I am having trouble understanding why this exception is being thrown. I allocated an array to receive 100 int values and want to store all odd numbers under 200 into the array (which should be 100 integer values). I'm trying to understand why my code is not working.
I have called my function to allocate an array of 100 int values. After, I created a for-loop to iterate through and store integers into the array however I created an if statement to only store odd numbers. What I can't understand is if I put my counter to 200 and use the if statement an exception is thrown, but if I don't insert the if statement and only put my counter to 100 all numbers between 1-100 stored and an exception won't be thrown.
The only thing I can think of that's causing this is when my counter is at 200 and I have the if statement to catch all odd number, somehow all numbers under 200 are being stored in the array causing the exception to be thrown.
int *allocIntArray(int);
int main() {
int *a;
a = allocIntArray(100);
for (int count = 1; count < 200; count++) {
if (a[count] % 2 == 1) {
a[count] = count;
cout << a[count] << endl;
}
}
delete[] a;
return 0;
}
int *allocIntArray(int size) {
int *newarray = new int[size]();
return newarray;
}
When I look at the program output, it only displays the odd numbers yet the exception is being thrown. That tells me my if statement is working yet something is being muddied up.
What am I missing?
Thanks for your time and knowledge.
Cause of the error
If you have an array a that was created with n elements, it is undefined behavior when trying to access an array element out of bouds. So the index MUST always be between 0 and n-1.
So the behavior of your program is undefined as soon as count is 100, since evaluating the condition in the if-clause already tries to access out of bounds.
Adjustment that does what you want
Now in addition, there is a serious bug in your program logic: If you want to add numbers that satisfy some kind of condition, you need 2 counters: one for iterating on the numbers, and one for the last index used in the array:
for (int nextitem=0, count = 1; count < 200; count++) {
if (count % 2 == 1) { // not a[count], you need to test number itself
a[nextitem++] = count;
cout << count << endl;
if (nextitem == 100) { // attention: hard numbers should be avoided
cout << "Array full: " << nextitem << " items reached at " << count <<endl;
break; // exit the for loop
}
}
}
But, this solution requires you to keep track of the last item in the array, and the size of the array (it's hard-coded here).
Vectors
You are probably learning. But in C++ a better solution would be to use vector instead of an array, and use push_back(). Vectors manage the memory, so that you can focus on your algorithm. The full program would then look like:
vector<int> a;
for (int count = 1; count < 200; count++) {
if (count % 2 == 1) {
a.push_back(count);
cout << count << endl;
}
}
cout << "Added " << a.size() << " elements" <<endl;
cout << "10th element: "<< a[9] << endl;
The problem is not how many numbers you're storing but where you're storing them; you're storing 101 in a[101], which is obviously wrong.
If the i:th odd number is C, the correct index is i-1, not C.
The most readable change is probably to introduce a new counter variable.
int main() {
int a[100] = {0};
int count = 0;
for (int number = 1; number < 200; number++) {
if (number % 2 == 1) {
a[count] = number;
count += 1;
}
}
}
I think transforming this from a search problem to a generation problem makes it easier to get right.
If you happen to remember that every odd number C can be written on the form 2 * A + 1for some A, you' will see that the sequence you're looking for is
2*0+1, 2*1+1, 2*2+1, ..., 2*99+1
so
int main()
{
int numbers[100] = {0};
for (int i = 0; i < 100; i++)
{
numbers[i] = 2 * i + 1;
}
}
You can also go the other way around, looping over the odd numbers and storing them in the right place:
int main()
{
int numbers[100] = {0};
for (int i = 1; i < 200; i += 2) // This loops over the odd numbers.
{
numbers[i/2] = i; // Integer division makes this work.
}
}
Related
Preface: Currently reteaching myself C++ so please excuse some of my ignorance.
The challenge I was given was to write a program to search through a static array with a function and return the indices of the number you were searching for. This only required 1 function and minimal effort so I decided to make it more "complicated" to practice more of the things I have learned thus far. I succeeded for the most part, but I'm having issues with my if statements within my for loop. I want them to check 2 separate spots within the array passed to it, but it is checking the same indices for both of them. I also cannot seem to get the indices as an output. I can get the correct number of memory locations, but not the correct values. My code is somewhat cluttered and I understand there are more efficient ways to do this. I would love to be shown these ways as well, but I would also like to understand where my error is and how to fix it. Also, I know 5 won't always be present within the array since I'm using a pseudo random number generator.
Thank you in advance.
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
// This is supposed to walk throught the array both backwards and forwards checking for the value entered and
// incrementing the count so you know the size of the array you need to create in the next function.
int test(int A[], int size, int number) {
int count = 0;
for (int i = 0; i <= size; i++, size--)
{
if (A[i] == number)
count++;
// Does not walk backwards through the array. Why?
if (A[size] == number)
count++;
}
cout << "Count is: " << count << endl;
return (count);
}
// This is a linear search that creates a pointer array from the previous "count" variable in function test.
// It should store the indices of the value you are searching for in this newly created array.
int * search(int A[], int size, int number, int arr_size){
int *p = new int[arr_size];
int count =0;
for(int i = 0; i < size; i++){
if(A[i]==number) {
p[count] = i;
}
count++;
}
return p;
}
int main(){
// Initializing the array to zero just to be safe
int arr[99]={0},x;
srand(time(0));
// Populating the array with random numbers in between 1-100
for (int i = 0; i < 100; i++)
arr[i]= (rand()%100 + 1);
// Was using this to check if the variable was actually in the array.
// for(int x : arr)
// cout << x << " ";
// Selecting the number you wish to search for.
// cout << "Enter the number you wish to search for between 1 and 100: ";
// cin >> x;
// Just using 5 as a test case.
x = 5;
// This returns the number of instances it finds the number you're looking for
int count = test(arr, (sizeof(arr)/4), x);
// If your count returns 0 that means the number wasn't found so no need to continue.
if(count == 0){
cout << "Your number was not found " << endl;
return 0;
}
// This should return the address array created in the function "search"
int *index = search(arr, (sizeof(arr)/4), x, count);
// This should increment through the array which address you assigned to index.
for(int i=0; i < count; i++) {
// I can get the correct number of addresses based on count, just not the indices themselves.
cout << &index[i] << " " << endl;
}
return 0;
}
I deeply appreciate your help and patience as well as I want to thank you again for your help.
My goal is to have a player input a bunch of numbers for an array then that array is written into a text file. Another part of it is to be able to receive a bunch of numbers from a text file and put them into a sorted array of highest to lowest then output that array. But for some reason, I'm getting a lot of errors, ones that i feel like with some research I can fix. Unfortunately, there is one very confusing situation where I test to make sure the unsorted array is correct by outputting each element of the array. This is not a part of the final program but a test for now. I have a for loop that does so and it works perfectly, outputting each number as expected. Then in the next for loop, the exact same thing is supposed to happen but the numbers being outputted are all messed up. I do not understand how. Code below
void readFile(string fName) {
string fileName = fName + ".txt";
ifstream myFile(fileName);
char c;
string num;
int count = 0;
// Bring the array from file to int array
while (!myFile.eof()) {
myFile.get(c);
if (isspace(c) && num != "") {
int n = stoi(num);
intArray[count] = n;
count++;
num = "";
continue;
}
if (!myFile.eof()) {
num += c;
}
}
for (int i = 0; i < 10; i++) {
cout << intArray[i] << endl;
}
// Sort the array higest to lowest
for (int i = 0; i < 10; i++) {
cout << intArray[i] << " ";
for (int j = 9; j >= i; j--) {
if (j == 0) {
continue;
}
if (intArray[j] > intArray[j - 1]) {
int temp = arr[j];
intArray[j] = intArray[j - 1];
intArray[j - 1] = temp;
}
}
cout << endl;
}
}
sorry about the formatting above, its being weird so imagine the code is within the function.
This is what this outputs:
1
2
3
4
5
6
7
8
99
234
1
1
1
1
1
1
1
1
1
1
The numbers before the series of 1's is the actual array, the 1's is what is apparently the array according the cout in the last section of code where it says cout << intArray[i]
Your array does appear to be sorted. The reason for all the ones being printed is due to the location of the cout << within the outer loop.
Consider what your array looks like after your first iteration through the inner loop:
234,1,2,3,4,5,6,7,8,99
Now consider that you've incremented i to 1 in the outer loop. When you index your array intArray[i], the ith element is now 1 because you correctly moved it there. Each time, you're moving your smaller elements up one position in the array, then indexing to the position where the 1 is.
Don't try to print the sorted array while you're sorting it. Instead loop over it and print it after the sort.
The purpose of my code is to add the elements of a vector together into one integer. This is for Problem #1 on Project Euler:
https://projecteuler.net/problem=1
Here is my code:
int main()
{
int max_count = 1000; //The upper bound
//Loop for filling vector
for (int i = 1; i <= max_count; ++i){
int counter[max_count];
if (counter[i] % 3 == 0|| counter[i] % 5 == 0){
vector <int> start_point = {};
start_point.push_back (counter[i]);
for (auto& n : start_point){
int sum_of_elems = 0;
sum_of_elems += n;
cout << sum_of_elems;
}
}
}
return 0;
}
Currently, my code is outputting the following and I cannot figure out why.
32766143547943202305202750000-4646761603276630-76434810000-76434582500-464677056327662448-4646770403276632766-46467703232766327666032766230586999-970904238-95777621723084852023084852032766-970904244-46467688032766230624075-970911300230826120-1916976912327663276623063434032766230634681-957776214230826120140084992032766-970911280327660003276603276630-4646761603276623058081332766-464676440327663276632766230831712230745153065793306031200003276623074515300-191647711200023084852023074515365793360036000002308224802307451533657937207200-46467616032766000023083171232766230595552230831712032766327660-46467619232766230577342230822480230829920000-46467616032766230822480230829960-46467264032766230540223001920409600-46467247232766327661920409600-46467220832766000000000011072962560230556921230818160-4646738403276619204096000000230510592-1572142422000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001920169263100000170147416279176918919693827240000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
You're reinitializing your sum variable on each loop, so you end up just printing the individual values. You're also mixing looping and summing, which is complicating your code; either skip the vector entirely (just have a summing loop), or fill it completely, then sum it.
I can't give much more useful advice because you've got a lot of associated problems here. You declare counter without initializing it, then read from uninitialized memory to populate start_point.
Point is, most of your variables need to be declared outside the loops (so they're not repeatedly reinitialized from scratch on each loop), your output should be after the loops, and counter needs real data so you're not invoking undefined behavior.
Removing vectors and other unnecessary variables, the code can be simplified to:
#include <iostream>
int main()
{
int max_count = 1000; //The upper bound
int sumOfMultiples = 0;
for (int i = 1; i < max_count; ++i)
if (i % 3 == 0 || i % 5 == 0)
sumOfMultiples = sumOfMultiples + i;
std::cout << "Sum of Multiples of 3 and 5 below 1000 is: " << sumOfMultiples << "\n";
return 0;
}
Output is:
Sum of Multiples of 3 and 5 below 1000 is: 233168
I'm a Computer Science student. This is some code that I completed for my Data Structures and Algorithms class. It compiles fine, and runs correctly, but there is an error in it that I corrected with a band-aid. I'm hoping to get an answer as to how to fix it the right way, so that in the future, I know how to do this right.
The object of the assignment was to create a binary search. I took a program that I had created that used a heap sort and added a binary search. I used Visual Studio for my compiler.
My problem is that I chose to read in my values from a text file into an array. Each integer in the text file is separated by a tabbed space. In line 98, the file reads in correctly, but when I get to the last item in the file, the counter (n) counts one time too many, and assigns a large negative number (because of the array overflow) to that index in the array, which then causes my heap sort to start with a very large negative number that I don't need. I put a band-aid on this by assigning the last spot in the array the first spot in the array. I have compared the number read out to my file, and every number is there, but the large number is gone, so I know it works. This is not a suitable fix for me, even if the program does run correctly. I would like to know if anyone knows of a correct solution that would iterate through my file, assign each integer to a spot in the array, but not overflow the array.
Here is the entire program:
#include "stdafx.h"
#include <iostream>
#include <fstream>
using std::cout;
using std::cin;
using std::endl;
using std::ifstream;
#define MAXSIZE 100
void heapify(int heapList[], int i, int n) //i shows the index of array and n is the counter
{
int listSize;
listSize=n;
int j, temp;//j is a temporary index for array
temp = heapList[i];//temporary storage for an element of the array
j = 2 * i;//end of list
while (j <= listSize)
{
if (j < listSize && heapList[j + 1] > heapList[j])//if the value in the next spot is greater than the value in the current spot
j = j + 1;//moves value if greater than value beneath it
if (temp > heapList[j])//if the value in i in greater than the value in j
break;
else if (temp <= heapList[j])//if the value in i is less than the value in j
{
heapList[j / 2] = heapList[j];//assigns the value in j/2 to the current value in j--creates parent node
j = 2 * j;//recreates end of list
}
}
heapList[j / 2] = temp;//assigns to value in j/2 to i
return;
}
//This method is simply to iterate through the list of elements to heapify each one
void buildHeap(int heapList[], int n) {//n is the counter--total list size
int listSize;
listSize = n;
for (int i = listSize / 2; i >= 1; i--)//for loop to create heap
{
heapify(heapList, i, n);
}
}
//This sort function will take the values that have been made into a heap and arrange them in order so that they are least to greatest
void sort(int heapList[], int n)//heapsort
{
buildHeap(heapList, n);
for (int i = n; i >= 2; i--)//for loop to sort heap--i is >= 2 because the last two nodes will not have anything less than them
{
int temp = heapList[i];
heapList[i] = heapList[1];
heapList[1] = temp;
heapify(heapList, 1, i - 1);
}
}
//Binary search
void binarySearch(int heapList[], int first, int last) {//first=the beginning of the list, last=end of the list
int mid = first + last / 2;//to find middle for search
int searchKey;//number to search
cout << "Enter a number to search for: ";
cin >> searchKey;
while ((heapList[mid] != searchKey) && (first <= last)) {//while we still have a list to search through
if (searchKey < heapList[mid]) {
last = mid - 1;//shorten list by half
}
else {
first = mid + 1;//shorten list by half
}
mid = (first + last) / 2;//find new middle
}
if (first <= last) {//found number
cout << "Your number is " << mid << "th in line."<< endl;
}
else {//no number in list
cout << "Could not find the number.";
}
}
int main()
{
int j = 0;
int n = 0;//counter
int first = 0;
int key;//to prevent the program from closing
int heapList[MAXSIZE];//initialized heapList to the maximum size, currently 100
ifstream fin;
fin.open("Heapsort.txt");//in the same directory as the program
while (fin >> heapList[n]) {//read in
n++;
}
heapList[n] = heapList[0];
int last = n;
sort(heapList, n);
cout << "Sorted heapList" << endl;
for (int i = 1; i <= n; i++)//for loop for printing sorted heap
{
cout << heapList[i] << endl;
}
binarySearch(heapList, first, last);
cout << "Press Ctrl-N to exit." << endl;
cin >> key;
}
int heapList[MAXSIZE];//initialized heapList to the maximum size, currently 100
This comment is wrong - heapList array is declared not initialized, so when you had read all data from the file, index variable n will point to the uninitialized cell. Any attempt to use it will invoke an undefined behavior. You could either: initialize an array before using it, decrement n value, since it greater than read values number by one, or better use std::vector instead of array.
You populate values for heapsort for indices 0 to n-1 only.
Then you access heaplist from 1 to n which is out of bounds since no value was put in heapsort[n].
Use
for (int i = 0; i < n; i++) //instead of i=1 to n
I'm trying to use a bubble sort to sort an array of 10 numbers. The program asks for 10 numbers from the user then outputs the unsorted array. This part works fine. It then runs a bubble sort and outputs the sorted array. In my tests I only entered positive integers, however the first value in the sorted array is always a really small number expressed like "2.6812368e-317" or something similar. The rest of the values in the array then appear after that number sorted as they should be. After the sorted array displays Windows then comes up with an error saying the program has stopped working.
My code is as follows:
int main(int argc, char** argv) {
double arrSort[10];// declare array to store numbers to be sorted
cout << "Please enter 10 numbers to be sorted" << endl;
// ask for values from user and input them in array
for (int i = 0; i < 10; i++)
{
cin >> arrSort[i];
}
// display unsorted array
cout << "Unsorted Array: " << endl;
for (int i = 0; i < 10; i++)
{
if (i < 9)
cout << arrSort[i] << ", ";
else
cout << arrSort[i] << endl;
}
bool changed = true; // variable to store whether a change has been made
double temp; // variable to temporarily store a value while swapping
//start looping the array
do
{
changed = false; // change to false so that if no changes are made to array the loop exits
for (int i = 0; i < 10; i++) // start loop within array to check values
{
if (arrSort[i] > arrSort[i + 1]) // check if current index is greater than next index
{
// swap values
temp = arrSort[i]; // store current index in temp variable
arrSort[i] = arrSort[i + 1]; // assign next index to current index
arrSort[i + 1] = temp; // assign temp value to next index
changed = true; // set changed to true to run another loop
}
}
}while (changed); // if array was changed loop through again, if not changed exit loop
// output results of sorted array
cout << "Sorted Array: " << endl;
for (int i = 0; i < 10; i++)
{
if (i < 9)
cout << arrSort[i] << ", ";
else
cout << arrSort[i] << endl;
}
return 0;
}
Here is a screenshot of a test run of the program:
Sorted Array output
for (int i = 0; i < 10; i++) // <-- here's problem.
{
if (arrSort[i] > arrSort[i + 1])
{
// swap values
}
}
i variable should be less than 9 not 10. As you can see in if statement you are checking arrSort[i + 1], so in last element you are checking number which is out of your table range (arrSort[10] doesn't exist). I'm not able to check it right now, but I guess it's the problem.
I think the problem is here:
if (arrSort[i] > arrSort[i + 1])
When
i=9
Your array have 10 elements and you try to compare
arrSort[9] > arrSort[9+1]
And
arrSort[10]
Does not exist