I want to use the same lua file for multiple game objects
The lua file:
function onUpdate()
if Input.isKeyDown(Keys.d) then
actor.x = actor.x + 0.1
end
if Input.isKeyDown(Keys.a) then
actor.x = actor.x - 0.1
end
if Input.isKeyDown(Keys.w) then
actor.y = actor.y + 0.1
end
if Input.isKeyDown(Keys.s) then
actor.y = actor.y - 0.1
end
end
Question
Is it a good practice to have a Lua State for each object or should i use the same state for the same file and update the "actor" global variable before the game object calls the script
(I want to avoid using tables because i would have to use the table name before the variables and function calls)
(I don't know if there is any other solution... I am new to lua)
While it is nice that you can have many Lua states within a single program, keep in mind that each of them does take up some memory. If there's a good reason why you should keep two environments completely separate, like security concearns, or totally unrelated subsystems that may or may not be needed at the same time, then it's certainly worth it.
Otherwise, it's usually better and more manageable to have a single Lua state.
If you need strong separation between different blocks of logic, Lua has you covered:
Coroutines
If you need to have several blocks of logic that you want to pause and resume later on, you can simply wrap them up in coroutines. This can easily be done from C as well, and allows you to do most of what you could do with different Lua states.
Environments
While these work somewhat differently before and after Lua 5.2, the basic idea is the same: you can change what "global" variables are visible to a section of your code, even using metatables to access other data or generate it on the fly.
With those two, you should really not have much need for separate Lua states in a game. One exception to this rule would obviously be multi-threading; you shouldn't have more than one thread with access to the same Lua state unless you use some sort of locking mechanism, so it would make sense to have one state per thread and set up a way for them to communicate from within C.
Related
The question may be wrong in wording but the idea is simple. The order of initialisation of global objects in different translation units is not guarantied. If an application consists of two translation units - can compiler potentially generate initialisation code that will start two threads to create global objects in those translation units? This question is similar to this or this but I think the answers don't match the questions.
I will rephrase the question - if a program has several global objects - will their constructors always be called from the same thread (considering that user code doesn't start any threads before main)?
To make this question more practical - consider a case when several global objects are scattered over several translation units and each of them increments single global counter in constructor. If there is no guarantee that they are executed in single thread then access to the counter must be synchronised. For me it's definitely overkill.
UPDATE:
It looks like concurrent initialisation of globals is possible - see n2660 paper (second case)
UPDATE:
I've implemented singleton using singleton_registry. The idea is that declaration using SomeSingleton = singleton<SomeClass>; registers SomeClass for further initialisation in singleton_registry and real singleton initialisation (with all inter-dependencies) happens at the beginning of main function (before I've started any other threads) by singleton_registry (which is created on stack). In this case I don't need to use DLCP. It also allows me to prepare application configuration and disseminate it over all singletons uniformly. Another important use case is usage of singletons with TDD. Normally it's a pain to use singletons in unit tests, but with singleton_registry I can recreate application global objects for each test case.
In fact this is just a development of an idea that all singletons must be initialised at the beginning of function main. Normally it means that singleton user has to write custom initialisation function which handles all dependencies and prepare proper initialisation parameters (this is what I want to avoid).
Implementation looks good except the fact that I may have potential race conditions during singletons registration.
Several projects ago, using vxWorks and C++, a team mate used a non-thread safe pattern from the book (are any of those patterns thread safe?):
10% of system starts failed.
Lesson 1: if you don't explicitly control the when of a CTOR of a global object, it can change from build to build. (and we found no way to control it.)
Lesson 2: Controlling the when of CTOR is probably the easiest solution to lesson 1 (should it become a problem).
In my experience, if you gotta have Global objects (and it seems many would discourage it), consider limiting these globals to pointers initialized to 0:
GlobalObject* globalobject = nullptr;
And only the thread assigned to initialize it will do so. The other threads/tasks can spin wait for access.
I recently started using C++ instead of Delphi.
And there are some things that seem to be quite different.
For example I don't know how to initialize variables like Semaphores and CriticalSections.
By now I only know 2 possible ways:
1. Initializing a Critical Section in the constructor is stupid since every instance would be using its own critical section without synchronizing anything, right?
2. Using a global var and initializing it when the form is created seems not to be the perfect solution, as well.
Can anyone tell me how to achieve this?
Just a short explanation for what I need the Critical Section :
I'd like to fill a ListBox from different threads.
The Semaphore :
Different threads are moving the mouse, this shouldn't be interrupted.
Thanks!
Contrary to Delphi, C++ has no concept of unit initialization/finalization (but you already found out about that).
What we are left with is very little. You need to distinguish two things:
where you declare your variable (global, static class member, class member, local to a function, static in a function -- I guess that covers it all)
where you initialize your variable (since you are concerned with a C API you have to call the initialization function yourself)
Fact is, in your case it hardly matters where you declare your variable as long as it is accessible to all the other parts of your program that need it, and the only requirement as to where you should initialize it is: before you actually start using it (which implies, before you start other threads).
In your case I would probably use a singleton pattern. But C++ being what it is, singletons suffer from race condition during their initialization, there is no clean way around that. So, in addition to your singleton, you should ensure that it is correctly created before you start using it in multithreaded context. A simple call to getInstance() at the start of your main() will do the trick (or anywhere else you see fit). As you see, this takes only care of where you declare your variable, not where you initialize it, but unfortunately C++ has important limitations when it comes to multithreading (it is under-specified) so there is no way around that.
To sum it up: just do what you want (as long as it works) and stop worrying.
In my opinion you only need a critical section to synchronize updates to a list box from various threads. Mouse will keep moving. Semaphore is not fitting the solution. You initialize the critical section in you class constructor. where the list box is. Write a method to update the listbox.
//psudo code
UpdateListBox()
{
//enter critical section
//update
//leave critical section
}
All the threads will call this method to update the listbox.
information about critical section is here
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683472%28v=vs.85%29.aspx
in most of my clojure programs... and alot other clojure programs I see, there is some sort of global variable in an atom:
(def *program-state*
(atom {:name "Program"
:var1 1
:var2 "Another value"}))
And this state would be referred to occasionally in the code.
(defn program-name []
(:name #*program-state*))
Reading this article http://misko.hevery.com/2008/07/24/how-to-write-3v1l-untestable-code/ made me rethink global state but somehow, even though I completely agree with the article, I think its okay to use hash-maps in atoms because its providing a common interface for manipulating global state data (analogous to using different databases to store your data).
I would like some other thoughts on this matter.
This kind of thing can be OK, but it is also often a design smell so I would approach with caution.
Things to think about:
Consistency - can one part of the code change the program name? if so then the program-name function will behave inconsistently from the perspective of other threads. Not good!
Testability - is this easy to test? can one part of the test suite that is changing the program name safely run concurrently with another test that is reading the name?
Multiple instances - will you ever have two different parts of the application expecting to use a different program-name at the same time? If so, this is a strong hint that your mutable state should not be global.
Alternatives to consider:
Using a ref instead of an atom, you can at least ensure consistency of mutable state within transactions
Using binding you can limit mutability to a per-thread basis. This solves most of the concurrency issues and can be helpful when your global variables are being used like a set of thread-local configuration parameters.
Using immutable global state wherever you can. Does it really need to be mutable?
I think having a single global state that is occasionally updated in commutative ways is fine. When you start having two global states that need to be updated and threads start using them for communication, then I start to worry.
maintaining a count of current global users is fine:
Any thread can inc or dec this at any time without hurting another
If it changes out from under your thread nothing explodes.
maintaining the log directory is questionable:
When it changes will all threads stop writing to the old one?
if two threads change it will they converge.
Using this as a message queue is even more dubious:
I think it is fine to have such a global state (and in many cases it is required) but I would be careful about that the core logic of my application have functions that take the state as a parameter and return the updated state rather than directly accessing the global state. Basically I would prefer to have a controlled access to the global state from few set of function and everything else in my program should use these set of methods to access the state as that would allow me to abstract away the state implementation i.e initially I could start with an in memory atom, then may be move to some persistent storage.
I have written a program (suppose X) in c++ which creates a data structure and then uses it continuously.
Now I would like to modify that data structure without aborting the previous program.
I tried 2 ways to accomplish this task :
In the same program X, first I created data structure and then tried to create a child process which starts accessing and using that data structure for some purpose. The parent process continues with its execution and asks the user for any modification like insertion, deletion, etc and takes input from console and subsequently modification is done. The problem here is, it doesn't modify the copy of data structure that the child process was using. Later on, I figured out this won't help because the child process is using its own copy of data structure and hence modifications done via parent process won't be reflected in it. But definitely, I didn't want this to happen. So I went for multithreading.
Instead of creating child process, I created an another thread which access that data structure and uses it and tried to take user input from console in different thread. Even,
this didn't work because of very fast switching between threads.
So, please help me to solve this issue. I want the modification to be reflected in the original data structure. Also I don't want the process (which is accessing and using it continuously) to wait for sometimes since it's time crucial.
First point: this is not a trivial problem. To handle it at all well, you need to design a system, not just a quick hack or two.
First of all, to support the dynamic changing, you'll almost certainly want to define the data structure in code in something like a DLL or .so, so you can load it dynamically.
Part of how to proceed will depend on whether you're talking about data that's stored strictly in memory, or whether it's more file oriented. In the latter case, some of the decisions will depend a bit on whether the new form of a data structure is larger than an old one (i.e., whether you can upgrade in place or no).
Let's start out simple, and assume you're only dealing with structures in memory. Each data item will be represented as an object. In addition to whatever's needed to access the data, each object will provide locking, and a way to build itself from an object of the previous version of the object (lazily -- i.e., on demand, not just in the ctor).
When you load the DLL/.so defining a new object type, you'll create a collection of those the same size as your current collection of existing objects. Each new object will be in the "lazy" state, where it's initialized, but hasn't really been created from the old object yet.
You'll then kick off a thread that walks makes the new collection known to the rest of the program, then walks through the collection of new objects, locking an old object, using it to create a new object, then destroying the old object and removing it from the old collection. It'll use a fairly short timeout when it tries to lock the old object (i.e., if an object is in use, it won't wait for it very long, just go on to the next. It'll iterate repeatedly until all the old objects have been updated and the collection of old objects is empty.
For data on disk, things can be just about the same, except your collections of objects provide access to the data on disk. You create two separate files, and copy data from one to the other, converting as needed.
Another possibility (especially if the data can be upgraded in place) is to use a single file, but embed a version number into each record. Read some raw data, check the version number, and use appropriate code to read/write it. If you're reading an old version number, read with the old code, convert to the new format, and write in the new format. If you don't have space to update in place, write the new record to the end of the file, and update the index to indicate the new position.
Your approach to concurrent access is similar to sharing a cake between a classroom full of blindfolded toddlers. It's no surprise that you end up with a sticky mess. Each toddler will either have to wait their turn to dig in or know exactly which part of the cake she alone can touch.
Translating to code, the former means having a lock or mutex that controls access to a data structure so that only one thread can modify it at any time.
The latter can be done by having a data structure that is modified in place by threads that each know exactly which parts of the data structure they can update, e.g. by passing a struct with details on which range to update, effectively splitting up the data beforehand. These should not overlap and iterators should not be invalidated (e.g. by resizing), which may not be possible for a given problem.
There are many many algorithms for handling resource competition, so this is grossly simplified. Distributed computing is a significant field of computer science dedicated to these kinds problems; study the problem (you didn't give details) and don't expect magic.
In Java each object has a synchronisation monitor. So i guess the implementation is pretty condensed in term of memory usage and hopefully fast as well.
When porting this to C++ what whould be the best implementation for it. I think that there must be something better then "pthread_mutex_init" or is the object overhead in java really so high?
Edit: i just checked that pthread_mutex_t on Linux i386 is 24 bytes large. Thats huge if i have to reserve this space for each object.
In a sense it's worse than pthread_mutex_init, actually. Because of Java's wait/notify you kind of need a paired mutex and condition variable to implement a monitor.
In practice, when implementing a JVM you hunt down and apply every single platform-specific optimisation in the book, and then invent some new ones, to make monitors as fast as possible. If you can't do a really fiendish job of that, you definitely aren't up to optimising garbage collection ;-)
One observation is that not every object needs to have its own monitor. An object which isn't currently synchronised doesn't need one. So the JVM can create a pool of monitors, and each object could just have a pointer field, which is filled in when a thread actually wants to synchronise on the object (with a platform-specific atomic compare and swap operation, for instance). So the cost of monitor initialisation doesn't have to add to the cost of object creation. Assuming the memory is pre-cleared, object creation can be: decrement a pointer (plus some kind of bounds check, with a predicted-false branch to the code that runs gc and so on); fill in the type; call the most derived constructor. I think you can arrange for the constructor of Object to do nothing, but obviously a lot depends on the implementation.
In practice, the average Java application isn't synchronising on very many objects at any one time, so monitor pools are potentially a huge optimisation in time and memory.
The Sun Hotspot JVM implements thin locks using compare and swap. If an object is locked, then the waiting thread wait on the monitor of thread which locked the object. This means you only need one heavy lock per thread.
I'm not sure how Java does it, but .NET doesn't keep the mutex (or analog - the structure that holds it is called "syncblk" there) directly in the object. Rather, it has a global table of syncblks, and object references its syncblk by index in that table. Furthermore, objects don't get a syncblk as soon as they're created - instead, it's created on demand on the first lock.
I assume (note, I do not know how it actually does that!) that it uses atomic compare-and-exchange to associate the object and its syncblk in a thread-safe way:
Check the hidden syncblk_index field of our object for 0. If it's not 0, lock it and proceed, otherwise...
Create a new syncblk in global table, get the index for it (global locks are acquired/released here as needed).
Compare-and-exchange to write it into object itself.
If previous value was 0 (assume that 0 is not a valid index, and is the initial value for the hidden syncblk_index field of our objects), our syncblk creation was not contested. Lock on it and proceed.
If previous value was not 0, then someone else had already created a syncblk and associated it with the object while we were creating ours, and we have the index of that syncblk now. Dispose the one we've just created, and lock on the one that we've obtained.
Thus the overhead per-object is 4 bytes (assuming 32-bit indices into syncblk table) in best case, but larger for objects which actually have been locked. If you only rarely lock on your objects, then this scheme looks like a good way to cut down on resource usage. But if you need to lock on most or all your objects eventually, storing a mutex directly within the object might be faster.
Surely you don't need such a monitor for every object!
When porting from Java to C++, it strikes me as a bad idea to just copy everything blindly. The best structure for Java is not the same as the best for C++, not least because Java has garbage collection and C++ doesn't.
Add a monitor to only those objects that really need it. If only some instances of a type need synchronization then it's not that hard to create a wrapper class that contains the mutex (and possibly condition variable) necessary for synchronization. As others have already said, an alternative is to use a pool of synchronization objects with some means of choosing one for each object, such as using a hash of the object address to index the array.
I'd use the boost thread library or the new C++0x standard thread library for portability rather than relying on platform specifics at each turn. Boost.Thread supports Linux, MacOSX, win32, Solaris, HP-UX and others. My implementation of the C++0x thread library currently only supports Windows and Linux, but other implementations will become available in due course.