Multiple variable template specializations with std::enable_if - c++

I'm trying to concisely define a variable template with these effective values:
// (template<typename T> constexpr T EXP = std::numeric_limits<T>::max_exponent / 2;)
// float and double scalar definitions:
const double huge = std::scalbn(1, EXP<double>);
const float huge = std::scalbn(1, EXP<float>);
// SIMD vector definitions:
const Vec8f huge = Vec8f(huge<float>); // vector of 8 floats
const Vec8d huge = Vec8d(huge<double>); // vector of 8 doubles
const Vec4f huge = Vec4f(huge<float>); // vector of 4 floats
// Integral types should fail to compile
The VecXX vector definitions (SIMD vectors) need to use the corresponding scalar type as shown (e.g. huge<float> for vector of floats). This is available as VecXX::value_type or through a type traits-style template class (VectorTraits<VecXX>::value_type).
Ideally I think I'd have something like:
// Primary. What should go here? I want all other types to not compile
template<typename T, typename Enabler = void>
const T huge = T{ 0 };
// Scalar specialization for floating point types:
template<typename T>
const T huge<T> = std::enable_if_t<std::is_floating_point<T>::value, T>(std::scalbn(1, EXP<T>));
// Vector specialization, uses above declaration for corresponding FP type
template<typename T>
const T huge<T> = std::enable_if_t<VectorTraits<T>::is_vector, T>(huge<VectorTraits<T>::scalar_type>);
but I can't quite figure out a working version (above fails with "redefinition of const T huge<T>"). What's the best way to do this?

Not exactly what you asked but I hope the following example can show you how to use SFINAE to specialize a template variable
template <typename T, typename = void>
constexpr T huge = T{0};
template <typename T>
constexpr T huge<T, std::enable_if_t<std::is_floating_point<T>{}>> = T{1};
template <typename T>
constexpr T huge<std::vector<T>> = T{2};
You can check it with
std::cout << huge<int> << std::endl;
std::cout << huge<long> << std::endl;
std::cout << huge<float> << std::endl;
std::cout << huge<double> << std::endl;
std::cout << huge<long double> << std::endl;
std::cout << huge<std::vector<int>> << std::endl;

Leaving #max66's answer as the accepted one for the credit, but here's the specific solution I wound up with:
struct _VectorTraits { static constexpr bool is_vector = true; };
template<class T> struct VectorTraits : _VectorTraits { static constexpr bool is_vector = false; };
template<> struct VectorTraits<Vec4f> : _VectorTraits { typedef float value_type; };
template<> struct VectorTraits<Vec8f> : _VectorTraits { typedef float value_type; };
template<> struct VectorTraits<Vec4d> : _VectorTraits { typedef double value_type; };
template<typename T> using EnableIfFP = std::enable_if_t<std::is_floating_point<T>::value>;
template<typename T> using EnableIfVec = std::enable_if_t<VectorTraits<T>::is_vector>;
template<typename T> constexpr T EXP = std::numeric_limits<T>::max_exponent / 2;
// Actual variable template, finally:
template<typename T, typename Enabler = void> const T huge = T{ 0 };
template<typename T> const T huge<T, EnableIfFP<T> > = std::scalbn(1, EXP<T>);
template<typename T> const T huge<T, EnableIfVec<T> > = T{ huge<typename VectorTraits<T>::value_type> };
This could still be improved I think:
It's verbose. T appears 4 times in each specialization's left-hand side.
Integral types (e.g. huge<uint32_t>) still compile with a nonsense 0 value. I'd rather them not compile.

Related

Partial class template specialisation for multiple types

I have a class which allows for a vector to be created holding any type or class. However I'd like to add additional functionality for numerical types.
template <>
class Vec<double> : public VecBase<double>
{
// == METHODS ==
public:
// -- Constructors & Destructors --
explicit Vec(const unsigned long long t_size);
virtual ~Vec();
// -- Operators --
friend Vec<double> operator+(const Vec<double>&, const double);
// -- Methods --
double sum();
... etc.
I have partially specialised the class template to allow overloading of mathematical operators for double specialisation. I'd now like to extend this specialisation to int as well, but rather than copy the specialisation replacing double with int, is there a way to add it into the specialisation list?
That is, is there any way to allow for:
template<>
class Vec<double (or) int>
Cheers!
I suppose you can use a boolean default value, like in foo struct in the following example
#include <iostream>
template <typename>
struct isSpecialType
{ static constexpr bool value { false }; };
template <>
struct isSpecialType<int>
{ static constexpr bool value { true }; };
template <>
struct isSpecialType<double>
{ static constexpr bool value { true }; };
template <typename T, bool = isSpecialType<T>::value>
struct foo;
template <typename T>
struct foo<T, true>
{ static constexpr bool value { true }; };
template <typename T>
struct foo<T, false>
{ static constexpr bool value { false }; };
int main()
{
std::cout << "- void value: " << foo<void>::value << std::endl;
std::cout << "- bool value: " << foo<bool>::value << std::endl;
std::cout << "- int value: " << foo<int>::value << std::endl;
std::cout << "- double value: " << foo<double>::value << std::endl;
}
The idea is define a sort of type traits (isSpecialType) to choose the selected types (int and double, in your example) with a booleand value that is false in the generic implementation and true in the specializations.
template <typename>
struct isSpecialType
{ static constexpr bool value { false }; };
template <>
struct isSpecialType<int>
{ static constexpr bool value { true }; };
template <>
struct isSpecialType<double>
{ static constexpr bool value { true }; };
Next you have to declare the foo struct (class Vec, in your question) with a supplemental bool template value with the isSpecialType<T>::value default value
template <typename T, bool = isSpecialType<T>::value>
struct foo;
Last, you have to implement two partially specialized version of foo: the first one with the boolean true value
template <typename T>
struct foo<T, true>
{ static constexpr bool value { true }; };
corresponding to the specialized version of your Vec; the one with the false boolean value
template <typename T>
struct foo<T, false>
{ static constexpr bool value { false }; };
corresponding to the generic version of your Vec.
Another point: my example is C++11 or newer code; if you want a C++98 version, you have only to define the bool values as const (instead constexpr) and initialize they whit the C++98 style; I mean
static bool const bool value = true;
instead of
static constexpr bool value { true };
There sure is but you might find this already done in http://en.cppreference.com/w/cpp/numeric/valarray
have a look at std::enable_if and std::is_integral and std::is_floating_point. (copied from cplusplus.com)
// enable_if example: two ways of using enable_if
#include <iostream>
#include <type_traits>
// 1. the return type (bool) is only valid if T is an integral type:
template <class T>
typename std::enable_if<std::is_integral<T>::value,bool>::type
is_odd (T i) {return bool(i%2);}
// 2. the second template argument is only valid if T is an integral type:
template < class T,
class = typename std::enable_if<std::is_integral<T>::value>::type>
bool is_even (T i) {return !bool(i%2);}
int main() {
short int i = 1; // code does not compile if type of i is not integral
std::cout << std::boolalpha;
std::cout << "i is odd: " << is_odd(i) << std::endl;
std::cout << "i is even: " << is_even(i) << std::endl;
return 0;
}
I have same idea with #max66, but you can use a helper function to do this a bit easier.
#include <iostream>
#include <type_traits>
// helper
template <typename ...Ts>
struct allowed_types
{
template <typename T>
using check = std::disjunction<std::is_same<T, Ts>...>;
template <typename T>
inline static constexpr bool check_v = check<T>::value;
};
// usage
template <typename T, bool = allowed_types<double, float>::check_v<T>>
struct foo;
template <typename T>
struct foo<T, true> // for double and float
{
inline static constexpr size_t value = 1;
};
template <typename T>
struct foo<T, false> // for other types
{
inline static constexpr size_t value = 2;
};
int main()
{
std::cout << foo<float>::value << '\n'; // 1
std::cout << foo<double>::value << '\n'; // 1
std::cout << foo<int>::value << '\n'; // 2
std::cout << foo<char>::value << '\n'; // 2
}
Just put any set of types you need.
For example:
template <typename T, bool = allowed_types<char, int, std::vector<int>>::check_v<T>>
EDIT:
If you need to split your specializations more than on 2 groups, then you need to use enable_if approach.
With helper from above it could be written like this:
// default, for any type
template <typename T, typename = void>
struct foo
{
inline static constexpr size_t value = 1;
};
// for double and float
template <typename T>
struct foo<T, std::enable_if_t<allowed_types<double, float>::check_v<T>>>
{
inline static constexpr size_t value = 2;
};
// for int and char
template <typename T>
struct foo<T, std::enable_if_t<allowed_types<int, char>::check_v<T>>>
{
inline static constexpr size_t value = 3;
};
int main()
{
std::cout << foo<bool>::value << '\n'; // 1
std::cout << foo<double>::value << '\n'; // 2
std::cout << foo<float>::value << '\n'; // 2
std::cout << foo<int>::value << '\n'; // 3
std::cout << foo<char>::value << '\n'; // 3
}

Computing the type of a function pointer

Consider the following:
template<typename T>
struct S
{
typedef M< &T::foo > MT;
}
This would work for:
S<Widget> SW;
where Widget::foo() is some function
How would I modify the definition of struct S to allow the following instead:
S<Widget*> SWP;
What you need is the following type transformation.
given T, return T
given T *, return T
It so happens that the standard library already has implemented this for us in std::remove_pointer (though it's not hard to do yourself).
With this, you can then write
using object_type = std::remove_pointer_t<T>;
using return_type = /* whatever foo returns */;
using MT = M<object_type, return_type, &object_type::foo>;
Regarding your comment that you also want to work with smart pointers, we have to re-define the type transformation.
given a smart pointer type smart_ptr<T>, return smart_ptr<T>::element_type, which should be T
given a pointer type T *, return T
otherwise, given T, return T itself
For this, we'll have to code our own meta-function. At least, I'm not aware of anything in the standard library that would help here.
We start by defining the primary template (the “otherwise” case).
template <typename T, typename = void>
struct unwrap_obect_type { using type = T; };
The second (anonymous) type parameter that is defaulted to void will be of use later.
For (raw) pointers, we provide the following partial specialization.
template <typename T>
struct unwrap_obect_type<T *, void> { using type = T; };
If we'd stop here, we'd basically get std::remove_pointer. But we'll add an additional partial specialization for smart pointers. Of course, we'll first have to define what a “smart pointer” is. For the purpose of this example, we'll treat every type with a nested typedef named element_type as a smart pointer. Adjust this definition as you see fit.
template <typename T>
struct unwrap_obect_type
<
T,
std::conditional_t<false, typename T::element_type, void>
>
{
using type = typename T::element_type;
};
The second type parameter std::conditional_t<false, typename T::element_type, void> is a convoluted way to simulate std::void_t in C++14. The idea is that we have the following partial type function.
given a type T with a nested typedef named element_type, return void
otherwise, trigger a substitution failure
Therefore, if we are dealing with a smart pointer, we'll get a better match than the primary template and otherwise, SFINAE will remove this partial specialization from further consideration.
Here is a working example. T.C. has suggested using std::mem_fn to invoke the member function. This makes the code a lot cleaner than my initial example.
#include <cstddef>
#include <functional>
#include <iostream>
#include <memory>
#include <string>
#include <utility>
template <typename ObjT, typename RetT, RetT (ObjT::*Pmf)() const noexcept>
struct M
{
template <typename ThingT>
static RetT
call(ThingT&& thing) noexcept
{
auto wrapper = std::mem_fn(Pmf);
return wrapper(std::forward<ThingT>(thing));
}
};
template <typename T, typename = void>
struct unwrap_obect_type { using type = T; };
template <typename T>
struct unwrap_obect_type<T *, void> { using type = T; };
template <typename T>
struct unwrap_obect_type<T, std::conditional_t<false, typename T::element_type, void>> { using type = typename T::element_type; };
template <typename T>
struct S
{
template <typename ThingT>
void
operator()(ThingT&& thing) const noexcept
{
using object_type = typename unwrap_obect_type<T>::type;
using id_caller_type = M<object_type, int, &object_type::id>;
using name_caller_type = M<object_type, const std::string&, &object_type::name>;
using name_length_caller_type = M<object_type, std::size_t, &object_type::name_length>;
std::cout << "id: " << id_caller_type::call(thing) << "\n";
std::cout << "name: " << name_caller_type::call(thing) << "\n";
std::cout << "name_length: " << name_length_caller_type::call(thing) << "\n";
}
};
class employee final
{
private:
int id_ {};
std::string name_ {};
public:
employee(int id, std::string name) : id_ {id}, name_ {std::move(name)}
{
}
int id() const noexcept { return this->id_; }
const std::string& name() const noexcept { return this->name_; }
std::size_t name_length() const noexcept { return this->name_.length(); }
};
int
main()
{
const auto bob = std::make_shared<employee>(100, "Smart Bob");
const auto s_object = S<employee> {};
const auto s_pointer = S<employee *> {};
const auto s_smart_pointer = S<std::shared_ptr<employee>> {};
s_object(*bob);
std::cout << "\n";
s_pointer(bob.get());
std::cout << "\n";
s_smart_pointer(bob);
}

Associating an array with a variadic template

I'm now learning a little about templates and templates in C++11, C++14 and C++1z. I'm trying to write a variadic class template with an inside class that will associate an int to every template argument - and have a constexpr method that returns its array representation.
Let's say that I have ensured that the template cannot receive two of the same type as an argument. I was thinking about doing it somewhat like this:
template <typename... Types>
struct MyVariadicTemplate {
//we know that all types in Types... are different
template <int... Values>
struct MyInnerTemplate {
//I need to make sure that sizeof...(Values) == sizeof...(Types)
constexpr std::array<int, sizeof...(Values)> to_array() {
std::array<int, sizeof...(Values)> result = {Values...};
return result;
// this is only valid since C++14, as far as I know
}
};
};
this code should be valid (if it's not, I'd love to know why). Now, I'd like to add another inner template:
template <typedef Type>
struct AnotherInnerTemplate {};
that has a public typedef, which represents MyInnerTemplate with one on the position of Type in Types... and zeros elsewhere - and here I'm lost. I don't know how to proceed
I would appreciate any hint on how that can be done - and if I'm heading towards the wrong direction, I hope somebody can give me a hint on how to do that.
I think what you're looking for is something like this.
#include <array>
#include <cstddef>
#include <iostream>
#include <type_traits>
template <typename NeedleT, typename... HaystackTs>
constexpr auto get_type_index_mask() noexcept
{
constexpr auto N = sizeof...(HaystackTs);
return std::array<bool, N> {
(std::is_same<NeedleT, HaystackTs>::value)...
};
}
template <typename T, std::size_t N>
constexpr std::size_t ffs(const std::array<T, N>& array) noexcept
{
for (auto i = std::size_t {}; i < N; ++i)
{
if (array[i])
return i;
}
return N;
}
int
main()
{
const auto mask = get_type_index_mask<float, bool, int, float, double, char>();
for (const auto& bit : mask)
std::cout << bit;
std::cout << "\n";
std::cout << "float has index " << ffs(mask) << "\n";
}
Output:
00100
float has index 2
The magic happens in the parameter pack expansion
(std::is_same<NeedleT, HaystackTs>::value)...
where you test each type in HaystackTs against NeedleT. You might want to apply std::decay to either type if you want to consider, say, const int and int the same type.
template <int size, int... Values> struct AnotherImpl {
using Type = typename AnotherImpl<size - 1, Values..., 0>::Type;
};
template <int... Values> struct AnotherImpl<0, Values...> {
using Type = Inner<Values...>;
};
template <class T> struct Another {
using Type = typename AnotherImpl<sizeof...(Types) - 1, 1>::Type;
};
Full:
template <class... Types> struct My {
template <int... Values> struct Inner {
constexpr std::array<int, sizeof...(Values)> to_array() {
return std::array<int, sizeof...(Values)>{Values...};
}
};
template <int size, int... Values> struct AnotherImpl {
using Type = typename AnotherImpl<size - 1, Values..., 0>::Type;
};
template <int... Values> struct AnotherImpl<0, Values...> {
using Type = Inner<Values...>;
};
template <class T> struct Another {
using Type = typename AnotherImpl<sizeof...(Types) - 1, 1>::Type;
};
};
auto main() -> int {
My<int, float, char>::Another<int>::Type s;
auto a = s.to_array();
for (auto e : a) {
cout << e << " ";
}
cout << endl;
return 0;
}
prints:
1 0 0
Is this what you want?

Generating one class member per variadic template argument

I have a template class where each template argument stands for one type of value the internal computation can handle. Templates (instead of function overloading) are needed because the values are passed as boost::any and their types are not clear before runtime.
To properly cast to the correct types, I would like to have a member list for each variadic argument type, something like this:
template<typename ...AcceptedTypes> // e.g. MyClass<T1, T2>
class MyClass {
std::vector<T1> m_argumentsOfType1;
std::vector<T2> m_argumentsOfType2; // ...
};
Or alternatively, I'd like to store the template argument types in a list, as to do some RTTI magic with it (?). But how to save them in a std::initializer_list member is also unclear to me.
Thanks for any help!
As you have already been hinted, the best way is to use a tuple:
template<typename ...AcceptedTypes> // e.g. MyClass<T1, T2>
class MyClass {
std::tuple<std::vector<AcceptedTypes>...> vectors;
};
This is the only way to multiply the "fields" because you cannot magically make it spell up the field names. Another important thing may be to get some named access to them. I guess that what you're trying to achieve is to have multiple vectors with unique types, so you can have the following facility to "search" for the correct vector by its value type:
template <class T1, class T2>
struct SameType
{
static const bool value = false;
};
template<class T>
struct SameType<T, T>
{
static const bool value = true;
};
template <typename... Types>
class MyClass
{
public:
typedef std::tuple<vector<Types>...> vtype;
vtype vectors;
template<int N, typename T>
struct VectorOfType: SameType<T,
typename std::tuple_element<N, vtype>::type::value_type>
{ };
template <int N, class T, class Tuple,
bool Match = false> // this =false is only for clarity
struct MatchingField
{
static vector<T>& get(Tuple& tp)
{
// The "non-matching" version
return MatchingField<N+1, T, Tuple,
VectorOfType<N+1, T>::value>::get(tp);
}
};
template <int N, class T, class Tuple>
struct MatchingField<N, T, Tuple, true>
{
static vector<T>& get(Tuple& tp)
{
return std::get<N>(tp);
}
};
template <typename T>
vector<T>& access()
{
return MatchingField<0, T, vtype,
VectorOfType<0, T>::value>::get(vectors);
}
};
Here is the testcase so you can try it out:
int main( int argc, char** argv )
{
int twelf = 12.5;
typedef reference_wrapper<int> rint;
MyClass<float, rint> mc;
vector<rint>& i = mc.access<rint>();
i.push_back(twelf);
mc.access<float>().push_back(10.5);
cout << "Test:\n";
cout << "floats: " << mc.access<float>()[0] << endl;
cout << "ints: " << mc.access<rint>()[0] << endl;
//mc.access<double>();
return 0;
}
If you use any type that is not in the list of types you passed to specialize MyClass (see this commented-out access for double), you'll get a compile error, not too readable, but gcc at least points the correct place that has caused the problem and at least such an error message suggests the correct cause of the problem - here, for example, if you tried to do mc.access<double>():
error: ‘value’ is not a member of ‘MyClass<float, int>::VectorOfType<2, double>’
An alternate solution that doesn't use tuples is to use CRTP to create a class hierarchy where each base class is a specialization for one of the types:
#include <iostream>
#include <string>
template<class L, class... R> class My_class;
template<class L>
class My_class<L>
{
public:
protected:
L get()
{
return val;
}
void set(const L new_val)
{
val = new_val;
}
private:
L val;
};
template<class L, class... R>
class My_class : public My_class<L>, public My_class<R...>
{
public:
template<class T>
T Get()
{
return this->My_class<T>::get();
}
template<class T>
void Set(const T new_val)
{
this->My_class<T>::set(new_val);
}
};
int main(int, char**)
{
My_class<int, double, std::string> c;
c.Set<int>(4);
c.Set<double>(12.5);
c.Set<std::string>("Hello World");
std::cout << "int: " << c.Get<int>() << "\n";
std::cout << "double: " << c.Get<double>() << "\n";
std::cout << "string: " << c.Get<std::string>() << std::endl;
return 0;
}
One way to do such a thing, as mentioned in πάντα-ῥεῖ's comment is to use a tuple. What he didn't explain (probably to save you from yourself) is how that might look.
Here is an example:
using namespace std;
// define the abomination
template<typename...Types>
struct thing
{
thing(std::vector<Types>... args)
: _x { std::move(args)... }
{}
void print()
{
do_print_vectors(std::index_sequence_for<Types...>());
}
private:
template<std::size_t... Is>
void do_print_vectors(std::index_sequence<Is...>)
{
using swallow = int[];
(void)swallow{0, (print_one(std::get<Is>(_x)), 0)...};
}
template<class Vector>
void print_one(const Vector& v)
{
copy(begin(v), end(v), ostream_iterator<typename Vector::value_type>(cout, ","));
cout << endl;
}
private:
tuple<std::vector<Types>...> _x;
};
// test it
BOOST_AUTO_TEST_CASE(play_tuples)
{
thing<int, double, string> t {
{ 1, 2, 3, },
{ 1.1, 2.2, 3.3 },
{ "one"s, "two"s, "three"s }
};
t.print();
}
expected output:
1,2,3,
1.1,2.2,3.3,
one,two,three,
There is a proposal to allow this kind of expansion, with the intuitive syntax: P1858R1 Generalized pack declaration and usage. You can also initialize the members and access them by index. You can even support structured bindings by writing using... tuple_element = /*...*/:
template <typename... Ts>
class MyClass {
std::vector<Ts>... elems;
public:
using... tuple_element = std::vector<Ts>;
MyClass() = default;
explicit MyClass(std::vector<Ts>... args) noexcept
: elems(std::move(args))...
{
}
template <std::size_t I>
requires I < sizeof...(Ts)
auto& get() noexcept
{
return elems...[I];
}
template <std::size_t I>
requires I < sizeof...(Ts)
const auto& get() const
{
return elems...[I];
}
// ...
};
Then the class can be used like this:
using Vecs = MyClass<int, double>;
Vecs vecs{};
vecs.[0].resize(3, 42);
std::array<double, 4> arr{1.0, 2.0, 4.0, 8.0};
vecs.[1] = {arr.[:]};
// print the elements
// note the use of vecs.[:] and Vecs::[:]
(std::copy(vecs.[:].begin(), vecs.[:].end(),
std::ostream_iterator<Vecs::[:]>{std::cout, ' '},
std::cout << '\n'), ...);
Here is a less than perfectly efficient implementation using boost::variant:
template<typename ... Ts>
using variant_vector = boost::variant< std::vector<Ts>... >;
template<typename ...Ts>
struct MyClass {
using var_vec = variant_vector<Ts...>;
std::array<var_vec, sizeof...(Ts)> vecs;
};
we create a variant-vector that can hold one of a list of types in it. You have to use boost::variant to get at the contents (which means knowing the type of the contents, or writing a visitor).
We then store an array of these variant vectors, one per type.
Now, if your class only ever holds one type of data, you can do away with the array, and just have one member of type var_vec.
I cannot see why you'd want one vector of each type. I could see wanting a vector where each element is one of any type. That would be a vector<variant<Ts...>>, as opposed to the above variant<vector<Ts>...>.
variant<Ts...> is the boost union-with-type. any is the boost smart-void*. optional is the boost there-or-not.
template<class...Ts>
boost::optional<boost::variant<Ts...>> to_variant( boost::any );
may be a useful function, that takes an any and tries to convert it to any of the Ts... types in the variant, and returns it if it succeeds (and returns an empty optional if not).

Detecting a function in C++ at compile time

Is there a way, presumably using templates, macros or a combination of the two, that I can generically apply a function to different classes of objects but have them respond in different ways if they do not have a specific function?
I specifically want to apply a function which will output the size of the object (i.e. the number of objects in a collection) if the object has that function but will output a simple replacement (such as "N/A") if the object doesn't. I.e.
NO_OF_ELEMENTS( mySTLMap ) -----> [ calls mySTLMap.size() to give ] ------> 10
NO_OF_ELEMENTS( myNoSizeObj ) --> [ applies compile time logic to give ] -> "N/A"
I expect that this might be something similar to a static assertion although I'd clearly want to compile a different code path rather than fail at build stage.
From what I understand, you want to have a generic test to see if a class has a certain member function. This can be accomplished in C++ using SFINAE. In C++11 it's pretty simple, since you can use decltype:
template <typename T>
struct has_size {
private:
template <typename U>
static decltype(std::declval<U>().size(), void(), std::true_type()) test(int);
template <typename>
static std::false_type test(...);
public:
typedef decltype(test<T>(0)) type;
enum { value = type::value };
};
If you use C++03 it is a bit harder due to the lack of decltype, so you have to abuse sizeof instead:
template <typename T>
struct has_size {
private:
struct yes { int x; };
struct no {yes x[4]; };
template <typename U>
static typename boost::enable_if_c<sizeof(static_cast<U*>(0)->size(), void(), int()) == sizeof(int), yes>::type test(int);
template <typename>
static no test(...);
public:
enum { value = sizeof(test<T>(0)) == sizeof(yes) };
};
Of course this uses Boost.Enable_If, which might be an unwanted (and unnecessary) dependency. However writing enable_if yourself is dead simple:
template<bool Cond, typename T> enable_if;
template<typename T> enable_if<true, T> { typedef T type; };
In both cases the method signature test<U>(int) is only visible, if U has a size method, since otherwise evaluating either the decltype or the sizeof (depending on which version you use) will fail, which will then remove the method from consideration (due to SFINAE. The lengthy expressions std::declval<U>().size(), void(), std::true_type() is an abuse of C++ comma operator, which will return the last expression from the comma-separated list, so this makes sure the type is known as std::true_type for the C++11 variant (and the sizeof evaluates int for the C++03 variant). The void() in the middle is only there to make sure there are no strange overloads of the comma operator interfering with the evaluation.
Of course this will return true if T has a size method which is callable without arguments, but gives no guarantees about the return value. I assume wou probably want to detect only those methods which don't return void. This can be easily accomplished with a slight modification of the test(int) method:
// C++11
template <typename U>
static typename std::enable_if<!is_void<decltype(std::declval<U>().size())>::value, std::true_type>::type test(int);
//C++03
template <typename U>
static typename std::enable_if<boost::enable_if_c<sizeof(static_cast<U*>(0)->size()) != sizeof(void()), yes>::type test(int);
There was a discussion about the abilities of constexpr some times ago. It's time to use it I think :)
It is easy to design a trait with constexpr and decltype:
template <typename T>
constexpr decltype(std::declval<T>().size(), true) has_size(int) { return true; }
template <typename T>
constexpr bool has_size(...) { return false; }
So easy in fact that the trait loses most of its value:
#include <iostream>
#include <vector>
template <typename T>
auto print_size(T const& t) -> decltype(t.size(), void()) {
std::cout << t.size() << "\n";
}
void print_size(...) { std::cout << "N/A\n"; }
int main() {
print_size(std::vector<int>{1, 2, 3});
print_size(1);
}
In action:
3
N/A
This can be done using a technique called SFINAE. In your specific case you could implement that using Boost.Concept Check. You'd have to write your own concept for checking for a size-method. Alternatively you could use an existing concept such as Container, which, among others, requires a size-method.
You can do something like
template< typename T>
int getSize(const T& t)
{
return -1;
}
template< typename T>
int getSize( const std::vector<T>& t)
{
return t.size();
}
template< typename T , typename U>
int getSize( const std::map<T,U>& t)
{
return t.size();
}
//Implement this interface for
//other objects
class ISupportsGetSize
{
public:
virtual int size() const= 0;
};
int getSize( const ISupportsGetSize & t )
{
return t.size();
}
int main()
{
int s = getSize( 4 );
std::vector<int> v;
s = getSize( v );
return 0;
}
basically the most generic implementation is always return -1 or "NA" but for vector and maps it will return the size. As the most general one always matches there is never a build time failure
Here you go. Replace std::cout with the output of your liking.
template <typename T>
class has_size
{
template <typename C> static char test( typeof(&C::size) ) ;
template <typename C> static long test(...);
public:
enum { value = sizeof(test<T>(0)) == sizeof(char) };
};
template<bool T>
struct outputter
{
template< typename C >
static void output( const C& object )
{
std::cout << object.size();
}
};
template<>
struct outputter<false>
{
template< typename C >
static void output( const C& )
{
std::cout << "N/A";
}
};
template<typename T>
void NO_OF_ELEMENTS( const T &object )
{
outputter< has_size<T>::value >::output( object );
}
You could try something like:
#include <iostream>
#include <vector>
template<typename T>
struct has_size
{
typedef char one;
typedef struct { char a[2]; } two;
template<typename Sig>
struct select
{
};
template<typename U>
static one check (U*, select<char (&)[((&U::size)!=0)]>* const = 0);
static two check (...);
static bool const value = sizeof (one) == sizeof (check (static_cast<T*> (0)));
};
struct A{ };
int main ( )
{
std::cout << has_size<int>::value << "\n";
std::cout << has_size<A>::value << "\n";
std::cout << has_size<std::vector<int>>::value << "\n";
}
but you have to be careful, this does neither work when size is overloaded, nor when it is a template. When you can use C++11, you can replace the above sizeof trick by decltype magic