OpenGL VAO + multiple VBO - theory - batch render - opengl

I'm thinking about tweaking my current batch render. What I currently do is run a loop with command like this :
shader->setUniformValue("mvp_matrix", matrix * geo[x].geoMatrix);
glDrawElementsBaseVertex(GL_TRIANGLES, meshIndicesCountList[x], GL_UNSIGNED_INT, (const GLvoid *) (skip * sizeof(unsigned int)), offsetVertex);
Essentially I have 1 HUGE VBO, or more like 3 (vertex/normals/indices) and I use 1 VAO to bind it all & render.
The current render also works on the idea of 1 material = list of meshes in 1 vao/3 VBOS(vert/norm/indices).
Works great, but what I want to do now is to create a vector and then have each VBO holding at max of 500k indices. The idea is to split 1 big buffer in to multiple smaller ones, so that if user change material then I don't have to rebuild entire massive VBO but just one of the smaller ones. Say a 100mil polygons, 50k objects. Might take a while to rebuild... I think I measured it, it was few seconds.
So the question is, given the command I use to run the loop above to draw the objects. Can I somehow still use it to draw the sub VBO's somehow? The command above give offset/vertex starting point of each item in VBO, but I don't see a way to specify which VBO should I use if I bind multiple VBO's under 1 VAO. Or perhaps I should have 1 VAO per 1 VBO list(or struct containing all VBO's), and then bind each VBO in loop and then call draw? I'm just bit worried that with 10k binds of VBO's I would lose the performance, and not gain much of speedup when replacing entire VBO?
Hope this somehow... explain the "issue".

Related

Can I set VAO before VBO in OpenGL?

I have a Sphere class that generate the VBO for creating given input radius and some more parameters.
Each Sphere VBO share the same memory layout (let's say vertex indice 0 = vertices, 1 = colors).
I may getting wrong, but if a understand correctly, state is what VAO store. But I don't know if VAO reminds which VBO was bound or use the currently bound VBO. But I think it use the VBO bound when modifying it (so it imply that reconfiguring the VAO for each Sphere render)
Question #1
Is it possible to store on VAO for all of the spheres? Sharing one VAO for multiple VBO.
Question #2
Can we set up the VAO independently from the VBO ? I wanna say, before even creating the VBO and without VBO bound, for example in a static function before even creating Spheres.
Question #3
This question may have non sens and be case-specific, but should I use one VAO and one VBO for each Sphere or share one VAO for all the Spheres (if it's possible) ?
Using the separate attribute format API, it is easy to set up a VAO independently from any particular set of source buffer objects. The vertex format information (component type, count, etc) can all be established via glVertexAttribFormat without a buffer object. You can even set up the relationship between attribute indices and buffer binding points, so that you can read interleaved attributes from a single buffer binding. All without ever binding a buffer object.
Now at the end of the data, you will have to attach buffer objects to the VAO when it comes time to render (via glBindVertexBuffer(s)). And the VAO will store the buffers it was last set with. But you should essentially ignore this. Treat a VAO as if it were just the vertex format state, with buffer binding being something that you do right before you render with it.
And yes, having one VAO and multiple potential buffers that get read with that vertex format (or better yet, just one buffer with multiple mesh data in it that all share the same vertex format, with mesh selection being done via the baseVertex parameter of glDrawElementsBaseVertex) is the right way to go.
All that being said, you also should remember that all spheres are the same mesh. They may appear in different locations with different sizes, but that's just a matter of providing a different transform of a unit sphere. The only reason to use more than one sphere mesh is if you need different resolutions of spheres (more polygons vs. fewer).

How to draw many textured quads faster, and retain glScissor (or something like it)?

I'm using OpenGL 4 and C++11.
Currently I make a whole bunch of individual calls to glDrawElements using separate VAOs with a separate VBO and an IBO.
I do this because the texture coords change for each, and my Vertex data features the texture coords. I understand that there's some redundent position information in this vertex data; however, it's always -1,-1,1,1 because I use a translation and a scale matrix in my vertex shader to then position and scale the vertex data.
The VAO, VBO, IBO, position and scale matrix and texture ID are stored in an object. It's one object per quad.
Currently, some of the drawing would occur like this:
Draw a quad object via (glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT,0)). The bound VBO is just -1,-1,1,1 and the IBO draws me a quad. The bound VBO contains the texture coords of a common texture (same texture used to texture all drawn quads). Matrix transformations on shader position it.
Repeat with another quad object
glEnable(GL_SCISSOR_TEST) is called and the position information of the preview quad is used in a call to glScissor
Next quad object is drawn; only the parts of it visible from the previous quad are actually shown.
Draw another quad object
The performance I'm getting now is acceptable but I want it faster because I've only scratched the surface of what I have in mind. So I'm looking at optimizing. So far I've read that I should:
Remove the position information from my vertex data and just keep texture coords. Instead bind a single position VBO at the start of drawing quads so it's used by all of them.
But I'm unsure how this would work? Because I can only have one VBO active at any one time.
Would I then have to call glBufferSubData and update the texture coordinates prior to drawing each quad? Would this be better performance or worse (a call to glBindVertexArray for every object or a call to glBufferSubData?)
Would I still pass the position and scale as matrices to the shader, I would I take that opportunity to also update the position info of the vertices as well as the texture coords? Which would be faster?
Create one big VBO with or without an IBO and update the vertex data for the position (rather than use a transformation and scale matrix) of each quad within this. It seems like this would be difficult to manage.
Even if I did manage to do this; I would only have a single glDraw call; which sounds fast. Is this true? What sort of performance impact does a single glBindVertexArray call have over multiple?
I don't think there's any way to use this method to implement something like the glScissor call that I'm making now?
Another option I've read is instancing. So I draw the quad however many times I need it; which means I would pass the shader an array of translation matrices and an array of texture coords?
Would this be a lot faster?
I think I could do something like the glScissor test by passing an additional array of booleans which defines whether the current quad should be only drawn within the bounds of the previous one. However, I think this means that for each gl_InstanceID I would have to traverse all previous instances looking for true and false values, and it seems like it would be slow.
I'm trying to save time by not implementing all of these individually. Hopefully an expert can point me towards which is probably better. If anyone has an even better idea, please let me know.
You can have multiple VBO attached to different attributes!
following seqence binds 2 vbos to attribs 0 & 1, note that glBindBuffer() binds buffer temporarily and actual VBO assignment to attrib is made during glVertexAttribPointer().
glBindBuffer(GL_ARRAY_BUFFER,buf1);
glVertexAttribPointer(0, ...);
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER,buf2);
glVertexAttribPointer(1, ...);
glEnableVertexAttribArray(1);
The fastest way to provide quad positions & sizes is to use texture and sample it inside vertex shader. Of course you'd need at least RGBA (x,y,width,height) 16bits / channel texture. But then you can update quad positions using glTexSubImage2D() or you could even render them via FBO.
Everything other than that will perform slower, of course if you want we can elaborate about using uniforms, attribs in vbos or using attribs without enabled arrays for them.
Putting all together:
use single vbo, store quad id in it (int) + your texturing data
prepare x,y,w,h texture, define mapping from quad id to this texture texcoord ie: u=quad_id&0xFF , v=(quad_id>>8) (for texture 256x256 max 65536 quads)
use vertex shader to sample displacement and size from that texture (for given quad_id stored in attribute (or use vertex_ID/4 or vertex_ID/6)
fill vbo and texture
draw everything with single drawarrays of draw elements

Multiple VBOs and IBOs How to Handle

Actually, I have a lot of models that are produced by cpu.(around 100K and one of them around 100 triangle) and all model has its vbo and ibo. If I try to draw each model with glDrawElements() it is quite slow. also if I try to draw combine all vbos and ibos if a model is deleted I need to update vbo also almost all ibo because of removed points change index order and then I need the buffer all of these again it is slow. Also I am not sure about instancing performance and picking I need to know which triangle belongs to which model.Is there any way to buffer and than one draw function draw all individual model with its own vbo and index?
You can set a base vertex per mesh and pass it to the glDrawElementsBaseVertex call. This will still require a call per mesh which can be solved with glMultiDrawElementsBaseVertex with which you can combine them all into a single draw call.

Simple curiosity about OpenGL VBO allocation

I have written a simple graphic engine using OpenGL and GLSL. Until here, when I needed to create a new mesh scene node I created a VAO, a VBO and an IBO for each mesh. I loaded my vertex attributes for each mesh this way:
glBufferData(GL_ARRAY_BUFFER, this->GetVerticesByteSize(VERTEX_POSITION)
+ this->GetVerticesByteSize(VERTEX_TEXTURE) + this->GetVerticesByteSize(VERTEX_NORMAL), NULL, this->m_Usage);
glBufferSubData(GL_ARRAY_BUFFER, 0, this->GetVerticesByteSize(VERTEX_POSITION), &this->m_VertexBuffer[VERTEX_POSITION][0]);
if (!this->m_VertexBuffer[VERTEX_TEXTURE].empty())
glBufferSubData(GL_ARRAY_BUFFER, this->GetVerticesByteSize(VERTEX_POSITION),
this->GetVerticesByteSize(VERTEX_TEXTURE), &this->m_VertexBuffer[VERTEX_TEXTURE][0]);
if (!this->m_VertexBuffer[VERTEX_NORMAL].empty())
glBufferSubData(GL_ARRAY_BUFFER, this->GetVerticesByteSize(
VERTEX_POSITION) + this->GetVerticesByteSize(VERTEX_TEXTURE),
this->GetVerticesByteSize(VERTEX_NORMAL), &this->m_VertexBuffer[VERTEX_NORMAL][0]);
But if the scene is composed by a lot of meshes it's not correct for the performance (too many state changes). So, I decided to create a unique VAO, VBO and IBO (singleton classes) for all the geometry of my scene.
The way to do this is the following :
Load all the vertex attributes in a specific class (let's call it 'VertexAttributes') for each mesh. After all the meshes are loaded we can allocate the big vertex buffer in a unique VBO. So like above I call in first the function 'glBufferData' to allocate the whole memory with the size of all the vertex attributes in my scene and after that call the function 'glBufferSubData' for each kind of vertex attribute in a loop.
But is it possible to call glBufferData several times (for each mesh) and fill the VBO during the scene loading (step by step for each mesh). So it looks like a realloc. Is it possible to do this with OpenGL or my first method is the good one ?
But is it possible to call glBufferData several times (for each mesh)
and fill the VBO during the scene loading (step by step for each
mesh). So it looks like a realloc. Is it possible to do this with
OpenGL or my first method is the good one ?
No. Whenever you call glBufferData, a new data storage (with the new size is created, and the previous contents are lost.
However, combining multiple objects in the same VBO is still a valid strategy in many cases, especially if many of those objects are likely to be drawn together.
You cannot dynamically resizes buffer objects. What you can do is pre-allocate bigger buffers and update parts of it. Having a bunch of reasonably-sized buffers available and dynamically fill can be a viable strategy. Note that there is also GL_ARB_copy_buffer (in core since GL 3.1, so widely available) which will allow you quite efficient server-side copies, and you can even emulate the "realloc" behavior by allocating a new buffer and copying the old contents over.
Which strategy is best will always depend on the situation. If you often load or destroy objects dynamically, using some complex buffer allocation and management strategies might pay off.

Drawing multiple models using multiple openGL VBO's

rather than post lots of code, I will phrase this question intuitively. I hope you understand what I am getting at.
I am making a game and in the code I have a model class that loads a model and sets up the VBO for it.
In the loading function, it generates a new VBO ID and loads the vertex data from a file into that buffer by binding it etc. (This works fine)
At the beginning of the program I make one model object and load a .obj file.
In the render function, I simply call the DrawArrays() function (with the neccessary extra stuff) and as I said, everything works fine as the model appears on the screen with no problems.
The problem however, is when I make two model objects at the beginning of the program and load a different .obj file into each one.
The issue is that when I play, only the second model is drawn on screen.
The problem is because I don't properly understand how VBO's work.
This is how I "think" VBO's work.
You can generate as many VBO ID's as you want.
You can bind each ID to make it the active buffer.
You can load vertex data into that buffer.
You now effectively have many different ID's each referring to a "set of vertex data".
By calling the DrawArray function it draws every buffer you have generated (effectively displaying all your models on screen)
Now I know this is wrong because in my limited understanding I can't see how I could turn models on/off. But no matter how many tutorials I look at I can't answer this question because they all focus on displaying that ONE FIRST VBO, which incidentally I can do.
So... if that made sense, could anyone enlighten me?
You're doing it mostly right, but the drawing command does not draw every buffer you have generated. If you want to draw 2 objects with data in different buffers, you'll have to issue 2 drawing commands.
Let me explain, based on how I do it:
You create buffers using glGenBuffers. Before you can use a buffer, you have to "bind" it, that is, make it active using glBindBuffer. When a buffer is active, you can do stuff with it (populate with data for example). Note that there are different bind targets, so you can, for example, have one active array buffer (for vertex data) and one active element array buffer (for index data).
When you want to draw stuff, you have to specify what exactly you want to draw (I'll assume now that you're using your own shader) Usually you specify at least your vertex data and index data. To do this, you first bind your buffer with your vertex data (as an array buffer), then call glVertexAttribPointer with you attribute id. This tells OpenGL that the bound buffer is now the source for the current attribute. Then, you bind your index buffer as the element array buffer and call glDrawElements (not sure how glDrawArrays would work here).
You cannot use multiple VBOs at once for the same attribute - the call to bind another buffer just overwrites the previous call and makes the second buffer active, which, I assume, is why only your second object gets drawn.
You can also use VAOs to simplify the drawing - basically you assign an id to binding commands, then you can execute them with one line (think display lists).
So, my loading (of one object) looks like this:
Create buffers (let's say buffer 1 is for vertex data, buffer 2 for index data).
Bind buffer 1 as an array buffer.
Fill buffer with vertex data.
Repeat 2 and 3 for buffer 2 as element array buffer and index data, respectively.
And my drawing (again, of one object):
Bind buffer 1 as an array buffer.
Use glVertexAttribPointer to specify that this buffer goes to a specific attribute.
Bind buffer 2 as an element array buffer.
Call DrawElements
For the second object, you have to repeat everything.
Follow these steps to render your models, assuming model1 vertices are stored in vertexBuffer and model2 vertices in vertexBuffer2:
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
glVertexAttribPointer(posAttrib, 3, GL_FLOAT, GL_FALSE, 0, 0);
glDrawArrays(GL_TRIANGLES, 0, <no. of vert>);
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer2);
glVertexAttribPointer(posAttrib, 3, GL_FLOAT, GL_FALSE, 0, 0);
glDrawArrays(GL_TRIANGLES, 0, <no. of vert>);
//swap buffers depending on your windowing toolkit
Make sure to not perform glClear in the middle of the two model renders.
All the best!
what you want to do is set the vertexArrayAttribute back to the first object data before each call to drawArrays
the draw arrays function uses the bindings stored in the VAO to find the data needed to render everything
so to render 2 models you create a second VAO bind it and call glVertexAttribPointer as needed. for drawing you bind the VAO and call drawArrays for each model