C++ Inheritance QHash different key type - c++

I am currently working on a project where I have a situation I am trying to solve. I have a base class that has a QHash that stores some objects. Currently I have two derived classes. The problem is that for one derived class I would like the key to be a string and for the other I would like it to be an int. The logic in the base class will be the same regardless, just the key type is different. I know that the simplest answer is to just make the key a string and convert the int to a string in that derived class when I access it. I was trying to come up with a more elegant solution, but maybe thats just overthinking it.
A lot of the access happens through functions, but sometimes the derived class accesses the QHash directly. That could be changed though. I thought about overriding the calls in the derived class to accept an integer, then convert it and call the base class version.
I wasnt sure if there was any way to make the base class QHash have a generic key. The functions all take the key too, so they would have to follow the same pattern.

Related

Determine real type of base pointer in a big hierarchy without dynamic_cast

Suppose, that I have an abstract base State class and at least two derived classes AnimalState and PlantState(also abstract). Also, I have many derived classes from AnimalState and PlantState.
class State{} // abstract
class AnimalState: public State{} // abstract
class PlantState: public State{} // abstract
//maybe few more of such classes here
class AnimalStateSpecific1: public AnimalState{}
class AnimalStateSpecific2: public AnimalState{}
... //many of them
class PlantStateSpecific1: public PlantState{}
class PlantStateSpecific2: public PlantState{}
... //many of them
Now suppose, that I use them in some kind of method that operates on base State pointers. Those pointers are replaced over time with other pointers to different class from the State hierarchy. It happens by some rule, specifically within the predefined state graph.
Now to the question part. In order to determine the next state, I need to know the previous one. But since I have only base State pointers, I can not efficiently tell what type of state I have, without doing dynamic_cast to every derived class in the hierarchy that is not good. I can have some enum with all kinds of states that I have, but I do not really like that because I do not want to mix information from two hierarchy branches, as it is really different. Also, I do not like different enums for every branch in the hierarchy such as AnimalStateEnum, PlantStateEnum etc.
What is the best solution for this problem? Maybe my design is not good from the start? I want to keep it as generic as possible and work only with base class objects, if possible.
Now to the question part. In order to determine the next state, I need to know the previous one.
Simplest solution based on limited information we have - object, which knows it's own state creates next state object:
class State{
public:
...
virtual std::unique_ptr<State> transform( some data ) = 0;
};
then you implement it in each derived from State class which can change it's state and knows where it can move to. What data you need to pass is not a simple question - it depends on your task and may have various options, but you need to define something that can be used by all derived classes, as signature is defined on the base class and shared on all derived ones.
What is the best solution for this problem? Maybe my design is not good from the start?
This question is not trivial and only can be answered having pretty deep knowledge on your task. If you are unsure - implement a prototype and check if solution fits your problem well. Unfortunately the only way to learn how to create a good design is your own experience (except trivial cases of course).
You could simply have a virtual method next() inside the state class hierarchy,
and then do something similar to the following example:
State *globalState = nullptr;
void foo(State *s)
{
globalState = s->next();
}
Where each derived class will implement next() to its own meaning:
PlantStateSpecific1 *AnimalStateSpecific1::next(){ return new PlantStateSpecific1; }
AnimalStateSpecific1 *PlantStateSpecific1::next(){ return new AnimalStateSpecific1; }
This is more OOP than having an enum / integer descriptor of the derived class.
What you can have is an integer inside the base state class that every class below it will set in its constructor. Then you can either use a sereis of constants, a list of possible states with the id corresponding to the state type index, or use an enumerator.
The id is more flexible as you can create state types with relative ease and add handling to them without too much difficulty, aswell as if you want to create a new state from the id type.
Just one of the ways iv done this before, but there are probably many others.

Are there pros to inheriting a class template?

I'm new to c++ and I have more of a "design" question than actual code:
I'd like to write a program that works with many different types of graphs, however I want to support any type of vertex or weight (i.e the vertices are strings or char and the weight can be int,double or char or even a class).
For this cause I wrote a class template of graphs, which contains things like a set of vertices and a map with the edges and their weights and get/set functions - Then I have other classes such as finite-state machine graph, a regular weighted graph etc. which inherit from the class template "Graphs". (in each graph I know exactly what types the vertices and weights will be)
I did this as it seemed natural to expand upon a base class and inherit from it. It works so far, but then I thought whats the point? I could simple create in each class one of these generic graphs and use it as I would use an ADT from the STL.
The point being, is there any benefit to inheriting from a class template instead of just creating a new object of the template in the class (which itself isn't generic)?
According to the explanation you gave above it would be incorrect to inherit the generic graph. Inheritance is a tool to help expand an existing class of the same type to one with additional attributes, methods and functionality.
So, if all you're going to do is take the generic graph and make it a specific one by specifying the type of edges and weights without adding anything else to the structure or functionality of the original class then inheritance is unnecessary.
That being said, there are many cases for which one might need to inherit a template class and either keep it a generic one or a specific one depending on the task at hand. For example, if you were given the task of creating a class that represents a list of integers with the regular operations on lists and in addition to implement a function that return (let's say the average of these numbers or any other operation that is not supported by the original generic class List). In this case you inherit Class List and add your method.
Similarly, you could've kept the List as a template class and added the required functionality if that's what the task requires.
Your question is very broad and highly depends on your particular situation. Regardless, assuming that your question can be simplified to: "why should I use inheritance when I can just put the object inside the class?", here are two objective reasons:
Empty base optimization: if your base class X is empty (i.e. sizeof(X) == 0), then storing it as one of your derived class's fields will waste some memory as the standard forces every field to have its own address. Using inheritance will prevent that. More information here.
Exposing public methods/fields to the user of the derived class: if you want to "propagate" all your base class's public methods/fields to the derived one, inheritance will do that automatically for you. If you use composition, you have to expose them manually.

Is it better to cast a base class to derived class or create a virtual function on the base class?

According to this answer, dynamic_cast'ing a base class to derived class is fine, but he says this shows that there is a fundamental problem with the code logic.
I've looked at other answers and using dynamic_cast is fine since you can check the pointer validity later.
Now in my real problem the derived class has a GetStrBasedOnCP function which is not virtual (only the derived class has it) and I have to access it.
What is better, to create a virtual void GetStrBasedOnCP on the base class and make it virtual on the derived OR, to just cast the base class pointer to derived class?
Oh also notice that this is a unsigned int GetStrBasedOnCP so the base class must also return a value...
There are more than two answers to the "what is better" question, and it all depends on what you are modeling:
If the GetStrBasedOnCP function is logically applicable to the base class, using virtual dispatch is the best approach.
If having the GetStrBasedOnCP function in the base class does not make logical sense, you need to use an approach based on the actual type; you could use dynamic_cast, or
You could implement multiple dispatch, e.g. through a visitor or through a map of dynamic types.
The test for logical applicability is the most important one. If GetStrBasedOnCP function is specific to your subclass, adding it to the base class will create maintenance headaches for developers using and maintaining your code.
Multiple dispatch, on the other hand, gives you a flexible approach that lets you access statically typed objects. For example, implementing visitor pattern in your base class lets you make visitors that process the subclass with GetStrBasedOnCP function differently from other subclasses.
Does it make sense for the base class you have to have the virtual function in it?
If it does not then you should not include the function in the base class. Remember that best practices cover the general case. There are times you need to do things you wouldn't normally do to get the code working. The key thing is you need is clear, concise, understandable code
There's a lot of "it depends".
If you can guarantee that the base pointer is the correct child pointer, then you can use dynamic_cast.
If you can't guarantee which child type the base pointer is pointing to, you may want to place the function in the base class.
However, be aware that all children of the base class will get the functionality of whatever you place into the base class. Does it make sense for all the children to have the functionality?
You may want to review your design.

C++ design issue. New to templates

I'm fairly new to c++ templates.
I have a class whose constructor takes two arguments. It's a class that keeps a list of data -- it's actually a list of moves in a chess program.
I need to keep my original class as it's used in other places, but I now need to pass extra arguments to the class, and in doing so have a few extra private data members and specialize only one of the private methods -- everything else will stay the same. I don't think a derived class helps me here, as they aren't going to be similar objects, and also the private methods are called by the constructor and it will call the virtual method of the base class -- not the derived method.
So I guess templates are going to be my answer. Just looking for any hints about how might proceed.
Thanks in advance
Your guess is wrong. Templates are no more the answer for your problem than inheritance is.
As jtbandes said in comment below your question, use composition.
Create another class that contains an instance of your existing class as a member. Forward or delegate operations to that contained object as needed (i.e. a member function in your new class calls member functions of the contained object). Add other members as needed, and operations to work with them.
Write your new code to interact with the new class. When your new code needs to interact with your old code, pass the contained object (or a reference or a pointer to it) as needed.
You might choose to implement the container as a template, but that is an implementation choice, and depends on how you wish to reuse your container.
Templates are used when you want to pass at compile time parameter like values,typenames, or classes. Templates are used when you want to use exactly the same class with the same methods, but applying it to different parameters. The case you described is not this I think.
If they aren't goign to be similar objects you may want to create a specialized class (or collections of function) to use from the various other classes.
Moreover you can think of creating a base class and extending it as needed. Using a virtual private method should allow you to select the method implementation of the object at runtime instead of the method of the base class.
We may help you more if you specify what does they need to share, what does your classes have in common?
The bare bones of my present code looks like this:
class move_list{
public:
move_list(const position& pos, unsigned char ply):pos_(pos),ply_(ply){
//Calculates moves and calls add_moves(ply,target_bitboard,flags) for each move
}
//Some access functions etc...
private:
//private variables
void add_moves(char,Bitboard,movflags);
};
Add_moves places the moves on a vector in no particular order as they are generated. My new class however, is exactly the same except it requires extra data:
move_list(const position& pos, unsigned char ply,trans_table& TT,killers& kill,history& hist):pos_(pos),ply_(ply),TT_(TT),kill_(kill),hist_(hist) {
and the function add_moves needs to be changed to use the extra data to place the moves in order as it receives them. Everything else is the same. I guess I could just write an extra method to sort the list after they have all been generated, but from previous experience, sorting the list as it receives it has been quicker.

Casting to subclass from a collection of base pointers

I need to model a service retriever class to retrieve various services.
Suppose you have a collection of Services, each Service retrievable with a unique string key
(eg. : Services.getService("render"); should retrieve the service indexed as "render").
Now, Service is the base class of various *Service inherited classes, like RenderService, InputService et al. , each one with their different methods.
Now, this could be simply modeled with a std::unordered_map<std::string, Service*>, but it returns a pointer to the base class and not to the derived class (so far, it's pretty obvious). This means I can't automatically call the requested service's methods without doing an explicit cast, I must write something like: ((RenderService*)Services.at("render"))->callRenderServiceMethod();.
This is pretty ugly and redundant, because the at method key is logically linked to RenderService.
I could skirt around the problem by declaring:
#define CALL_RENDER ((RenderService*)Services.at("render"))
and using it as
CALL_RENDER->callRenderServiceMethod();
Although it looks like a clever "hack", it's not the right way to solve this problem.
I've also tried to do something like getService<RenderService>("render"); but it doesnt work well and the redundancy problem is still there.
In the end, I'm doing this because I'd like to avoid this :
class Services
{
public:
RenderService& getRenderService();
AudioService& getAudioService();
AnotherInheritedService& getAnotherInheritedService();
private:
RenderService _renderService;
AudioService _audioService;
AnotherInheritedService _anotherInheritedService;
};
What kind of approach should I use for this kind of problem?
From what I understand from the problem, you need the functions to be declared as virtual functions.
Declaring a function virtual in the base class definition and implementing that function in each derived class will allow the appropriate class' function to be called based on the type of class pointer.
Now, I don't understand why you only have pointers to the base class only. Logically, the pointers you're getting from unordered_map are being returned should be actually derived class pointers but only being "upcasted" to a base class pointer.