I tried to extract average pixel values (R, G, B) from the contoured image. However, my problem is when I applied the code below, something strange values were observed.
int main(){
cv::Mat star = imread("C:\\Users\\PC\\Desktop\\star\\starcircle.png");
cv::Mat mask = cv::Mat::zeros(star.rows, star.cols, CV_8UC1);
cv::Mat frame;
double b, g, r = 0.0;
cv::imshow("Original", star);
cv::cvtColor(star, frame, CV_BGR2HSV);
cv::inRange(frame, cv::Scalar(29, 220, 220), cv::Scalar(30, 255, 255), mask);
cv::imshow("mask", mask);
cv::Mat result = cv::Mat(star.rows, star.cols, CV_8UC1, star.type());
result.setTo(cv::Scalar(0, 0, 0));
star.copyTo(result, mask);
cv::Scalar temp = mean(mask);
cout << "avg_R: " << temp[2] << " \n"; // red value
cout << "avg_G: " << temp[1] << " \n"; // green value
cout << "avg_B: " << temp[0] << " \n\n"; // blue value
cv::imshow("result", result);
cv::waitKey(-1);
return 0;
}
And I got the correct images for the result like below.
I want to read pixel values only for yellow part, not for outside of mask.
And I have another code for read out pixel values in the yellow parts, but it showed the same result.
int main(){
cv::Mat star = imread("C:\\Users\\PC\\Desktop\\star\\starcircle.png");
cv::Mat mask = cv::Mat::zeros(star.rows, star.cols, CV_8UC1);
cv::Mat frame;
double b, g, r = 0.0;
cv::imshow("Original", star);
cv::cvtColor(star, frame, CV_BGR2HSV);
cv::inRange(frame, cv::Scalar(29, 220, 220), cv::Scalar(30, 255, 255), mask);
cv::imshow("mask", mask);
cv::Mat result = cv::Mat(star.rows, star.cols, CV_8UC1, star.type());
result.setTo(cv::Scalar(0, 0, 0));
star.copyTo(result, mask);
int hei = star.rows;
int wid = star.cols;
int corow = hei * wid;
double b, g, r = 0.0;
for (int x = 0; x < hei; x++) {
for (int y = 0; y < wid; y++) {
if (mask.at<unsigned char>(x, y) > 0) {
b += result.at<Vec3b>(x, y)[0];
g += result.at<Vec3b>(x, y)[1];
r += result.at<Vec3b>(x, y)[2];
}
else {
}
}
}
cout << "$$ Red(R), Green(G), Blue(B) $$" << " \n\n";
cout << "avg_R: " << r / corow << " \n"; // red value
cout << "avg_G: " << g / corow << " \n"; // green value
cout << "avg_B: " << b / corow << " \n\n"; // blue value
}
Please help me to revise the error.
Thank you in advance.
A few things:
Your variables names and Mat types are at least confusing. Use proper names for the variables, and use Mat_<T> whenever possible (I'd say always).
To get the mean you should divide by the number of pixels in the mask, not by total number of pixels.
you should consider using cv::mean
you need cv::waitKey() to actually see your cv::imshow
Check the code:
#include <opencv2\opencv.hpp>
int main()
{
cv::Mat3b star = cv::imread("path/to/image");
cv::imshow("Original", star);
cv::Mat3b hsv;
cv::cvtColor(star, hsv, cv::COLOR_BGR2HSV);
cv::Mat1b mask;
cv::inRange(hsv, cv::Scalar(29, 220, 220), cv::Scalar(30, 255, 255), mask);
cv::imshow("mask", mask);
// Change to 'false' to see how to use the 'cv::mask' approach
if (true)
{
double blue, green, red = 0.0;
int counter = 0;
for (int r = 0; r < star.rows; r++)
{
for (int c = 0; c < star.cols; c++)
{
if (mask(r, c) > 0)
{
++counter;
blue += star(r, c)[0];
green += star(r, c)[1];
red += star(r, c)[2];
}
}
}
// Avoid division by 0
if (counter > 0)
{
blue /= counter;
green /= counter;
red /= counter;
}
std::cout << "$$ Red(R), Green(G), Blue(B) $$" << " \n\n";
std::cout << "avg_R: " << red << " \n";
std::cout << "avg_G: " << green << " \n";
std::cout << "avg_B: " << blue << " \n\n";
}
else
{
cv::Scalar mean_value = cv::mean(star, mask);
double blue = mean_value[0];
double green = mean_value[1];
double red = mean_value[2];
std::cout << "$$ Red(R), Green(G), Blue(B) $$" << " \n\n";
std::cout << "avg_R: " << red << " \n"; // red value
std::cout << "avg_G: " << green << " \n"; // green value
std::cout << "avg_B: " << blue << " \n\n"; // blue value
}
cv::waitKey();
}
I see several errors in your code:
cv::Mat result = cv::Mat(star.rows, star.cols, CV_8UC1, star.type());
result.setTo(cv::Scalar(0, 0, 0));
star.copyTo(result, mask);
cv::Scalar temp = mean(mask);
If result is of type CV_8UC1 then you copyTo one channel? (The C1 from CV_8U means one channel). Then you use star.type() where the value to be set should be... You do also the mean to a mask, which will give you a scalar with only one channel set, since it is a binary image of type CV_8UC1... for it to work, it should be:
cv::Mat result = cv::Mat(star.rows, star.cols, star.type(), cv::Scalar::all(0));
star.copyTo(result, mask);
cv::Scalar temp = mean(result);
For the second part, it is ok to add it like that, however if you have not fixed the previous error... I think it should give you segmentation error at some point or weird results if you are lucky. Finally the result part you have this:
cout << "$$ Red(R), Green(G), Blue(B) $$" << " \n\n";
cout << "avg_R: " << r / corow << " \n"; // red value
cout << "avg_G: " << g / corow << " \n"; // green value
cout << "avg_B: " << b / corow << " \n\n"; // blue value
but corow should be the non zero points of the mask, so it should be:
corow = cv::countNonZero(mask);
cout << "$$ Red(R), Green(G), Blue(B) $$" << " \n\n";
cout << "avg_R: " << r / corow << " \n"; // red value
cout << "avg_G: " << g / corow << " \n"; // green value
cout << "avg_B: " << b / corow << " \n\n"; // blue value
if not it will give you a smaller number, since it is divided with a a number that includes the black points which do not contribute.
As an extra note, you should use more OpenCV functions... in this case cv::mean does the same thing, if not you can simplify it with sum and divide like:
cv::Scalar summed = cv::sum(result);
cv::Scalar mean = summed / static_cast<double>(cv::countNonZero(mask));
std::cout << "$$ Red(R), Green(G), Blue(B) $$" << std::endl << std::endl;
std::cout << "avg_R: " << mean[2] << std::endl; // red value
std::cout << "avg_G: " << mean[1] << std::endl; // green value
std::cout << "avg_B: " << mean[0] << std::endl << std::endl; // blue value
This is assuming you did the star.copyTo(result, mask); line
Read about cv::Mat::at: first row, second col. Not (x, y)!
See you on cv::mean: it can work with mask.
Right initialization: double b = 0.0, g = 0.0, r = 0.0;
int corow = 0; And inside loop ++corow if mask > 0.
Related
I want to know the real position and orientation of my marker.
If I understood well, tvecs gives me the real position of my marker, I measure the distance with a ruler and it seems be correct even I had sometimes weird values.
If someone has an idea of why ?
Unfortunately, rvecs gives me strange value too and it's hard to measure. I hold my marker in front of the camera so the angle is approximately at 0° so rvecs needs to return [0, 0, 0] and if i turn my marker of 45° in y, i need to have [0, 45, 0] etc.
Rvecs doesn't return the orientation of the marker ?
std::vector<int> ids;
std::vector<std::vector<cv::Point2f>> corners;
//Detection of markers
cv::aruco::detectMarkers(image, dictionary, corners, ids);
char key = (char) cv::waitKey(waitTime);
// if at least one marker detected
if (ids.size() > 0)
{
//std::cout << "FOUND " << std::endl;
cv::aruco::drawDetectedMarkers(imageCopy, corners, ids);
std::vector<cv::Vec3d> rvecs, tvecs;
cv::aruco::estimatePoseSingleMarkers(corners, 0.01, cameraMatrix, distCoeffs, rvecs, tvecs);
// draw axis for each marker
for(size_t i=0; i<ids.size(); i++)
{
cv::aruco::drawAxis(imageCopy, cameraMatrix, distCoeffs, rvecs[i], tvecs[i], 0.1);
if(key == 65)
{
std::cout << i << std::endl;
std::cout << rvecs[i] << std::endl;
std::cout << tvecs[i] << std::endl;
std::cout << tvecs[i]*rvecs[i] << std::endl;
double distance = sqrt( (tvecs[i][0] * tvecs[i][0]) + (tvecs[i][1] * tvecs[i][1]) + (tvecs[i][2] * tvecs[i][2]) );
std::cout << distance << std::endl;
std::cout << rvecs[i][0] * 100 << " /// " << rvecs[i][1] * 100 << " /// " << rvecs[i][2] << std::endl;
fileOut << rvecs[i][0] << "," << rvecs[i][1] << "," << rvecs[i][2] << std::endl;
}
}
}
Here my code, but I don't think I have done something wrong.
Maybe I should multiply the Rvecs with something ? But for tvecs I don't need to multiply, I get directly the values
I have encountered on designing program to allow capturing images every second from video files (avi, mp4, etc...).
First, I was able to capture images frame by frame from video file.
Second, I was able to analyze pixel color values from images in the same folder at the same time and saved pixel value in the txt file.
And here I have some problem. I am now trying to combine these two codes at once, but I have strange results. I refer the code below.
int main(){
VideoCapture cap("D:\\data\\extra\\video200ul.avi");
if (!cap.isOpened())
return -1;
Ptr<BackgroundSubtractor> pMOG2 = createBackgroundSubtractorMOG2(20, 16, true);
Mat fg_mask;
Mat frame;
int count = 0;
String name, folder;
for (;;) {
// Get frame
cap >> frame; // get a new frame from video
++count;
// Update counter
// Background subtraction
if (count % 2 == 0) {
pMOG2->apply(frame, fg_mask, 0.001);
cout << count << endl;
if (!frame.empty()) {
imshow("frame", frame);
// imshow("fg_mask", fg_mask);
}
// Save foreground mask
name = "mask" + std::to_string(count) + ".png";
// string name = "mask_" + std::to_string(static_cast<long long>(count) + ".png";
folder = imwrite("D:\\data\\extra\\" + name, frame);
}
anal(folder);
}
waitKey(0);
return 0;
}
First, The code above I wrote is for capturing images frame by frame from video file. However, if I got the images per frame, I will have so many pictures on my folder, so I would like to capture an image per second from the video file. I have tried to use CV_CAP_PROP_POS_MSEC instead using cap << frame, but it did not work for me.
Second, when I merge this code to another code what I wrote below, it showed some error messages like, "libpng warning image width, length, data are zero in ihdr."
int anal(String folder) {
folder = "D:\\data\\extra\\*.png";
vector<String> filenames;
glob(folder, filenames);
cv::Mat ori_image;
for (size_t i = 0; i < filenames.size(); ++i) {
ori_image = imread(filenames[i], IMREAD_COLOR);
if (ori_image.empty()) {
cout << "Check your file again." << std::endl;
return -1;
}
rectangle(ori_image, Point(215, 98), Point(245, 110), Scalar(0, 255, 255), 1);
imshow("Original Image", ori_image);
cv::Scalar sums;
sums = cv::sum(ori_image);
double totalSum = sums[0] + sums[1] + sums[2];
if (totalSum <= 0) {
cout << "$$ RGB percentage $$" << " \n\n";
cout << "R: " << 100.0 / 3 << " % \n";
cout << "G: " << 100.0 / 3 << " % \n";
cout << "B: " << 100.0 / 3 << " % \n\n";
}
else {
cout << "$$ RGB percentage $$" << " \n\n"; // red value
cout << "R: " << sums[2] / totalSum * 100 << " % \n"; // red value
cout << "G: " << sums[1] / totalSum * 100 << " % \n"; // green value
cout << "B: " << sums[0] / totalSum * 100 << " % \n\n"; // blue value
}
}
as I prepared the code above, I tried to calculate red, blue, green percentages of all the captured images from the video. However, when I separate these two code and run them, they worked fine, but if I merge them together, It showed error messages.
I would like to combine these two code for analysis for color values from the captured images at video every second.
Please help me out this problem.
Thank you in advance.
-----------Edited part----------------------
I used your revised version and applied to my updated code,
void imageAnalysis(std::string folder, cv::Mat frame){
cv::Mat ori_image = frame.clone();
std::string path = folder;
cv::rectangle(ori_image, Point(215, 105), Point(245, 120), Scalar(0, 255, 255), 1);
cv::imshow("Original Image", ori_image);
cv::waitKey(1);
String folder = "D:\\data\\dfdf\\*.png";
vector<String> filenames;
cv::glob(path, filenames);
for (size_t t = 0; t < filenames.size(); t++) {
ori_image = imread(filenames[t], IMREAD_COLOR); // ori_image
if (ori_image.empty()) { //ori_image
cout << "Check your file again." << "\n";
break;
//return -1;
}
rectangle(ori_image, Point(215, 105), Point(245, 120), Scalar(0, 255, 255), 1);
imshow("Original Image", ori_image);
cv::waitKey(1);
Mat image_HSV;
cvtColor(ori_image, image_HSV, CV_BGR2HSV);
double h = 0.0;
double s = 0.0;
double v = 0.0;
int col = image_HSV.cols; // 480
int row = image_HSV.rows; // 272
int corow = ((col - 235) - 215) * ((row - 152) - 108);
Mat mask;
inRange(image_HSV, Scalar(100, 0, 0), Scalar(100, 255, 255), mask); // convert binary
image_HSV.setTo(Scalar(0, 0, 0), mask);
for (int i = 108; i < row - 152; i++) {
for (int j = 215; j < col - 235; j++) {
Vec3b hsv = image_HSV.at<cv::Vec3b>(i, j);
h += (int)(hsv.val[0]);
s += (int)(hsv.val[1]);
v += (int)(hsv.val[2]);
if (hsv[0] != 100) {
hsv[0] = 0;
hsv[1] = 0;
hsv[2] = 0;
}
}
}
cout << "$$ Hue(H), Saturation(S), Brightness(V) $$" << filenames[t] << " !! \n\n";
cout << "H: " << h / corow * 360 / 180 << " % \n"; //
cout << "S: " << s / corow * 100 / 255 << " % \n";
cout << "V: " << v / corow * 100 / 255 << " % \n\n";
std::ofstream file("D:\\data\\dfdf\\result_4.txt", std::ios_base::app);
file << v / corow * 100 / 255 << " \n"; // v value
file.close();
}
}
As you can see the imageAnalysis() function, I added std::string folder for the path of extracted images from video clip. However, when I applied this code, I have really weird results like below..
enter image description here
I thought I am supposed to get color value from every 24th image but as you see the results above, I got color values from all images in random order.
Thank you in advance.
It was really nice to learn how to code in efficient way!!
Just to clear the error you mentioned about CV_CAP_PROP_POS_MSEC in your comments:
when I apply CV_CAP_PROP_POS_MSEC to my code, I found some error
messages like "CV_CAP_PROP_POS_MSEC is not defined."
A lot of the constant values are scoped in OpenCV. That means, CV_CAP_PROP_POS_MSEC is not defined, but cv::CV_CAP_PROP_POS_MSEC is. You can also obtain the FPS with cv::CAP_PROP_FPS.
Now to your code, I would actually do something that does not require to save and load the image, but rather pass the images to be processed, like this:
#include "opencv2/opencv.hpp"
#include <iostream>
int main(){
cv::VideoCapture cap("D:\\data\\extra\\video200ul.avi");
if (!cap.isOpened())
{
std::cout << "Could not open video" << std::endl;
return -1;
}
cv::Ptr<cv::BackgroundSubtractor> pMOG2 = cv::createBackgroundSubtractorMOG2(20, 16, true);
cv::Mat fg_mask, frame;
int count = 0;
const int fps = 24; // you may set here the fps or get them from the video
std::string name, folder;
// with cap.read you can check already if the video ended
while (cap.read(frame)) {
// Background subtraction
if (count % fps == 0) {
pMOG2->apply(frame, fg_mask, 0.001);
// Save foreground mask
name = "mask" + std::to_string(count) + ".png";
bool result = cv::imwrite("D:\\data\\extra\\" + name, frame);
imageAnalysis(frame, count);
}
// at the end of the loop so that the first image is used
++count;
}
cv::waitKey(0);
return 0;
}
And the imageAnalysis function is defined as:
// You can pass cv::Mat as value, it is almost like a smart pointer
void imageAnalysis(cv::Mat frame, int count)
{
cv::Mat ori_image = frame.clone();
cv::rectangle(ori_image, Point(215, 98), Point(245, 110), Scalar(0, 255, 255), 1);
// each imshow needs a waitKey to update the window in which it is being shown
cv::imshow("Original Image", ori_image);
cv::waitKey(1);
cv::Scalar sums;
sums = cv::sum(ori_image);
double totalSum = sums[0] + sums[1] + sums[2];
std::ofstream output("D:\\data\\extra\\mask" + std::to_string(count) + ".txt");
if (totalSum <= 0)
{
std::cout << "$$ RGB percentage $$" << std::endl << std::endl;
std::cout << "R: " << 100.0 / 3 << std::endl;
std::cout << "G: " << 100.0 / 3 << std::endl;
std::cout << "B: " << 100.0 / 3 << std::endl << std::endl;
output << "$$ RGB percentage $$" << std::endl << std::endl;
output << "R: " << 100.0 / 3 << std::endl;
output << "G: " << 100.0 / 3 << std::endl;
output << "B: " << 100.0 / 3 << std::endl << std::endl;
}
else {
std::cout << "$$ RGB percentage $$" << std::endl << std::endl;
std::cout << "R: " << sums[2] / totalSum * 100 << std::endl; // red value
std::cout << "G: " << sums[1] / totalSum * 100 << std::endl; // green value
std::cout << "B: " << sums[0] / totalSum * 100 << std::endl << std::endl; // blue value
output << "$$ RGB percentage $$" << std::endl << std::endl;
output << "R: " << sums[2] / totalSum * 100 << std::endl; // red value
output << "G: " << sums[1] / totalSum * 100 << std::endl; // green value
output << "B: " << sums[0] / totalSum * 100 << std::endl << std::endl; // blue value
}
}
Some comments of the code above, I replaced the cap >> frame to cap.read(frame). It is the same functionality, but the later gives a bool result that is false if it could not grab the image, like if the video is over. I change the count add at the end, yo you get the frames 0,23,... this way the first one will be use as well. Finally, you should use the namespaces cv::, std:: etc. This is just best practice, it avoids ambiguities and problems that may arise with certain libraries.
If you do not need the image in disk, but only the analysis, then remove the saving part and pass every frame to the imageAnalysis function, this way you may have more data for your statistics. Also, consider returning the cv:Scalar of sums in the function and then you can do some statistics of the whole second or the whole video.
If you have any question, feel free to ask in the comments.
I am playing around with cv::Mat and think my code really behaves weird, although I follow the syntax described in here.
Code:
std::cout << "parameter for matrices: " << "x = " << X << " y = " << Y << " psi = " << Psi << std::endl;
double dataRot[] = { cos(Psi), -sin(Psi), sin(Psi), cos(Psi) };
double dataTrans[] = { X, Y };
cv::Mat matRot(2, 2, CV_32FC1, dataRot);
cv::Mat matTrans(2, 1, CV_32FC1, dataTrans);
std::cout << "matRot = " << matRot.at<double>(0,0) << "," << matRot.at<double>(0,1) << ";" << matRot.at<double>(1,0) << "," << matRot.at<double>(1,1) << std::endl;
std::cout << "matRot = " << matRot << std::endl;
std::cout << "matTrans = " << matTrans.at<double>(0,0) << "," << matTrans.at<double>(0,1) << std::endl;
std::cout << "matTrans = " << matTrans << std::endl;
matOut = matRot*matIn + matTrans*cv::Mat::ones(1, matIn.cols, CV_32FC1);
Output:
parameter for matrices: x = 20.5 y = 20 psi = 0
matRot = 1,-0;-0,0
matRot = [0, 1.875;
0, -0]
matTrans = 20.5,20
matTrans = [0; 2.8203125]
Why is the identity matrix not initalized correctly?
And why does the second way of printing a matrix deliver wrong results?
Any help is appreciated.
Since you're working with double, the OpenCV matrix type should be CV_64FC1:
cv::Mat matRot(2, 2, CV_64FC1, dataRot);
cv::Mat matTrans(2, 1, CV_64FC1, dataTrans);
For simplicity, you can also use:
cv::Matx22d matRot(cos(Psi), -sin(Psi), sin(Psi), cos(Psi));
cv::Matx21d matTrans(X, Y);
or:
cv::Mat1d matRot = (cv::Mat1d(2,2) << cos(Psi), -sin(Psi), sin(Psi), cos(Psi));
cv::Mat1d matTrans = (cv::Mat1d(2,1) << X, Y);
and access values like:
std::cout << matRot(row, col);
I'm trying to write a program with opencv and C++. I have an image and I am trying to get the saturation value of determined pixel which is in the (x, y) point. I use the next sentence to do it:
saturation_level = hsv_chanels[1].at<uchar>(x, y);
The thing is that the program builds OK, but when I try to run, it sometimes works fine and sometimes terminates with this error:
Segmentation fault: 11
Do someone know why this error is appearing? I read that this error appears because of the my computer memory but I don't know why it only appears sometimes.
EDIT:
This is the function I call to find the homography:
Mat ObtenHomografiaSuelo (vector <KeyPoint> keypoints1, vector <KeyPoint> keypoints2, Mat imagen1, Mat imagen2){
//*****************************************************************************
//Find homography mat
//*****************************************************************************
vector < Point2f > image_points[2];
int cont = 0;
vector<Mat> chanels_hsv1; //[0]->H, [1]->S, [2]->V
split( image1, chanels_hsv1 );
vector<Mat> chanels_hsv2;
split( image2, chanels_hsv2 );
for(vector<KeyPoint>::const_iterator it = keypoints1.begin(); it!= keypoints1.end(); ++it){
// Get the position of left keypoints
float x = (it->pt.x);
float y = (it->pt.y);
cout << "1" << endl;
float saturation_level = chanels_hsv1[1].at<uchar>(x, y);
cout << "2" << endl;
double max_level = 70.0;
cout << "3" << endl;
if ((y < camSize.height/4) && (saturatio_level < max_level) ){
cout << "1:" << endl;
waitKey (100);
cout << "y: " << y;
cout << " Saturation_Level: " << nivel_saturacion << endl;
image_points[0].push_back(Point2f(x,y));
cout << "done" << endl;
cont ++;
}
}
cont = 0;
for (vector<KeyPoint>::const_iterator it = keypoints2.begin(); it!=keypoints2.end(); ++it) {
// Get the position of left keypoints
float x = (it->pt.x);
float y = (it->pt.y);
float saturation_level = chanels_hsv2[1].at<uchar>(x, y);
double max_level = 70.0;
if ((y < (camSize.height)/4) && (saturation_level < max_level)){
cout << "2" << endl;
waitKey (100);
cout << "y: " << y;
cout << " Saturation_Level: " << nivel_saturacion << endl;
image_points[1].push_back(Point2f(x,y));
cont ++;
}
}
cout << "We are obtain: " << cont << " points to do the homography" << endl;
waitKey();
Mat H;
H = Mat::zeros(4, 4, CV_64F);
if (cont < 4) {
cout << "Few points to do the homography" << endl;
}
else{
if (image_points[0].size() > image_points[1].size()){
image_points[0].resize(image_points[1].size());
}
else if (image_points[1].size() > image_points[0].size()){
image_points[1].resize(image_points[0].size());
}
H = findHomography (image_points[0], image_points[1], CV_RANSAC, 3);
cout << "done_matrix" << endl;
}
return H;
}
Before to call the function I detect keypoints using Harris or any other detector and the image I passed to the function is a HSV_image converted by cvtColor function.
The error appears in the line that I mentioned before because in the terminal I can se:
1
Segmentation Fault: 11
I've just finished to correct the error, I think it was because I wasn't using efficiently my function. I was using two 'for' staments to cross my two vectors of keypoints detected and the errors sometimes appears at first and others at second one. I don't really know why was the error, I just change my code to do the same think more efficiently and finally it works.
I just changed this lines:
for(vector<KeyPoint>::const_iterator it = keypoints1.begin(); it!= keypoints1.end(); ++it){
// Get the position of left keypoints
float x = (it->pt.x);
float y = (it->pt.y);
cout << "1" << endl;
float saturation_level = chanels_hsv1[1].at<uchar>(x, y);
cout << "2" << endl;
double max_level = 70.0;
cout << "3" << endl;
if ((y < camSize.height/4) && (saturatio_level < max_level) ){
cout << "1:" << endl;
waitKey (100);
cout << "y: " << y;
cout << " Saturation_Level: " << nivel_saturacion << endl;
image_points[0].push_back(Point2f(x,y));
cout << "done" << endl;
cont ++;
}
cont = 0;
for (vector<KeyPoint>::const_iterator it = keypoints2.begin(); it!=keypoints2.end(); ++it) {
// Get the position of left keypoints
float x = (it->pt.x);
float y = (it->pt.y);
float saturation_level = chanels_hsv2[1].at<uchar>(x, y);
double max_level = 70.0;
if ((y < (camSize.height)/4) && (saturation_level < max_level)){
cout << "2" << endl;
waitKey (100);
cout << "y: " << y;
cout << " Saturation_Level: " << nivel_saturacion << endl;
image_points[1].push_back(Point2f(x,y));
cont ++;
}
}
by this ones:
for (int i = 0; i < good_matches.size(); i++) {
int idx1=good_matches[i].queryIdx;
int idx2=good_matches[i].trainIdx;
if (((keypoints[0][idx1].pt.y < (camSize.height/4)) && (canales_hsv1[1].at<uchar>(keypoints[0][idx1].pt.x, keypoints[0][idx1].pt.y) < nivel_maximo)) || ((keypoints[1][idx2].pt.y < (camSize.height/4)) && (canales_hsv2[1].at<uchar>(keypoints[1][idx1].pt.x, keypoints[1][idx2].pt.y) < nivel_maximo)) ) {
cout << "entro" << endl;
matched_points[0].push_back(keypoints[0][idx1].pt);
matched_points[1].push_back(keypoints[1][idx2].pt);
contador ++;
}
}
Currently I only cross the matched keypoints instead of all the keypoints, it requires less computers operations and now it works OK.
hi, i'm trying to play a little bit with Mat class.
I want to do a product element wise between two images, the c++/opencv port of MATLAB immultiply.
This is my code:
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
Mat imgA, imgB;
Mat imgAB;
Mat product;
void printMinMax(Mat m, string s) {
double minVal;
double maxVal;
Point minLoc;
Point maxLoc;
minMaxLoc( m, &minVal, &maxVal, &minLoc, &maxLoc );
cout << "min val in " << s << ": " << minVal << endl;
cout << "max val in " << s << ": " << maxVal << endl;
}
int main(int /*argc*/, char** /*argv*/) {
cout << "OpenCV version: " << CV_MAJOR_VERSION << " " << CV_MINOR_VERSION << endl;
imgA = imread("test1.jpg");
cout << "original image size: " << imgA.rows << " " << imgA.cols << endl;
cout << "original type: " << imgA.type() << endl;
cvtColor(imgA, imgA, CV_BGR2GRAY);
printMinMax(imgA, "imgA");
imgB = imread("test2.jpg");
cout << "original image size: " << imgB.rows << " " << imgB.cols << endl;
cout << "original type: " << imgB.type() << endl;
cvtColor(imgB, imgB, CV_BGR2GRAY);
printMinMax(imgB, "imgB");
namedWindow("originals", CV_WINDOW_AUTOSIZE);
namedWindow("product", CV_WINDOW_AUTOSIZE);
imgAB = Mat( max(imgA.rows,imgB.rows), imgA.cols+imgB.cols, imgA.type());
imgA.copyTo(imgAB(Rect(0, 0, imgA.cols, imgA.rows)));
imgB.copyTo(imgAB(Rect(imgA.cols, 0, imgB.cols, imgB.rows)));
product = imgA.mul(imgB);
printMinMax(product, "product");
while( true )
{
char c = (char)waitKey(10);
if( c == 27 )
{ break; }
imshow( "originals", imgAB );
imshow( "product", product );
}
return 0;
}
here is the result:
OpenCV version: 2 4
original image size: 500 500
original type: 16
min val in imgA: 99
max val in imgA: 255
original image size: 500 500
original type: 16
min val in imgB: 0
max val in imgB: 255
init done
opengl support available
min val in product: 0
max val in product: 255
I think that max value in the product has to be greater than 255, but is truncated to 255 because the type of the two matrixes is 16.
I have tried to convert the matrixes to CV_32F but the maxVal in the product is 64009 (a number that i don't understand)
Thanks to Wajih comment i have done some basic test, and some basic debug, and i got i work perfectly. I think this could become a mini tutorial on alpha blending and image multiply, but for now is only a few lines of commented code.
note that the 2 images must be of the same size.. and for sure some error checking should be done for a solid code..
Hope it helps someone! And, of course, if you have some hints to make this code more readable or more compact (one-liner guys are very appreciate!) or efficient.. just comment, thank you a lot!
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
void printMinMax(Mat m, string name) {
double minVal;
double maxVal;
Point minLoc;
Point maxLoc;
if(m.channels() >1) {
cout << "ERROR: matrix "<<name<<" must have 1 channel for calling minMaxLoc" << endl;
}
minMaxLoc( m, &minVal, &maxVal, &minLoc, &maxLoc );
cout << "min val in " << name << ": " << minVal << " in loc: " << minLoc << endl;
cout << "max val in " << name << ": " << maxVal << " in loc: " << maxLoc << endl;
}
int main(int /*argc*/, char** /*argv*/) {
cout << "OpenCV version: " << CV_MAJOR_VERSION << " " << CV_MINOR_VERSION << endl; // 2 4
Mat imgA, imgB;
Mat imgAB;
Mat product;
// fast matrix creation, comma-separated initializer
// example1: create a matrix with value from 0 to 255
imgA = Mat(3, 3, CV_8UC1);
imgA = (Mat_<uchar>(3,3) << 0,1,2,3,4,5,6,7,255);
cout << "test Mat 3x3" << endl << imgA << endl;
// not that if a value exceed 255 it is truncated at value%256
imgA = (Mat_<uchar>(3,3) << 0,1, 258 ,3,4,5,6,7,255);
cout << "test Mat 3x3 with last element truncated to 258%256=2" << endl << imgA << endl;
// create a second matrix
imgB = Mat(3, 3, CV_8UC1);
imgB = (Mat_<uchar>(3,3) << 0,1,2,3,4,5,6,7,8);
// now the matrix product. we are multiplying a value that can goes from 0-255 with another 0-255 value..
// the edge cases are "min * min" and "max * max",
// that means: our product is a function that return a value in the domain 0*0-255*255 ; 0-65025
// ah, ah! this number exceed the Mat U8C1 domain!, we need different data types.
// we need a bigger one.. let's say 32FC1
Mat imgA_32FC1 = imgA.clone();
imgA_32FC1.convertTo(imgA_32FC1, CV_32FC1);
Mat imgB_32FC1 = imgB.clone();
imgB_32FC1.convertTo(imgB_32FC1, CV_32FC1);
// after conversion.. value are scaled?
cout << "imgA after conversion:" << endl << imgA_32FC1 << endl;
cout << "imgB after conversion:" << endl << imgB_32FC1 << endl;
product = imgA_32FC1.mul( imgB_32FC1 );
// note: the product values are in the range 0-65025
cout << "the product:" << endl << product << endl;
// now, this does not have much sense, because we started from a 0-255 range Mat and now we have a 0-65025 that is nothing..
// it is not uchar range and it is not float range (that is a lot bigger than that)
// so, we can normalize back to 0-255
// what do i mean with 'normalize' now?
// i mean: scale all values for a constant that maps 0 to 0 and 65025 to 255..
product.convertTo(product, CV_32FC1, 1.0f/65025.0f * 255);
// but it is still a 32FC1.. not as the start matix..
cout << "the product, normalized back to 0-255, still in 32FC1:" << endl << product << endl;
product.convertTo(product, CV_8UC1);
cout << "the product, normalized back to 0-255, now int 8UC1:" << endl << product << endl;
cout << "-----------------------------------------------------------" << endl;
// real stuffs now.
imgA = imread("test1.jpg");
cvtColor(imgA, imgA, CV_BGR2GRAY);
imgB = imread("test2.jpg");
cvtColor(imgB, imgB, CV_BGR2GRAY);
imgA_32FC1 = imgA.clone();
imgA_32FC1.convertTo(imgA_32FC1, CV_32FC1);
imgB_32FC1 = imgB.clone();
imgB_32FC1.convertTo(imgB_32FC1, CV_32FC1);
product = imgA_32FC1.mul( imgB_32FC1 );
printMinMax(product, "product");
product.convertTo(product, CV_32FC1, 1.0f/65025.0f * 255);
product.convertTo(product, CV_8UC1);
// concat two images in one big image
imgAB = Mat( max(imgA.rows,imgB.rows), imgA.cols+imgB.cols, imgA.type());
imgA.copyTo(imgAB(Rect(0, 0, imgA.cols, imgA.rows)));
imgB.copyTo(imgAB(Rect(imgA.cols, 0, imgB.cols, imgB.rows)));
namedWindow("originals", CV_WINDOW_AUTOSIZE);
namedWindow("product", CV_WINDOW_AUTOSIZE);
while( true )
{
char c = (char)waitKey(10);
if( c == 27 )
{ break; }
imshow( "originals", imgAB );
imshow( "product", product );
}
return 0;
}
You are right, you should convert your matrices imgA, imgB to say CV32FC1 type. Since the max values in this matrices is 255, the maximum possible value is 65025. However, the maximum at imgA and imgB may not be in the same location, so 64009 is quite possible.