Get a second header with the units of columns - r-markdown

Sometimes in academic texts one wants to present a Table in which every column has units. It is usual that the units are specified below the column names, like this
|Object |Volume | area | Price |
| |$cm^3$ |$cm^2$ | euros |
|:------------|:-------|--------:|---------:|
|A |3 | 43.36| 567.40|
|B |15 | 43.47| 1000.80|
|C |1 | 42.18| 8.81|
|D |7 | 37.92| 4.72|
How could I achieve this for my bookdown documents?
Thank you in advance.

Here is a way using kableExtra:
```{r}
library(kableExtra)
df <- data.frame(Object = LETTERS[1:5],
Volume = round(runif(5, 1, 20)),
area = rnorm(5, 40, 3),
Price = rnorm(5, 700, 200))
colNames <- names(df)
dfUnits <- c("", "$cm^3$", "$cm^2$", "€")
kable(df, col.names = dfUnits,escape = F, align = "c") %>%
add_header_above(header = colNames, line = F, align = "c")
```

Related

How can I compare pairs of columns in a PySpark dataframe and number of records changed?

I have a situation where I need to compare multiple pairs of columns (the number of pairs will vary and can come from a list as shown in below code snippet) and get 1/0 flag for match/mismatch respectively. Eventually use this to identify the number of records/rows with mismatch and % records mismatched
NONKEYCOLS= ['Marks', 'Qualification']
The first image is source df and second image is expected df.
[
Since this is happening for multiple pairs on a loop, it is very slow for about a billion records. Need help with something efficient.
I have the below code but the part that calculates change records is taking long time.
for ind,cols in enumerate(NONKEYCOLS):
print(ind)
print(cols)
globals()['new_dataset' + '_char_changes_tmp']=globals()['new_dataset' + '_char_changes_tmp']\
.withColumn("records_changed" + str(ind),\
F.sum(col("records_ch_flag_" + str(ind)))\
.over(w1))
globals()['new_dataset' + '_char_changes_tmp']=globals()['new_dataset' + '_char_changes_tmp']\
.withColumn("records_changed" + str(ind),\
F.sum(col("records_ch_flag_" + str(ind)))\
.over(w1))
globals()['new_dataset' + '_char_changes_tmp']=globals()['new_dataset' + '_char_changes_tmp']\
.withColumn("records_changed_cnt" + str(ind),\
F.count(col("records_ch_flag_" + str(ind)))\
.over(w1))
i'm not sure what loop are you running, but here's an implementation with list comprehension within a select.
data_ls = [
(10, 11, 'foo', 'foo'),
(12, 12, 'bar', 'bar'),
(10, 12, 'foo', 'bar')
]
data_sdf = spark.sparkContext.parallelize(data_ls). \
toDF(['marks_1', 'marks_2', 'qualification_1', 'qualification_2'])
col_pairs = ['marks','qualification']
data_sdf. \
select('*',
*[(func.col(c+'_1') == func.col(c+'_2')).cast('int').alias(c+'_check') for c in col_pairs]
). \
show()
# +-------+-------+---------------+---------------+-----------+-------------------+
# |marks_1|marks_2|qualification_1|qualification_2|marks_check|qualification_check|
# +-------+-------+---------------+---------------+-----------+-------------------+
# | 10| 11| foo| foo| 0| 1|
# | 12| 12| bar| bar| 1| 1|
# | 10| 12| foo| bar| 0| 0|
# +-------+-------+---------------+---------------+-----------+-------------------+
where the list comprehension would yield the following
[(func.col(c+'_1') == func.col(c+'_2')).cast('int').alias(c+'_check') for c in col_pairs]
# [Column<'CAST((marks_1 = marks_2) AS INT) AS `marks_check`'>,
# Column<'CAST((qualification_1 = qualification_2) AS INT) AS `qualification_check`'>]
EDIT
based on the additional (updated) info, you need the count of unmatched records for that pair and then you want to calculate the unmatched percentage.
reversing the aforementioned logic to count the unmatched records
col_pairs = ['marks','qualification']
data_sdf. \
agg(*[func.sum((func.col(c+'_1') != func.col(c+'_2')).cast('int')).alias(c+'_unmatch') for c in col_pairs],
func.count('*').alias('row_cnt')
). \
select('*',
*[(func.col(c+'_unmatch') / func.col('row_cnt')).alias(c+'_unmatch_perc') for c in col_pairs]
). \
show()
# +-------------+---------------------+-------+------------------+--------------------------+
# |marks_unmatch|qualification_unmatch|row_cnt|marks_unmatch_perc|qualification_unmatch_perc|
# +-------------+---------------------+-------+------------------+--------------------------+
# | 2| 1| 3|0.6666666666666666| 0.3333333333333333|
# +-------------+---------------------+-------+------------------+--------------------------+
the code flags (as 1) the records where the pair does not match and takes a sum of the flag - which gives us the pair's unmatched record count. dividing that with the total row count will give the percentage.
the list comprehension will yield the following
[func.sum((func.col(c+'_1') != func.col(c+'_2')).cast('int')).alias(c+'_unmatch') for c in col_pairs]
# [Column<'sum(CAST((NOT (marks_1 = marks_2)) AS INT)) AS `marks_unmatch`'>,
# Column<'sum(CAST((NOT (qualification_1 = qualification_2)) AS INT)) AS `qualification_unmatch`'>]
this is very much efficient as all of it happens in a single select statement which will only project once in the spark plan as opposed to your approach which will project every time you do a withColumn - and that is inefficient to spark.
df.colRegex may serve you well. If all the values in columns which match the regex are equal, you get 1. The script is efficient, as everything is done in one select.
Inputs:
from pyspark.sql import functions as F
df = spark.createDataFrame(
[('p', 1, 2, 'g', 'm'),
('a', 3, 3, 'g', 'g'),
('b', 4, 5, 'g', 'g'),
('r', 8, 8, 'm', 'm'),
('d', 2, 1, 'u', 'g')],
['Name', 'Marks_1', 'Marks_2', 'Qualification_1', 'Qualification_2'])
col_pairs = ['Marks', 'Qualification']
Script:
def equals(*cols):
return (F.size(F.array_distinct(F.array(*cols))) == 1).cast('int')
df = df.select(
'*',
*[equals(df.colRegex(f"`^{c}.*`")).alias(f'{c}_result') for c in col_pairs]
)
df.show()
# +----+-------+-------+---------------+---------------+------------+--------------------+
# |Name|Marks_1|Marks_2|Qualification_1|Qualification_2|Marks_result|Qualification_result|
# +----+-------+-------+---------------+---------------+------------+--------------------+
# | p| 1| 2| g| m| 0| 0|
# | a| 3| 3| g| g| 1| 1|
# | b| 4| 5| g| g| 0| 1|
# | r| 8| 8| m| m| 1| 1|
# | d| 2| 1| u| g| 0| 0|
# +----+-------+-------+---------------+---------------+------------+--------------------+
Proof of efficiency:
df.explain()
# == Physical Plan ==
# *(1) Project [Name#636, Marks_1#637L, Marks_2#638L, Qualification_1#639, Qualification_2#640, cast((size(array_distinct(array(Marks_1#637L, Marks_2#638L)), true) = 1) as int) AS Marks_result#646, cast((size(array_distinct(array(Qualification_1#639, Qualification_2#640)), true) = 1) as int) AS Qualification_result#647]
# +- Scan ExistingRDD[Name#636,Marks_1#637L,Marks_2#638L,Qualification_1#639,Qualification_2#640]
Edit:
def equals(*cols):
return (F.size(F.array_distinct(F.array(*cols))) != 1).cast('int')
df = df.select(
'*',
*[equals(df.colRegex(f"`^{c}.*`")).alias(f'{c}_result') for c in col_pairs]
).agg(
*[F.sum(f'{c}_result').alias(f'rec_changed_{c}') for c in col_pairs],
*[(F.sum(f'{c}_result') / F.count(f'{c}_result')).alias(f'{c}_%_rec_changed') for c in col_pairs]
)
df.show()
# +-----------------+-------------------------+-------------------+---------------------------+
# |rec_changed_Marks|rec_changed_Qualification|Marks_%_rec_changed|Qualification_%_rec_changed|
# +-----------------+-------------------------+-------------------+---------------------------+
# | 3| 2| 0.6| 0.4|
# +-----------------+-------------------------+-------------------+---------------------------+

Spark Add New Column with List Count

Let's say I have the following data - order_id and product_names.
data = [["1", ["Organic A", "Apple"],
["2", ["Organic B", "Chocolate", "Organic C]]
If I want to create a dataframe and add a new column product_count so the output looks like the following, how can I do that?
Output:
+----------------------------------------------------------------+
|order_id | product_count| product_names|
+----------------------------------------------------------------+
| 1 | 2| ["Organic A", "Apple"]|
| 2 | 3| ["Organic B", "Chocolate", "Organic C]|
+----------------------------------------------------------------+
You can use the size function to get the length of the product_names field.
df = df.select('order_id', F.size('product_names').alias('product_count'), 'product_names')
df.show(truncate=False)

Make the first column of an ioslides table not bold

I am making a presentation in RMarkdown using ioslides. I am trying to add a table of text, and the first column is bold. I would like to either make both columns bold or both columns not bold.
For example, in this presentation, the x column is bold and the y column is not:
---
title: test
output: ioslides_presentation
---
##
| x | y |
---------
| 1 | 2 |
I have also tried making the table in a chunk of R code and using kableExtra to make the second column bold, but then ioslides does not format the table nicely (and so in this case only the second column is bold, and the table does not look nice in the presentation). For example:
##
```{r, echo = FALSE}
library(kableExtra)
mat <- matrix(c(1,2), nrow = 1, dimnames = list(NULL, c('x', 'y')))
mat.kable <- kable(mat)
column_spec(mat.kable, 2, bold = TRUE)
```
You can "force" the second column to be bold. And putting a plus sign in the middle of the dashed line will give your table a proper header:
##
| x | y |
----+----
| 1 | **2** |
If using kableExtra, it is better to use kable_styling:
kable(mat) %>%
kable_styling(full_width = T, bootstrap_options = c("striped")) %>%
row_spec(0, font_size=30) # use row_spec to get control over your header. Header is row 0

PySpark Combine Rows to Columns StackOverFlow Error

What I want (very simplified):
Input Dataset to Output dataset
Some of the code I tried:
def add_columns(cur_typ, target, value):
if cur_typ == target:
return value
return None
schema = T.StructType([T.StructField("name", T.StringType(), True),
T.StructField("typeT", T.StringType(), True),
T.StructField("value", T.IntegerType(), True)])
data = [("x", "a", 3), ("x", "b", 5), ("x", "c", 7), ("y", "a", 1), ("y", "b", 2),
("y", "c", 4), ("z", "a", 6), ("z", "b", 2), ("z", "c", 3)]
df = ctx.spark_session.createDataFrame(ctx.spark_session.sparkContext.parallelize(data), schema)
targets = [i.typeT for i in df.select("typeT").distinct().collect()]
add_columns = F.udf(add_columns)
w = Window.partitionBy('name')
for target in targets:
df = df.withColumn(target, F.max(F.lit(add_columns(df["typeT"], F.lit(target), df["value"]))).over(w))
df = df.drop("typeT", "value").dropDuplicates()
another version:
targets = df.select(F.collect_set("typeT").alias("typeT")).first()["typeT"]
w = Window.partitionBy('name')
for target in targets:
df = df.withColumn(target, F.max(F.lit(F.when(veh["typeT"] == F.lit(target), veh["value"])
.otherwise(None)).over(w)))
df = df.drop("typeT", "value").dropDuplicates()
For small datasets both work, but I have a dataframe with 1 million rows and 5000 different typeTs.
So the result should be a table of about 500 x 5000 (some names do not have certain typeTs.
Now I get stackoverflow errors (py4j.protocol.Py4JJavaError: An error occurred while calling o7624.withColumn.
: java.lang.StackOverflowError) trying to create this dataframe. Besides increasing stacksize, what can I do? Is there a way better way to get the same result?
using withColumn in loop is not good, if no cols to be added are more.
create an array of cols, and select them, which will result in better performance
cols = [F.col("name")]
for target in targets:
cols.append(F.max(F.lit(add_columns(df["typeT"], F.lit(target), df["value"]))).over(w).alias(target))
df = df.select(cols)
which results the same output
+----+---+---+---+
|name| c| b| a|
+----+---+---+---+
| x| 7| 5| 3|
| z| 3| 2| 6|
| y| 4| 2| 1|
+----+---+---+---+

Pyspark Merge WrappedArrays Within a Dataframe

The current Pyspark dataframe has this structure (a list of WrappedArrays for col2):
+---+---------------------------------------------------------------------+
|id |col2 |
+---+---------------------------------------------------------------------+
|a |[WrappedArray(code2), WrappedArray(code1, code3)] |
+---+---------------------------------------------------------------------+
|b |[WrappedArray(code5), WrappedArray(code6, code8)] |
+---+---------------------------------------------------------------------+
This is the structure I would like to have (a flattened list for col2):
+---+---------------------------------------------------------------------+
|id |col2 |
+---+---------------------------------------------------------------------+
|a |[code2,code1, code3)] |
+---+---------------------------------------------------------------------+
|b |[code5,code6, code8] |
+---+---------------------------------------------------------------------+
but I'm not sure how to do that transformation. I had tried to do a flatmap but that didn't seem to work. Any suggestions?
You can do this using 2 ways, udf and rdd. Here is example:-
df = sqlContext.createDataFrame([
['a', [['code2'],['code1', 'code3']]],
['b', [['code5','code6'], ['code8']]]
], ["id", "col2"])
df.show(truncate = False)
+---+-------------------------------------------------+
|id |col2 |
+---+-------------------------------------------------+
|a |[WrappedArray(code2), WrappedArray(code1, code3)]|
|b |[WrappedArray(code5, code6), WrappedArray(code8)]|
+---+-------------------------------------------------+
RDD:-
df.map(lambda row:(row[0], reduce(lambda x,y:x+y, row[1]))).toDF().show(truncate=False)
+---+---------------------+
|_1 |_2 |
+---+---------------------+
|a |[code2, code1, code3]|
|b |[code5, code6, code8]|
+---+---------------------+
UDF:-
from pyspark.sql import functions as F
import pyspark.sql.types as T
def fudf(val):
#emlist = []
#for item in val:
# emlist += item
#return emlist
return reduce (lambda x, y:x+y, val)
flattenUdf = F.udf(fudf, T.ArrayType(T.StringType()))
df.select("id", flattenUdf("col2").alias("col2")).show(truncate=False)
+---+---------------------+
|id |col2 |
+---+---------------------+
|a |[code2, code1, code3]|
|b |[code5, code6, code8]|
+---+---------------------+