << &(a[0][1]) << "=" << a[0][1] << endl;
return 1;
}

Nested for loop not looping through second array

How do I get the second array to be properly looped through? It is a simple matrix multiplication operation (using Visual Studio 2019) and arr is being looped through, but arr2 isn't being looped through completely. Only the first 2 elements are being multiplied by all elements of arr.
#include <iostream>
using namespace std;
int main() {
int r1 = 2, c1 = 3, r2 = 3, c2 = 3;
int** arr = new int* [r1];
for (int i = 0; i < c1; i++) {
arr[i] = new int[c1];
}
for (int i = 0; i < r1; i++) {
for (int j = 0; j < c1; j++) {
arr[i][j] = j;
}
}
int** arr2 = new int*[r2];
for (int i = 0; i < c2; i++) {
arr2[i] = new int[c2];
}
for (int i = 0; i < c2; i++) {
for (int j = 0; j < r2; j++) {
arr2[i][j] = j;
}
}
int** arr3 = new int*[r1];
for (int i = 0; i < c2; i++) {
arr3[i] = new int[c2];
}
for (int i = 0; i < r1; i++) {
for (int j = 0; j < c2; j++) {
arr3[i][j] = 0;
}
}
for (int i = 0; i < r1; i++) {
for (int j = 0; j < c2; j++) {
for (int g = 0; g < c1; g++) {
arr3[i][j] += arr[i][g] * arr2[g][j];
cout << "[" << i << "][" << g << "] " << arr[i][g] << "\tX\t" << "[" << g << "][" << j << "] " << arr2[g][j] << " => " << arr3[i][j] << endl;
}
}
}
cout << "\n" << endl;
for (int i = 0; i < r1; i++) {
for (int j = 0; j < c2; j++) {
cout << "New Array Element: [" << i << "][" << j << "] => " << arr3[i][j] << endl;
}
}
return 0;
}
You make the same basic mistake in all of your loops -- that mistake being that you are not iterating over the rows correctly.
You are using the column count when you should be using the row count:
int** arr = new int* [r1];
for (int i = 0; i < c1; i++) { // <-- This should be i < r1, not i < c1;
arr[i] = new int[c1];
}
Second, you could have written a function to lessen the chance of error, and also have a better chance of finding bugs like this:
int **createArray(int rows, int cols)
{
int** arr = new int* [rows];
for (int i = 0; i < rows; i++) {
arr[i] = new int[cols];
}
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
arr[i][j] = j;
}
}
return arr;
}
int main()
{
int r1 = 2, c1 = 3, r2 = 3, c2 = 3;
int** arr = createArray(r1, c1);
int** arr2 = createArray(r2,c2);
int** arr3 = createArray(r1,c2);
//...
}
Now the creation code is not repeated over and over again, plus the issue of using the wrong variables becomes minimized, if not eliminated.
Having said this, this way of creating 2D arrays is one of the worst ways of doing this. Right now, your code has memory leaks (it still is considered a leak, even though the program will terminate -- memory tools such as valgrind and others would indicate the errors as soon as your program exits).
Ideally, you would use a container class such as std::vector<int> to handle the dynamic memory management automatically.
But even if this is an exercise where you must use int**, it is still a very bad way of creating two-dimensional arrays under those constraints. Here is an answer that goes in detail about this issue, why it's bad, and how it can be alleviated.

vector is out of range,but why?

It says my vector is out of range for ArrayD. But I do not understand why. Everything else works. Is says that the vector is out of range after double deez. Therefore, it will not ascend fully.
using namespace std;
void hello();
void Infile();
double x, y, z;
double P, B;
int E = 0;
double V[16];
double C[16];
double D[16];
int m, n;
int main()
{
Infile();
return 0;
}
void Infile()
{
ifstream fileA("P_matrix.txt");
ifstream fileB("b_matrix.txt");
ifstream fileC("d_matrix.txt");
vector<double>ArrayP;
vector<double>ArrayB;
vector<double>ArrayD;
cout << "P Matrix Values \n";
while (fileA.good())
{
fileA >> P;
ArrayP.push_back(P);
}
for (int i = 0; i<ArrayP.size(); i++)
{
cout << ArrayP[i] << ",";
}
system("pause");
cout << "B Matrix Values \n";
while (fileB.good())
{
fileB >> B;
ArrayB.push_back(B);
}
for (int j = 0; j < 16; j++)
{
cout << ArrayB[j] << ",";
}
system("pause");
while (fileC.good())
{
fileC >> D;
ArrayD.push_back(D);
}
for (int k = 0; k <16; k++)
{
cout << ArrayD[k] << ",";
}
system("pause");
for (int m = 0; m < 16; m++)
{
V[m] = ArrayP[m] * ArrayB[m];
cout << V[m] << ",";
}
system("pause");
for (int n = 0; n < 16; n++)
{
C[n] = V[n] * ArrayD[n];
cout << C[n] << ",";
}
//outfile.close();
system("pause");
double deez;
for (int d = 0; d < 16; d++) //acscending
{
for (int q = 0; q < 16; q++)
{
if (ArrayD[q] < ArrayD[q - 1])
{
deez = ArrayD[q];
ArrayD[q] = ArrayD[q - 1];
ArrayD[q - 1] = deez;
}
}
}
for (int q = 0; q < 16; q++)
cout << C[q] << ",";
system("pause");
double nutz;
for (int d = 0; d < 16; d++) //descending
{
for (int q = 0; q < 16; q++)
{
if (V[q] < V[q + 1])
{
nutz = V[q];
V[q] = V[q + 1];
V[q + 1] = nutz;
}
}
}
for (int q = 0; q < 16; q++)
cout << V[q] << ",";
system("pause");
return;
}
Here, q starts at zero, so you are attempting to access index [-1].
ArrayD[q - 1]
When iterating over ArrayP, you correctly do:
for (int i = 0; i<ArrayP.size(); i++)
However for ArrayB and ArrayC, you seem to assume there are only ever 16 elements in those arrays (are you sure?). I can't see any evidence that the arrays are restricted to always having 16 elements in code, so that could also be the issue.
Later still, you then seem to assume all of those arrays have 16 elements?
for (int m = 0; m < 16; m++)
{
V[m] = ArrayP[m] * ArrayB[m];
cout << V[m] << ",";
}
Those are the obvious places that could cause an out of range error.