See code below for the details, but the underlying scenario is as follows. I have a container (a session) that I can place objects in and pull out from.
Similar to:
std::shared_ptr<Tiger> t = ...;
session.store("tigers/1", t);
std::shared_ptr<Tiger> t2 = session.load<Tiger>("tigers/1");
With both functions defined as:
class Session {
template<class T>
void store(std::string id, std::shared_ptr<T> instance);
template<class T>
std::shared_ptr<T> load(std::string id);
}
Note that a session can store heterogeneous types, but at store and load time I statically known what the type of the variable is.
My problem is that I run into a situation where the user wants to put a Tiger into the session but checks out a base type, instead. For example:
session.load<Animal>("tigers/1");
Right now, I'm effectively storing the data as void* inside the session and use reinterpret_cast to get them back to the user provided type. This... works, as long as everything is trivial, but when we get to a slightly more complex situation, we run into issues.
Here is the full code demonstrating my issue:
struct Animal
{
virtual void Pet() const = 0;
};
struct IJumpable
{
virtual void Jump() const = 0;
};
struct Tiger : Animal, IJumpable
{
void Pet() const override
{
std::cout << "Pet\n";
}
void Jump() const override
{
std::cout << "Jump\n";
}
};
int main()
{
auto cat = std::make_shared<Tiger>();
// how the data is stored inside the session
auto any_ptr = std::static_pointer_cast<void>(cat);
// how we get the data out of the session
auto namable = std::static_pointer_cast<IJumpable>(any_ptr);
namable->Jump();
std::cout << std::endl;
}
If you run this code, you'll see that it runs, but instead of calling Jump, it calls to Pet. I understand that this is because of the wrong virtual method table being used, since I'm effectively calling reinterpret_cast on `void*.
My question is if there is a good way to handle this scenario in C++. I've looked around and didn't see anything that matches what I need.
Everything I found about heterogeneous containers always assumed a shared base class, which I don't have nor want. Is this possible?
You could make the user provide you with the correct casting trek to follow:
class Session {
template<class T>
void store(std::string id, std::shared_ptr<T> instance);
template<class T>
std::shared_ptr<T> load(std::string id);
template<class Stored, class Retrieved>
std::shared_ptr<Retrieved> load_as(std::string id) {
auto stored = load<Stored>(id);
return std::static_pointer_cast<Retrieved>(stored);
}
}
This makes a messy usage at the caller site, but the information must come from somewhere:
auto shere_khan = make_shared<Tiger>();
session.store("tigers/1", shere_khan);
auto bagheera = session.load_as<Tiger, IJumpable>("tigers/1");
Solution courtesy of my brother who happens to be a C++ expert with no stackoverflow :)
Here is a void_ptr implementation that enables polymorphic casting using exception handling to discover types. The performance should be close to that of a dynamic_cast. You should be able to optimize the above using std::type_index and caching the offsets.
#include <stdio.h>
class void_ptr {
void* obj;
void (*discover_type)(void*);
template<typename T>
static void throw_typed_object(void* obj)
{
T* t = static_cast<T*>(obj);
throw t;
}
public:
void_ptr() : obj(0) {}
template<typename T>
void_ptr(T* t) : obj(t), discover_type(throw_typed_object<T>)
{
}
template<typename T>
T* cast() const
{
try {
discover_type(obj);
} catch(T* t) {
return t;
} catch(...) {
}
return 0;
}
};
struct Animal {
virtual ~Animal() {}
virtual const char* name() { return "Animal"; }
};
struct Speaker {
virtual ~Speaker() {}
virtual const char* speak() { return "hello"; }
};
struct Lion : public Animal, public Speaker {
virtual const char* name() { return "Lion"; }
virtual const char* speak() { return "Roar"; }
};
int main()
{
void_ptr ptr(new Lion());
Animal* a = ptr.cast<Animal>();
Speaker* s = ptr.cast<Speaker>();
printf("%s\n", a->name());
printf("%s\n", s->speak());
}
IMO best solution is not to cast to pointer to void but to other type which can be dynamic sidecast to required type.
#include <iostream>
#include <memory>
struct Animal
{
virtual ~Animal() {}
virtual void Pet() const = 0;
};
struct IJumpable
{
virtual ~IJumpable() {}
virtual void Jump() const = 0;
};
struct IStrorable
{
virtual ~IStrorable() {}
};
struct Tiger : Animal, IJumpable, IStrorable
{
void Pet() const override
{
std::cout << "Pet\n";
}
void Jump() const override
{
std::cout << "Jump\n";
}
};
int main()
{
auto cat = std::make_shared<Tiger>();
auto any_ptr = std::static_pointer_cast<IStrorable>(cat);
auto namable = std::dynamic_pointer_cast<IJumpable>(any_ptr);
namable->Jump();
std::cout << std::endl;
}
Live example
Other solutions require use of std::any, but this will be less handy.
It is a bit disturbing that your method load is a template.
Related
Suppose I have a class in C++11 like this:
class Something
{
...
private:
class1* a;
class2* b;
class3* c;
public:
class1* reada() { return a; }
class2* readb() { return b; }
class3* readc() { return c; }
void customFunctionForclass1();
void customFunctionForclass2();
void customFunctionForclass3();
}
}
I'd like to make the read functions templated so that if another programmer adds another member class, the corresponding read function will be template-magic created.
Something like this maybe?
class Something
{
...
private:
templateContainer = {class1*,class2*,class3*}
template<thing in templateContainer>
thing variableOfTypeThing;
public:
template<thing in templateContainer>
<thing> read() {return variableOfTypeThing<thing>;}
void customFunctionForclass1();
void customFunctionForclass2();
void customFunctionForclass3();
}
As you can tell from the example, I'm confused.
Basically, I have a class which acts as a container for guaranteed unique class variables (no class1 A; class1 B)
Some function groups for the class are almost identical some function groups are highly varied. It would be great for future people to only have to modify the different parts of the class and get the rest from the templates.
I thought maybe there would be a way by splitting this class up into lots of classes and stuffing them into an array of void pointers, but that seems unwise.
Suggestions?
I'd like to make the read functions templated so that if another programmer adds another member class, the corresponding read function will be template-magic created.
You could encapsulate the user defined classes in a thin wrapper class with a read() function that returns the contained instance. Adding a user defined class to Something would then be done by inheriting wrapper<user_defined_class>.
Basically, I have a class which acts as a container for guaranteed unique class variables
Inheriting this wrapper prevents you from including the same class twice so it could possibly be a way forward:
#include <iostream>
// the "thing" wrapper
template<typename T>
struct thing {
// forward construction arguments to the contained variable
template<class... Args>
thing(Args&&... args) : variable(std::forward<Args>(args)...) {}
// basic interface, const and non-const. I called it get() instead of read()
T const& get() const { return variable; }
T& get() { return variable; }
private:
T variable;
};
// a troublesome user defined class that is not default constructibe :-(
struct user_defined {
user_defined() = delete; // silly example really, but it's just to demonstrate
user_defined(const std::string& v) : str(v) {}
user_defined& operator=(const std::string& v) {
str = v;
return *this;
}
std::string const& say() const { return str; }
private:
std::string str;
};
std::ostream& operator<<(std::ostream& os, const user_defined& ud) {
return os << ud.say();
}
// ... and the "Something" class that inherits the wrapped types.
class Something : thing<int>,
thing<double>,
thing<user_defined>
{
public:
// add initial values for types that are not default constructible
Something(const std::string& val) : thing<user_defined>(val) {}
Something() : Something("") {} // default ctor
// access via derived class, const and non-const
template<typename T>
T const& get() const {
return thing<T>::get(); // get() from the correct base
}
template<typename T>
T& get() {
return thing<T>::get(); // get() from the correct base
}
};
void print(const Something& s) {
// using the const interface
std::cout << s.get<int>() << "\n";
std::cout << s.get<double>() << "\n";
std::cout << s.get<user_defined>() << "\n";
}
int main() {
Something foo;
// using the non-const interface to set
foo.get<int>() = 10;
foo.get<double>() = 3.14159;
foo.get<user_defined>() = "Hello world";
print(foo);
}
Edit: It doesn't fulfill the index part of your question though. You access it using the type you'd like to get() as a tag. You basically build a very rudimentary tuple I guess.
Code based on #Ted Lyngmo's answer:
#include <iostream>
#include <string>
template<typename T>
struct thing {
// forward construction arguments to the contained variable
template<class... Args>
thing(Args&&... args) : variable(std::forward<Args>(args)...) {}
// basic interface, const and non-const. I called it get() instead of read()
T const& get() const { return variable; }
T& get() { return variable; }
protected:
T variable;
};
template<typename ...Ts>
struct things : thing<Ts>... {
template<class... SubTs>
things(thing<SubTs>&&... ts) : thing<SubTs>(std::move(ts))... {}
// access via derived class, const and non-const
template<typename T>
T const& get() const {
return thing<T>::get(); // get() from the correct base
}
template<typename T>
T& get() {
return thing<T>::get(); // get() from the correct base
}
};
// a troublesome user defined class that is not default constructibe :-(
struct user_defined {
user_defined() = delete; // silly example really, but it's just to demonstrate
user_defined(const std::string& v) : str(v) {}
user_defined& operator=(const std::string& v) {
str = v;
return *this;
}
std::string const& say() const { return str; }
private:
std::string str;
};
struct non_default {
non_default() = delete;
non_default(int) {}
};
std::ostream& operator<<(std::ostream& os, const user_defined& ud) {
return os << ud.say();
}
// ... and the "Something" class that inherits the wrapped types.
class Something : public things<int, double, user_defined, non_default>
{
public:
// add initial values for types that are not default constructible
Something(const std::string& val) : things(thing<user_defined>(val), thing<non_default>(0)) {}
Something() : Something("") {} // default ctor
};
void print(const Something& s) {
// using the const interface
std::cout << s.get<int>() << "\n";
std::cout << s.get<double>() << "\n";
std::cout << s.get<user_defined>() << "\n";
}
int main() {
Something foo;
// using the non-const interface to set
foo.get<int>() = 10;
foo.get<double>() = 3.14159;
foo.get<user_defined>() = "Hello world";
print(foo);
}
I want to create a class which behaves a certain way - e.g. spits out certain values from a function double getValue(const int& x) const - based on a "type" that was passed into its constructor. Right now I have two methods:
Store the passed-in "type" and then evaluate a switch statement in getValue each time it is called in order to decide which implementation to use.
Use a switch statement on the passed-in "type" (in the constructor) to create an internal object that represents the desired implementation. So no switch required anymore in getValue itself.
Method 1 "appears" inefficient as switch is called every time I call getValue. Method 2 seems somewhat clunky as I need to utilise <memory> and it also makes copying/assigning my class non-trivial.
Are there any other cleaner methods to tackle a problem like this?
Code Example:
#include <memory>
enum class ImplType { Simple1, Simple2 /* more cases */ };
class MyClass1
{
private:
const ImplType implType;
public:
MyClass1(const ImplType& implType) : implType(implType) { }
double getValue(const int& x) const
{
switch (implType)
{
case ImplType::Simple1: return 1; /* some implemention */
case ImplType::Simple2: return 2; /* some implemention */
}
}
};
class MyClass2
{
private:
struct Impl { virtual double getValue(const int& x) const = 0; };
struct ImplSimple1 : Impl { double getValue(const int& x) const override { return 1; /* some implemention */ } };
struct ImplSimple2 : Impl { double getValue(const int& x) const override { return 2; /* some implemention */ } };
const std::unique_ptr<Impl> impl;
public:
MyClass2(const ImplType& implType) : impl(std::move(createImplPtr(implType))) { }
static std::unique_ptr<Impl> createImplPtr(const ImplType& implType)
{
switch (implType)
{
case ImplType::Simple1: return std::make_unique<ImplSimple1>();
case ImplType::Simple2: return std::make_unique<ImplSimple2>();
}
}
double getValue(const int& x) const { return impl->getValue(x); }
};
int main()
{
MyClass1 my1(ImplType::Simple1);
MyClass2 my2(ImplType::Simple1);
return 0;
}
Your code is basically mimicing a virtual method (sloppy speaking: same interface but implementation is chosen at runtime), hence your code can be much cleaner if you actually do use a virtual method:
#include <memory>
struct base {
virtual double getValue(const int& x) const = 0;
};
struct impl1 : base {
double getValue(const int& x) { return 1.0; }
};
struct impl2 : base {
double getValue(const int& x) { return 2.0; }
};
// ... maybe more...
enum select { impl1s, impl2s };
base* make_impl( select s) {
if (s == impl1s) return new impl1();
if (s == impl2s) return new impl2();
}
int main() {
std::shared_ptr<base> x{ make_impl(impl1) };
}
Not sure if this is what you are looking for. By the way, using <memory> should not make you feel "clunky", but instead you should feel proud that we have such awesome tools in c++ ;).
EDIT: If you dont want the user to work with (smart-)pointers then wrap the above in just another class:
struct foo {
shared_ptr<base> impl;
foo( select s) : impl( make_impl(s) ) {}
double getValue(const int& x) { return impl.getValue(x); }
};
now a user can do
int main() {
auto f1 { impl1s };
auto f2 { impl2s };
f1.getValue(1);
f2.getValue(2);
}
If you have a closed set of types you can choose from, you want std::variant:
using MyClass = std::variant<MyClass1, MyClass2, MyClass3, /* ... */>;
It doesn't use dynamic allocation - it's basically a type-safe modern alternative to union.
More object-oriented approach:
class Interface
{
public:
virtual int getValue() = 0;
};
class GetValueImplementation1 : public Interface
{
public:
int getValue() {return 1;}
};
class GetValueImplementation2 : public Interface
{
public:
int getValue() {return 2;}
};
class GeneralClass
{
public:
GeneralClass(Interface *interface) : interface(interface) {}
~GeneralClass()
{
if (interface)
delete interface;
}
int getValue() { return interface->getValue(); }
private:
Interface *interface;
};
So, in this case you can use it without any pointers:
int main()
{
GeneralClass obj1(new GetValueImplementation1());
GeneralClass obj2(new GetValueImplementation2());
cout << obj1.getValue() << " " << obj2.getValue();
return 0;
}
The output will be:
1 2
But in the case you should be careful with null pointers or use smart ones inside GeneralClass.
(Context and question first, skeleton code at the bottom of the post)
We are creating and implementing a C++ framework to use in environments like Arduino.
For this I want to use the Observer pattern, where any component interested in state-changes of sensors (Observables) can register itself and it will get notified of those changes by the Observable calling the notification() method of the Observer with itself as a parameter.
One Observer can observe multiple Observables, and vice versa.
The problem lies in the fact that the Observer needs to extract the current state of the Observable and do something with it, and this current state can take all forms and sizes, depending on the particular sensor that is the Observable.
It can of course be ordinal values, which are finite and can be coded out, like I did in the code below with the method getValueasInt() but it can also be sensor-specific structures, i.e. for a RealTimeClock, which delivers a struct of date and time values. The struct are of course defined at compile time, and fixed for a specific sensor.
My question: What is the most elegant, and future-modification proof solution or pattern for this ?
Edit: Note that dynamic_cast<> constructions are not possible because of Arduino limitations
I have created the following class-hierarchy (skeleton code):
class SenseNode
{
public:
SenseNode() {};
SenseNode(uint8_t aNodeId): id(aNodeId) {}
virtual ~SenseNode() {}
uint8_t getId() { return id; };
private:
uint8_t id = 0;
};
class SenseStateNode : virtual public SenseNode
{
public:
SenseStateNode(uint8_t aNodeId) : SenseNode(aNodeId) {}
virtual ~SenseStateNode() {}
/** Return current node state interpreted as an integer. */
virtual int getValueAsInt();
};
class SenseObservable: public SenseStateNode
{
public:
SenseObservable(uint8_t aNodeId);
virtual ~SenseObservable();
/** Notify all interested observers of the change in state by calling Observer.notification(this) */
virtual void notifyObservers();
protected:
virtual void registerObserver(SenseObserver *);
virtual void unregisterObserver(SenseObserver *);
};
class SenseObserver: virtual public SenseNode
{
public:
SenseObserver() {};
virtual ~SenseObserver();
/** Called by an Observable that we are observing to inform us of a change in state */
virtual void notification(SenseObservable *observable) {
int v = observable->getValueAsInt(); // works like a charm
DateTime d = observable-> ???? // How should i solve this elegantly?
};
};
My previous answer does not take into account that the same observer might me registered with different observables. I'll try to give a full solution here. The solution is very flexible and scalable but a bit hard to understand as it involves template meta programming (TMP). I'll start by outlining what the end result will look like and then move into the TMP stuff. Brace yourself, this is a LONG answer. Here we go:
We first have, for the sake of the example, three observables, each with its own unique interface which we will want later to access from the observer.
#include <vector>
#include <algorithm>
#include <iostream>
#include <unordered_map>
#include <string>
class observable;
class observer {
public:
virtual void notify(observable& x) = 0;
};
// For simplicity, I will give some default implementation for storing the observers
class observable {
// assumping plain pointers
// leaving it to you to take of memory
std::vector<observer*> m_observers;
public:
observable() = default;
// string id for identifying the concrete observable at runtime
virtual std::string id() = 0;
void notifyObservers() {
for(auto& obs : m_observers) obs->notify(*this);
}
void registerObserver(observer* x) {
m_observers.push_back(x);
}
void unregisterObserver(observer*) {
// give your implementation here
}
virtual ~observable() = default;
};
// our first observable with its own interface
class clock_observable
: public observable {
int m_time;
public:
clock_observable(int time)
: m_time(time){}
// we will use this later
static constexpr auto string_id() {
return "clock_observable";
}
std::string id() override {
return string_id();
}
void change_time() {
m_time++;
notifyObservers(); // notify observes of time change
}
int get_time() const {
return m_time;
}
};
// another observable
class account_observable
: public observable {
double m_balance;
public:
account_observable(double balance)
: m_balance(balance){}
// we will use this later
static constexpr auto string_id() {
return "account_observable";
}
std::string id() override {
return string_id();
}
void deposit_amount(double x) {
m_balance += x;
notifyObservers(); // notify observes of time change
}
int get_balance() const {
return m_balance;
}
};
class temperature_observable
: public observable {
double m_value;
public:
temperature_observable(double value)
: m_value(value){}
// we will use this later
static constexpr auto string_id() {
return "temperature_observable";
}
std::string id() override {
return string_id();
}
void increase_temperature(double x) {
m_value += x;
notifyObservers(); // notify observes of time change
}
int get_temperature() const {
return m_value;
}
};
Notice that each observer exposes an id function returning a string which identifies it. Now, let's assume we want to create an observer which monitors the clock and the account. We could have something like this:
class simple_observer_clock_account
: public observer {
std::unordered_map<std::string, void (simple_observer_clock_account::*) (observable&)> m_map;
void notify_impl(clock_observable& x) {
std::cout << "observer says time is " << x.get_time() << std::endl;
}
void notify_impl(account_observable& x) {
std::cout << "observer says balance is " << x.get_balance() << std::endl;
}
// casts the observable into the concrete type and passes it to the notify_impl
template <class X>
void dispatcher_function(observable& x) {
auto& concrete = static_cast<X&>(x);
notify_impl(concrete);
}
public:
simple_observer_clock_account() {
m_map[clock_observable::string_id()] = &simple_observer_clock_account::dispatcher_function<clock_observable>;
m_map[account_observable::string_id()] = &simple_observer_clock_account::dispatcher_function<account_observable>;
}
void notify(observable& x) override {
auto f = m_map.at(x.id());
(this->*f)(x);
}
};
I am using an unoderded_map so that the correct dispatcher_function will be called depending on the id of the observable. Confirm that this works:
int main() {
auto clock = new clock_observable(100);
auto account = new account_observable(100.0);
auto obs1 = new simple_observer_clock_account();
clock->registerObserver(obs1);
account->registerObserver(obs1);
clock->change_time();
account->deposit_amount(10);
}
A nice thing about this implementation is that if you try to register the observer to a temperature_observable you will get a runtime exception (as the m_map will not contain the relevant temperature_observable id).
This works fine but if you try now to adjust this observer so that it can monitor temperature_observables, things get messy. You either have to go edit the simple_observer_clock_account (which goes against the closed for modification, open for extension principle), or create a new observer as follows:
class simple_observer_clock_account_temperature
: public observer {
std::unordered_map<std::string, void (simple_observer_clock_account_temperature::*) (observable&)> m_map;
// repetition
void notify_impl(clock_observable& x) {
std::cout << "observer1 says time is " << x.get_time() << std::endl;
}
// repetition
void notify_impl(account_observable& x) {
std::cout << "observer1 says balance is " << x.get_balance() << std::endl;
}
// genuine addition
void notify_impl(temperature_observable& x) {
std::cout << "observer1 says temperature is " << x.get_temperature() << std::endl;
}
// repetition
template <class X>
void dispatcher_function(observable& x) {
auto& concrete = static_cast<X&>(x);
notify_impl(concrete);
}
public:
// lots of repetition only to add an extra observable
simple_observer_clock_account_temperature() {
m_map[clock_observable::string_id()] = &simple_observer_clock_account_temperature::dispatcher_function<clock_observable>;
m_map[account_observable::string_id()] = &simple_observer_clock_account_temperature::dispatcher_function<account_observable>;
m_map[temperature_observable::string_id()] = &simple_observer_clock_account_temperature::dispatcher_function<temperature_observable>;
}
void notify(observable& x) override {
auto f = m_map.at(x.id());
(this->*f)(x);
}
};
This works but it is a hell of a lot repetitive for just adding one additional observable. You can also imagine what would happen if you wanted to create any combination (ie account + temperature observable, clock + temp observable, etc). It does not scale at all.
The TMP solution essentially provides a way to do all the above automatically and re-using the overriden implementations as opposed to replicating them again and again. Here is how it works:
We want to build a class hierarchy where the base class will expose a number of virtual notify_impl(T&) method, one for each T concrete observable type that we want to observe. This is achieved as follows:
template <class Observable>
class interface_unit {
public:
virtual void notify_impl(Observable&) = 0;
};
// combined_interface<T1, T2, T3> would result in a class with the following members:
// notify_impl(T1&)
// notify_impl(T2&)
// notify_impl(T3&)
template <class... Observable>
class combined_interface
: public interface_unit<Observable>...{
using self_type = combined_interface<Observable...>;
using dispatcher_type = void (self_type::*)(observable&);
std::unordered_map<std::string, dispatcher_type> m_map;
public:
void map_register(std::string s, dispatcher_type dispatcher) {
m_map[s] = dispatcher;
}
auto get_dispatcher(std::string s) {
return m_map.at(s);
}
template <class X>
void notify_impl(observable& x) {
interface_unit<X>& unit = *this;
// transform the observable to the concrete type and pass to the relevant interface_unit.
unit.notify_impl(static_cast<X&>(x));
}
};
The combined_interface class inherits from each interface_unit and also allows us to register functions to the map, similarly to what we did earlier for the simple_observer_clock_account. Now we need to create a recursive hierarchy where at each step of the recursion we override notify_impl(T&) for each T we are interested in.
// forward declaration
// Iface will be combined_interface<T1, T2>
// The purpose of this class is to implement the virtual methods found in the Iface class, ie notify_impl(T1&), notify_impl(T2&)
// Each ImplUnit provides an override for a single notify_impl(T&)
// Root is the base class of the hierarchy; this will be the data (if any) held by the observer
template <class Root, class Iface, template <class, class> class... ImplUnits>
struct hierarchy;
// recursive
template <class Root, class Iface, template <class, class> class ImplUnit, template <class, class> class... ImplUnits>
struct hierarchy<Root, Iface, ImplUnit, ImplUnits...>
: public ImplUnit< hierarchy<Root, Iface, ImplUnits...>, Root > {
using self_type = hierarchy<Root, Iface, ImplUnit, ImplUnits...>;
using base_type = ImplUnit< hierarchy<Root, Iface, ImplUnits...>, Root >;
public:
template <class... Args>
hierarchy(Args&&... args)
: base_type{std::forward<Args>(args)...} {
using observable_type = typename base_type::observable_type;
Iface::map_register(observable_type::string_id(), &Iface::template notify_impl<observable_type>);
}
};
// specialise if we have iterated through all ImplUnits
template <class Root, class Iface>
struct hierarchy<Root, Iface>
: public Root
, public observer
, public Iface {
public:
template <class... Args>
hierarchy(Args&&... args)
: Root(std::forward<Args>(args)...)
, Iface(){}
};
At each step of the recursion, we register the dispatcher_function to our map.
Finally, we create a class which will be used for our observers:
template <class Root, class Iface, template <class, class> class... ImplUnits>
class observer_base
: public hierarchy<Root, Iface, ImplUnits...> {
public:
using base_type = hierarchy<Root, Iface, ImplUnits...>;
void notify(observable& x) override {
auto f = this->get_dispatcher(x.id());
return (this->*f)(x);
}
template <class... Args>
observer_base(Args&&... args)
: base_type(std::forward<Args>(args)...) {}
};
Let's now create some observables. For simplicity, I assume that the observer has not data:
class observer1_data {};
// this is the ImplUnit for notify_impl(clock_observable&)
// all such implementations must inherit from the Super argument and expose the observable_type type member
template <class Super, class ObserverData>
class clock_impl
: public Super {
public:
using Super::Super;
using observable_type = clock_observable;
void notify_impl(clock_observable& x) override {
std::cout << "observer says time is " << x.get_time() << std::endl;
}
};
template <class Super, class ObserverdData>
class account_impl
: public Super {
public:
using Super::Super;
using observable_type = account_observable;
void notify_impl(account_observable& x) override {
std::cout << "observer says balance is " << x.get_balance() << std::endl;
}
};
template <class Super, class ObserverdData>
class temperature_impl
: public Super {
public:
using Super::Super;
using observable_type = temperature_observable;
void notify_impl(temperature_observable& x) override {
std::cout << "observer says temperature is " << x.get_temperature() << std::endl;
}
};
Now we can easily create any observer we want, no matter what combinations we want to use:
using observer_clock = observer_base<observer1_data,
combined_interface<clock_observable>,
clock_impl>;
using observer_clock_account = observer_base<observer1_data,
combined_interface<clock_observable, account_observable>,
clock_impl, account_impl>;
using observer_clock_account_temperature = observer_base<observer1_data,
combined_interface<clock_observable, account_observable, temperature_observable>,
clock_impl, account_impl, temperature_impl>;
int main() {
auto clock = new clock_observable(100);
auto account = new account_observable(100.0);
auto temp = new temperature_observable(36.6);
auto obs1 = new observer_clock_account_temperature();
clock->registerObserver(obs1);
account->registerObserver(obs1);
temp->registerObserver(obs1);
clock->change_time();
account->deposit_amount(10);
temp->increase_temperature(2);
}
I can appreciate there is a lot to digest. Anyway, I hope it is helpful. If you want to understand in detail the TMP ideas above have a look at the Modern C++ design by Alexandrescu. One of the best I've read.
Let me know if anything is not clear and I will edit the answer.
If the number of sensor types is more or less stable (and it is - the changes are pretty rare in most cases) - then just be prepared on Observer side to get several kind of notifications:
class Observer
{
public:
virtual void notify(SenseNode& node) {
// implement here general actions - like printing: not interested in this
}
virtual void notify(RealTimeClock& node) {
notify(static_cast<SenseNode&>(node));
// by default go to more general function
}
// and follow this pattern - for all nodes you want to handle
// add corresponding notify(T&) function
};
When it happens you have to add new node type - then just add new virtual function to your base Observer class.
To implement this mechanism on Observable side - use double dispatch pattern:
class SenseNode {
public:
virtual void notifyObserver(Observer& observer) {
observer.notify(*this);
}
};
class RealTimeClock : public virtual SenseNode {
public:
virtual void notifyObserver(Observer& observer) {
observer.notify(*this);
// this will select proper Observer::notify(RealTimeClock&)
// because *this is RealTimeCLock
}
};
class SenseObservable: public SenseStateNode
{
public:
virtual void notifyObservers() {
for (auto& observer : observers)
notifyObserver(observer);
}
};
How it works in practice, see live demo
Here is my take. If I understand correctly, each observer knows what concrete observable is monitoring; the problem is that the observer only gets a base class pointer to the concrete observable and hence cannot access the full interface. Assuming you can use static_cast as previous answers have assumed, my idea is to create an additional class which will be responsible for casting the base class pointer to the concrete one, thus giving you access to the concrete interface. The code below uses different names than the ones in your post, but it illustrates the idea:
#include <vector>
#include <algorithm>
#include <iostream>
class observable;
class observer {
public:
virtual void notify(observable&) = 0;
};
// For simplicity, I will give some default implementation for storing the observers
class observable {
// assumping plain pointers
// leaving it to you to take of memory
std::vector<observer*> m_observers;
public:
observable() = default;
void notifyObservers() {
for(auto& obs : m_observers) obs->notify(*this);
}
void registerObserver(observer* x) {
m_observers.push_back(x);
}
void unregisterObserver(observer* x) {
// give your implementation here
}
virtual ~observable() = default;
};
// our first observable with its own interface
class clock_observable
: public observable {
int m_time;
public:
clock_observable(int time)
: m_time(time){}
void change_time() {
m_time++;
notifyObservers(); // notify observes of time change
}
int get_time() const {
return m_time;
}
};
// another observable
class account_observable
: public observable {
double m_balance;
public:
account_observable(double balance)
: m_balance(balance){}
void deposit_amount(double x) {
m_balance += x;
notifyObservers(); // notify observes of time change
}
int get_balance() const {
return m_balance;
}
};
// this wrapper will be inherited and allows you to access the interface of the concrete observable
// all concrete observers should inherit from this class
template <class Observable>
class observer_wrapper
: public observer {
virtual void notify_impl(Observable& x) = 0;
public:
void notify(observable& x) {
notify_impl(static_cast<Observable&>(x));
}
};
// our first clock_observer
class clock_observer1
: public observer_wrapper<clock_observable> {
void notify_impl(clock_observable& x) override {
std::cout << "clock_observer1 says time is " << x.get_time() << std::endl;
}
};
// our second clock_observer
class clock_observer2
: public observer_wrapper<clock_observable> {
void notify_impl(clock_observable& x) override {
std::cout << "clock_observer2 says time is " << x.get_time() << std::endl;
}
};
// our first account_observer
class account_observer1
: public observer_wrapper<account_observable> {
void notify_impl(account_observable& x) override {
std::cout << "account_observer1 says balance is " << x.get_balance() << std::endl;
}
};
// our second account_observer
class account_observer2
: public observer_wrapper<account_observable> {
void notify_impl(account_observable& x) override {
std::cout << "account_observer2 says balance is " << x.get_balance() << std::endl;
}
};
int main() {
auto clock = new clock_observable(100);
auto account = new account_observable(100.0);
observer* clock_obs1 = new clock_observer1();
observer* clock_obs2 = new clock_observer2();
observer* account_obs1 = new account_observer1();
observer* account_obs2 = new account_observer2();
clock->registerObserver(clock_obs1);
clock->registerObserver(clock_obs2);
account->registerObserver(account_obs1);
account->registerObserver(account_obs2);
clock->change_time();
account->deposit_amount(10);
}
As you can see, you do not need to cast every time you create a new observable; the wrapper class does this for you. One issue you may face is registering an observer to the wrong observable; in this case the static_cast would fail but you would get no compilation issues. One way around it is to have the observable expose a string that identifies it and have the observer check that string when it's registering itself. Hope it helps.
You could go with
class SenseStateNode
{
...
virtual ObservableValue& getValue(); //or pointer, comes with different tradeoffs
};
That way, each SenseObservable can return a type derived from ObservableValue. Then, you just have to come up with a usable, generic API for this observable value.
For example, it could be:
class SenseObservable
{
DateTime* asDateTime(); //returns NULL if not a date
float* asFloat(); //returns NULL if not a float
};
The trick is to come with a usable, extensible and generic API for the various observable values. Also, you hve to return them by pointer or reference to not slice them. Then, either the user or the owner has to manage memory.
It may not be the most elegant solution, but the following is an option: define an EventArgs structure that can hold any kind of data, then do a cast in EventHandlers. Here's a snippet I just wrote (not a native speaker of CPP though):
#include <iostream>
#include <map>
#include <vector>
using namespace std;
struct EventArgs;
typedef void (*EventHandler)(EventArgs args);
typedef std::vector<EventHandler> BunchOfHandlers;
typedef std::map<string, BunchOfHandlers> HandlersBySubject;
struct EventArgs
{
void* data;
EventArgs(void* data)
{
this->data = data;
}
};
class AppEvents
{
HandlersBySubject handlersBySubject;
public:
AppEvents()
{
}
void defineSubject(string subject)
{
handlersBySubject[subject] = BunchOfHandlers();
}
void on(string subject, EventHandler handler)
{
handlersBySubject[subject].push_back(handler);
}
void trigger(string subject, EventArgs args)
{
BunchOfHandlers& handlers = handlersBySubject[subject];
for (const EventHandler& handler : handlers)
{
handler(args);
}
}
};
struct FooData
{
int x = 42;
string str = "Test";
};
struct BarData
{
long y = 123;
char c = 'x';
};
void foo_handler_a(EventArgs args)
{
FooData* data = (FooData*)args.data;
cout << "foo_handler_a: " << data->x << " " << data->str << endl;
}
void foo_handler_b(EventArgs args)
{
FooData* data = (FooData*)args.data;
cout << "foo_handler_b: " << data->x << " " << data->str << endl;
}
void bar_handler_a(EventArgs args)
{
BarData* data = (BarData*)args.data;
cout << "bar_handler_a: " << data->y << " " << data->c << endl;
}
void bar_handler_b(EventArgs args)
{
BarData* data = (BarData*)args.data;
cout << "bar_handler_b: " << data->y << " " << data->c << endl;
}
int main()
{
AppEvents* events = new AppEvents();
events->defineSubject("foo");
events->defineSubject("bar");
events->on("foo", foo_handler_a);
events->on("foo", foo_handler_a);
events->on("bar", bar_handler_b);
events->on("bar", bar_handler_b);
events->trigger("foo", EventArgs(new FooData()));
events->trigger("bar", EventArgs(new BarData()));
return 0;
}
Inspired by Backbone events and the general Event Bus pattern.
Difficulty of Observer Pattern in C++ is to handle life-time and un-registration.
You might use the following:
class Observer;
class IObserverNotifier
{
public:
virtual ~IObserverNotifier() = default;
virtual void UnRegister(Observer&) = 0;
};
class Observer
{
public:
explicit Observer() = default;
virtual ~Observer() {
for (auto* abstractObserverNotifier : mAbstractObserverNotifiers)
abstractObserverNotifier->UnRegister(*this);
}
Observer(const Observer&) = delete;
Observer(Observer&&) = delete;
Observer& operator=(const Observer&) = delete;
Observer& operator=(Observer&&) = delete;
void AddObserverNotifier(IObserverNotifier& observerNotifier)
{
mAbstractObserverNotifiers.insert(&observerNotifier);
}
void RemoveObserverNotifier(IObserverNotifier& observerNotifier)
{
mAbstractObserverNotifiers.erase(&observerNotifier);
}
private:
std::set<IObserverNotifier*> mAbstractObserverNotifiers;
};
template<typename ... Params>
class ObserverNotifier : private IObserverNotifier
{
public:
ObserverNotifier() = default;
~ObserverNotifier() {
for (const auto& p : mObserverCallbacks) {
p.first->RemoveObserverNotifier(*this);
}
}
ObserverNotifier(const ObserverNotifier&) = delete;
ObserverNotifier(ObserverNotifier&&) = delete;
ObserverNotifier& operator=(const ObserverNotifier&) = delete;
ObserverNotifier& operator=(ObserverNotifier&&) = delete;
void Register(Observer& observer, std::function<void(Params...)> f) {
mObserverCallbacks.emplace_back(&observer, f);
observer.AddObserverNotifier(*this);
}
void NotifyObservers(Params... args) const
{
for (const auto& p : mObserverCallbacks)
{
const auto& callback = p.second;
callback(args...);
}
}
void UnRegister(Observer& observer) override
{
mObserverCallbacks.erase(std::remove_if(mObserverCallbacks.begin(),
mObserverCallbacks.end(),
[&](const auto& p) { return p.first == &observer;}),
mObserverCallbacks.end());
}
private:
std::vector<std::pair<Observer*, std::function<void(Params...)>>> mObserverCallbacks;
};
And then usage would be something like:
class Sensor
{
public:
void ChangeTime() {
++mTime;
mOnTimeChange.NotifyObservers(mTime);
}
void ChangeTemperature(double delta) {
mTemperature += delta;
mOnTemperatureChange.NotifyObservers(mTemperature);
}
void RegisterTimeChange(Observer& observer, std::function<void(double)> f) { mOnTimeChange.Register(observer, f); }
void RegisterTemperatureChange(Observer& observer, std::function<void(double)> f) { mOnTemperatureChange.Register(observer, f); }
private:
ObserverNotifier<int> mOnTimeChange;
ObserverNotifier<double> mOnTemperatureChange;
int mTime = 0;
double mTemperature = 0;
};
class Ice : public Observer {
public:
void OnTimeChanged(int time) {
mVolume -= mLose;
mOnVolumeChange.NotifyObservers(mVolume);
}
void OnTemperatureChanged(double t) {
if (t <= 0) {
mLose = 0;
} else if (t < 15) {
mLose = 5;
} else {
mLose = 21;
}
}
void RegisterVolumeChange(Observer& observer, std::function<void(double)> f) { mOnVolumeChange.Register(observer, f); }
private:
ObserverNotifier<double> mOnVolumeChange;
double mVolume = 42;
double mLose = 0;
};
class MyObserver : public Observer {
public:
static void OnTimeChange(int t) {
std::cout << "observer says time is " << t << std::endl;
}
static void OnTemperatureChange(double temperature) {
std::cout << "observer says temperature is " << temperature << std::endl;
}
static void OnIceChange(double volume) {
std::cout << "observer says Ice volume is " << volume << std::endl;
}
};
And test it:
int main()
{
Sensor sensor;
Ice ice;
MyObserver observer;
sensor.RegisterTimeChange(observer, &MyObserver::OnTimeChange);
sensor.RegisterTemperatureChange(observer, &MyObserver::OnTemperatureChange);
ice.RegisterVolumeChange(observer, &MyObserver::OnIceChange);
sensor.RegisterTimeChange(ice, [&](int t){ice.OnTimeChanged(t);});
sensor.RegisterTemperatureChange(ice, [&](double t){ice.OnTemperatureChanged(t);});
sensor.ChangeTemperature(0);
sensor.ChangeTime();
sensor.ChangeTemperature(10.3);
sensor.ChangeTime();
sensor.ChangeTime();
sensor.ChangeTemperature(42.1);
sensor.ChangeTime();
}
Demo
I realize that I'll most likely get a lot of "you shouldn't do that because..." answers and they are most welcome and I'll probably totally agree with your reasoning, but I'm curious as to whether this is possible (as I envision it).
Is it possible to define a type of dynamic/generic object in C++ where I can dynamically create properties that are stored and retrieved in a key/value type of system? Example:
MyType myObject;
std::string myStr("string1");
myObject.somethingIJustMadeUp = myStr;
Note that obviously, somethingIJustMadeUp is not actually a defined member of MyType but it would be defined dynamically. Then later I could do something like:
if(myObject.somethingIJustMadeUp != NULL);
or
if(myObject["somethingIJustMadeUp"]);
Believe me, I realize just how terrible this is, but I'm still curious as to whether it's possible and if it can be done in a way that minimizes it's terrible-ness.
C++Script is what you want!
Example:
#include <cppscript>
var script_main(var args)
{
var x = object();
x["abc"] = 10;
writeln(x["abc"]);
return 0;
}
and it's a valid C++.
You can do something very similar with std::map:
std::map<std::string, std::string> myObject;
myObject["somethingIJustMadeUp"] = myStr;
Now if you want generic value types, then you can use boost::any as:
std::map<std::string, boost::any> myObject;
myObject["somethingIJustMadeUp"] = myStr;
And you can also check if a value exists or not:
if(myObject.find ("somethingIJustMadeUp") != myObject.end())
std::cout << "Exists" << std::endl;
If you use boost::any, then you can know the actual type of value it holds, by calling .type() as:
if (myObject.find("Xyz") != myObject.end())
{
if(myObject["Xyz"].type() == typeid(std::string))
{
std::string value = boost::any_cast<std::string>(myObject["Xyz"]);
std::cout <<"Stored value is string = " << value << std::endl;
}
}
This also shows how you can use boost::any_cast to get the value stored in object of boost::any type.
This can be a solution, using RTTI polymorphism
#include <map>
#include <memory>
#include <iostream>
#include <stdexcept>
namespace dynamic
{
template<class T, class E>
T& enforce(T& z, const E& e)
{ if(!z) throw e; return z; }
template<class T, class E>
const T& enforce(const T& z, const E& e)
{ if(!z) throw e; return z; }
template<class Derived>
class interface;
class aggregate;
//polymorphic uncopyable unmovable
class property
{
public:
property() :pagg() {}
property(const property&) =delete;
property& operator=(const property&) =delete;
virtual ~property() {} //just make it polymorphic
template<class Interface>
operator Interface*() const
{
if(!pagg) return 0;
return *pagg; //let the aggregate do the magic!
}
aggregate* get_aggregate() const { return pagg; }
private:
template<class Derived>
friend class interface;
friend class aggregate;
static unsigned gen_id()
{
static unsigned x=0;
return enforce(++x,std::overflow_error("too many ids"));
}
template<class T>
static unsigned id_of()
{ static unsigned z = gen_id(); return z; }
aggregate* pagg;
};
template<class Derived>
class interface: public property
{
public:
interface() {}
virtual ~interface() {}
unsigned id() const { return property::id_of<Derived>(); }
};
//sealed movable
class aggregate
{
public:
aggregate() {}
aggregate(const aggregate&) = delete;
aggregate& operator=(const aggregate&) = delete;
aggregate(aggregate&& s) :m(std::move(s.m)) {}
aggregate& operator=(aggregate&& s)
{ if(this!=&s) { m.clear(); std::swap(m, s.m); } return *this; }
template<class Interface>
aggregate& add_interface(interface<Interface>* pi)
{
m[pi->id()] = std::unique_ptr<property>(pi);
static_cast<property*>(pi)->pagg = this;
return *this;
}
template<class Inteface>
aggregate& remove_interface()
{ m.erase[property::id_of<Inteface>()]; return *this; }
void clear() { m.clear(); }
bool empty() const { return m.empty(); }
explicit operator bool() const { return empty(); }
template<class Interface>
operator Interface*() const
{
auto i = m.find(property::id_of<Interface>());
if(i==m.end()) return nullptr;
return dynamic_cast<Interface*>(i->second.get());
}
template<class Interface>
friend aggregate& operator<<(aggregate& s, interface<Interface>* pi)
{ return s.add_interface(pi); }
private:
typedef std::map<unsigned, std::unique_ptr<property> > map_t;
map_t m;
};
}
/// this is a sample on how it can workout
class interface_A: public dynamic::interface<interface_A>
{
public:
virtual void methodA1() =0;
virtual void methodA2() =0;
};
class impl_A1: public interface_A
{
public:
impl_A1() { std::cout<<"creating impl_A1["<<this<<"]"<<std::endl; }
virtual ~impl_A1() { std::cout<<"deleting impl_A1["<<this<<"]"<<std::endl; }
virtual void methodA1() { std::cout<<"interface_A["<<this<<"]::methodA1 on impl_A1 in aggregate "<<get_aggregate()<<std::endl; }
virtual void methodA2() { std::cout<<"interface_A["<<this<<"]::methodA2 on impl_A1 in aggregate "<<get_aggregate()<<std::endl; }
};
class impl_A2: public interface_A
{
public:
impl_A2() { std::cout<<"creating impl_A2["<<this<<"]"<<std::endl; }
virtual ~impl_A2() { std::cout<<"deleting impl_A2["<<this<<"]"<<std::endl; }
virtual void methodA1() { std::cout<<"interface_A["<<this<<"]::methodA1 on impl_A2 in aggregate "<<get_aggregate()<<std::endl; }
virtual void methodA2() { std::cout<<"interface_A["<<this<<"]::methodA2 on impl_A2 in aggregate "<<get_aggregate()<<std::endl; }
};
class interface_B: public dynamic::interface<interface_B>
{
public:
virtual void methodB1() =0;
virtual void methodB2() =0;
};
class impl_B1: public interface_B
{
public:
impl_B1() { std::cout<<"creating impl_B1["<<this<<"]"<<std::endl; }
virtual ~impl_B1() { std::cout<<"deleting impl_B1["<<this<<"]"<<std::endl; }
virtual void methodB1() { std::cout<<"interface_B["<<this<<"]::methodB1 on impl_B1 in aggregate "<<get_aggregate()<<std::endl; }
virtual void methodB2() { std::cout<<"interface_B["<<this<<"]::methodB2 on impl_B1 in aggregate "<<get_aggregate()<<std::endl; }
};
class impl_B2: public interface_B
{
public:
impl_B2() { std::cout<<"creating impl_B2["<<this<<"]"<<std::endl; }
virtual ~impl_B2() { std::cout<<"deleting impl_B2["<<this<<"]"<<std::endl; }
virtual void methodB1() { std::cout<<"interface_B["<<this<<"]::methodB1 on impl_B2 in aggregate "<<get_aggregate()<<std::endl; }
virtual void methodB2() { std::cout<<"interface_B["<<this<<"]::methodB2 on impl_B2 in aggregate "<<get_aggregate()<<std::endl; }
};
int main()
{
dynamic::aggregate agg1;
agg1 << new impl_A1 << new impl_B1;
dynamic::aggregate agg2;
agg2 << new impl_A2 << new impl_B2;
interface_A* pa = 0;
interface_B* pb = 0;
pa = agg1; if(pa) { pa->methodA1(); pa->methodA2(); }
pb = *pa; if(pb) { pb->methodB1(); pb->methodB2(); }
pa = agg2; if(pa) { pa->methodA1(); pa->methodA2(); }
pb = *pa; if(pb) { pb->methodB1(); pb->methodB2(); }
agg2 = std::move(agg1);
pa = agg2; if(pa) { pa->methodA1(); pa->methodA2(); }
pb = *pa; if(pb) { pb->methodB1(); pb->methodB2(); }
return 0;
}
tested with MINGW4.6 on WinXPsp3
Yes it is terrible. :D
It had been done numerous times to different extents and success levels.
QT has Qobject from which everything related to them decends.
MFC has CObject from which eveything decends as does C++.net
I don't know if there is a way to make it less bad, I guess if you avoid multiple inheritance like the plague (which is otherwise a useful language feature) and reimplement the stdlib it would be better. But really if that is what you are after you are probably using the wrong language for the task.
Java and C# are much better suited to this style of programming.
#note if I have read your question wrong just delete this answer.
Check out Dynamic C++
Following code does NOT work, but it expresses well what I wish to do. There is a problem with the template struct container, which I think SHOULD work because it's size is known for any template argument.
class callback {
public:
// constructs a callback to a method in the context of a given object
template<class C>
callback(C& object, void (C::*method)())
: ptr.o(object), ptr.m(method) {}
// calls the method
void operator()() {
(&ptr.o ->* ptr.m) ();
}
private:
// container for the pointer to method
template<class C>
struct {
C& o;
void (C::*m)();
} ptr;
};
Is there any way to do such a thing? I mean have a non-template class callback which wraps any pointer to method?
Thanks C++ gurus!
Edit:
Please see this:
Callback in C++, template member? (2)
This is a complete working example that does what I think you're trying to do:
#include <iostream>
#include <memory>
// INTERNAL CLASSES
class CallbackSpecBase
{
public:
virtual ~CallbackSpecBase() {}
virtual void operator()() const = 0;
};
template<class C>
class CallbackSpec : public CallbackSpecBase
{
public:
CallbackSpec(C& o, void (C::*m)()) : obj(o), method(m) {}
void operator()() const { (&obj->*method)(); }
private:
C& obj;
void (C::*method)();
};
// PUBLIC API
class Callback
{
public:
Callback() {}
void operator()() { (*spec)(); }
template<class C>
void set(C& o, void (C::*m)()) { spec.reset(new CallbackSpec<C>(o, m)); }
private:
std::auto_ptr<CallbackSpecBase> spec;
};
// TEST CODE
class Test
{
public:
void foo() { std::cout << "Working" << std::endl; }
void bar() { std::cout << "Like a charm" << std::endl; }
};
int main()
{
Test t;
Callback c;
c.set(t, &Test::foo);
c();
c.set(t, &Test::bar);
c();
}
I recently implemented this:
#define UNKOWN_ITEM 0xFFFFFFFF
template <typename TArg>
class DelegateI
{
public:
virtual void operator()(TArg& a)=0;
virtual bool equals(DelegateI<TArg>* d)=0;
};
template <class TArg>
class Event
{
public:
Event()
{
}
~Event()
{
for (size_t x=0; x<m_vDelegates.size(); x++)
delete m_vDelegates[x];
}
void operator()(TArg& a)
{
for (size_t x=0; x<m_vDelegates.size(); x++)
{
m_vDelegates[x]->operator()(a);
}
}
void operator+=(DelegateI<TArg>* d)
{
if (findInfo(d) != UNKOWN_ITEM)
{
delete d;
return;
}
m_vDelegates.push_back(d);
}
void operator-=(DelegateI<TArg>* d)
{
uint32 index = findInfo(d);
delete d;
if (index == UNKOWN_ITEM)
return;
m_vDelegates.erase(m_vDelegates.begin()+index);
}
protected:
int findInfo(DelegateI<TArg>* d)
{
for (size_t x=0; x<m_vDelegates.size(); x++)
{
if (m_vDelegates[x]->equals(d))
return (int)x;
}
return UNKOWN_ITEM;
}
private:
std::vector<DelegateI<TArg>*> m_vDelegates;
};
template <class TObj, typename TArg>
class ObjDelegate : public DelegateI<TArg>
{
public:
typedef void (TObj::*TFunct)(TArg&);
ObjDelegate(TObj* t, TFunct f)
{
m_pObj = t;
m_pFunct = f;
}
virtual bool equals(DelegateI<TArg>* di)
{
ObjDelegate<TObj,TArg> *d = dynamic_cast<ObjDelegate<TObj,TArg>*>(di);
if (!d)
return false;
return ((m_pObj == d->m_pObj) && (m_pFunct == d->m_pFunct));
}
virtual void operator()(TArg& a)
{
if (m_pObj && m_pFunct)
{
(*m_pObj.*m_pFunct)(a);
}
}
TFunct m_pFunct; // pointer to member function
TObj* m_pObj; // pointer to object
};
template <typename TArg>
class FunctDelegate : public DelegateI<TArg>
{
public:
typedef void (*TFunct)(TArg&);
FunctDelegate(TFunct f)
{
m_pFunct = f;
}
virtual bool equals(DelegateI<TArg>* di)
{
FunctDelegate<TArg> *d = dynamic_cast<FunctDelegate<TArg>*>(di);
if (!d)
return false;
return (m_pFunct == d->m_pFunct);
}
virtual void operator()(TArg& a)
{
if (m_pFunct)
{
(*m_pFunct)(a);
}
}
TFunct m_pFunct; // pointer to member function
};
template <typename TArg>
class ProxieDelegate : public DelegateI<TArg>
{
public:
ProxieDelegate(Event<TArg>* e)
{
m_pEvent = e;
}
virtual bool equals(DelegateI<TArg>* di)
{
ProxieDelegate<TArg> *d = dynamic_cast<ProxieDelegate<TArg>*>(di);
if (!d)
return false;
return (m_pEvent == d->m_pEvent);
}
virtual void operator()(TArg& a)
{
if (m_pEvent)
{
(*m_pEvent)(a);
}
}
Event<TArg>* m_pEvent; // pointer to member function
};
template <class TObj, class TArg>
DelegateI<TArg>* delegate(TObj* pObj, void (TObj::*NotifyMethod)(TArg&))
{
return new ObjDelegate<TObj, TArg>(pObj, NotifyMethod);
}
template <class TArg>
DelegateI<TArg>* delegate(void (*NotifyMethod)(TArg&))
{
return new FunctDelegate<TArg>(NotifyMethod);
}
template <class TArg>
DelegateI<TArg>* delegate(Event<TArg>* e)
{
return new ProxieDelegate<TArg>(e);
}
use it like so:
define:
Event<SomeClass> someEvent;
enlist callbacks:
someEvent += delegate(&someFunction);
someEvent += delegate(classPtr, &class::classFunction);
someEvent += delegate(&someOtherEvent);
trigger:
someEvent(someClassObj);
You can also make your own delegates and overide what they do. I made a couple of others with one being able to make sure the event triggers the function in the gui thread instead of the thread it was called.
You need to use polymorphism. Use an abstract base class with a virtual invocation method (operator() if you please), with a templated descendant that implements the virtual method using the correct type signature.
The way you have it now, the data holding the type is templated, but the code meant to invoke the method and pass the object isn't. That won't work; the template type parameters need to flow through both construction and invocation.
#Barry Kelly
#include <iostream>
class callback {
public:
virtual void operator()() {};
};
template<class C>
class callback_specialization : public callback {
public:
callback_specialization(C& object, void (C::*method)())
: o(object), m(method) {}
void operator()() {
(&o ->* m) ();
}
private:
C& o;
void (C::*m)();
};
class X {
public:
void y() { std::cout << "ok\n"; }
};
int main() {
X x;
callback c(callback_specialization<X>(x, &X::y));
c();
return 0;
}
I tried this, but it does not work (print "ok")... why?
Edit:
As Neil Butterworth mentioned, polymorphism works through pointers and references,
X x;
callback& c = callback_specialization<X>(x, &X::y);
c();
Edit:
With this code, I get an error:
invalid initialization of non-const reference of type ‘callback&’
from a temporary of type ‘callback_specialization<X>’
Now, I don't understand that error, but if I replace callback& c with const callback& c and virtual void operator()() with virtual void operator()() const, it works.
You didn't say what errors you found, but I found that this worked:
template<typename C>
class callback {
public:
// constructs a callback to a method in the context of a given object
callback(C& object, void (C::*method)())
: ptr(object,method) {}
// calls the method
void operator()() {
(&ptr.o ->* ptr.m) ();
}
private:
// container for the pointer to method
// template<class C>
struct Ptr{
Ptr(C& object, void (C::*method)()): o(object), m(method) {}
C& o;
void (C::*m)();
} ptr;
};
Note that Ptr needs a constructor as it has a reference member.
You could do without struct Ptr and have the raw members.
Tested with VS2008 express.
Improving the OP's answer:
int main() {
X x;
callback_specialization<X> c(x, &X::y);
callback& ref(c);
c();
return 0;
}
This prints "ok".
Tested on VS2008 express.
Please see this
Callback in C++, template member? (2)