I am a Boost (and C++) newbie, going through the graph library tutorial. I can create a graph and give it vertices and edges. I would like to use maximum cardinality matching in Boost to return a set of edges that form the maximum matching in the graph.
I have looked through max_cardinality_matching.hpp, but am not quite sure how to use it, or which functions to use, to return the maximum matching set of edges.
Here is my code so far:
#include <iostream>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/graph_traits.hpp>
using namespace boost;
int main(int argc, const char * argv[]) {
// create a typedef for the Graph type
typedef adjacency_list<vecS, vecS, bidirectionalS> Graph;
// Make convenient labels for the vertices
enum { A, B, C, D, E, F, N };
const int num_vertices = N;
// const char* name = "ABCDE";
// writing out the edges in the graph
typedef std::pair<int, int> Edge;
Edge edge_array[] =
{ Edge(A,B), Edge(B,C), Edge(C,D), Edge(D,E), Edge(E,F) };
// const int num_edges = sizeof(edge_array)/sizeof(edge_array[0]);
// declare a graph object and add the edges
Graph g(edge_array, edge_array + sizeof(edge_array) / sizeof(Edge), num_vertices);
// get the property map for vertex indices
// property_map<Graph, property type>
typedef property_map<Graph, vertex_index_t>::type IndexMap;
IndexMap index = get(vertex_index, g);
// Create an iterator for vertices
typedef graph_traits<Graph>::vertex_iterator vertex_iter;
std::cout << "vertices(g) = ";
// Vertices returns a pair of vertex iterators
// The first iter points to the beginning of the vertices
// The second points past the end
std::pair<vertex_iter, vertex_iter> vp;
// vertices() returns the vertices in graph g
for (vp = vertices(g); vp.first != vp.second; ++vp.first)
std::cout << index[*vp.first] << " ";
std::cout << std::endl;
graph_traits<Graph>::edge_iterator ei, ei_end;
std::cout << "edges(g) = ";
// For each tuple of vertices (an edge), till the end of the edge list ...
for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
// ... print out the source and target vertices in the edge
std::cout << "(" << index[source(*ei, g)] << "," << index[target(*ei, g)] << ") ";
std::cout << std::endl;
// Return the set of edges that form a maximum matching in graph g
return 0;
}
All you need to do is create read-write property map and pass it as second argument to
template <typename Graph, typename MateMap>
bool checked_edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate);
You can create ordinary std::map where key and value are vertex descriptors and adapts it by associative_property_map in order to use it with checked_edmonds_maximum_cardinality_matching. From this map you can read all edges which create maximum cardinality of your graph.
// Return the set of edges that form a maximum matching in graph g
typedef graph_traits<Graph>::vertex_descriptor VD;
std::map<VD, VD> match;
boost::associative_property_map< std::map<VD,VD> > mapAdapter(match);
bool rc = checked_edmonds_maximum_cardinality_matching(g,mapAdapter);
if (rc)
{
std::set<graph_traits<Graph>::edge_descriptor> edges;
for (auto& i : match)
{
std::pair<Graph::edge_descriptor,bool> e = boost::edge(i.first,i.second,g);
if (e.second)
edges.insert(e.first);
std::cout << i.first << " is matched to " << i.second << std::endl;
}
// print edges
for (auto& e : edges)
std::cout << "edge: " << e << std::endl;
}
As output you can see:
0 is matched to 1
1 is matched to 0
2 is matched to 3
3 is matched to 2
4 is matched to 5
5 is matched to 4
edge: (0,1)
edge: (2,3)
edge: (4,5)
Related
#include <boost/graph/adjacency_list.hpp>
typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS,
boost::no_property,
boost::property<boost::edge_weight_t, double>>
DiGraph;
typedef boost::graph_traits<DiGraph>::vertex_descriptor vertex_descriptor;
int main () {
std::vector<std::size_t> vertices = { 1, 5, 10};
std::vector<std::pair<std::size_t, std::size_t>> edges = {std::make_pair(1, 5),
std::make_pair(5, 10)};
std::vector<double> weights = {2., 2.};
DiGraph di_graph (edges.begin(), edges.end(), weights.begin(), vertices.size());
DiGraph::vertex_descriptor v_start = boost::vertex(1, di_graph);
std::vector<vertex_descriptor> parents(boost::num_vertices(di_graph));
boost::dijkstra_shortest_paths(di_graph, v_start,
boost::predecessor_map(boost::make_iterator_property_map(parents.begin(), boost::get(boost::vertex_index, di_graph))));
}
This allocates a vector parents of size 11, since boost uses contiguous vertex indices.
I want the non-contiguous vertices (1, 5, 10..) but don't want the unnecessary memory space for the vector parents.
How can I make a mapping from my vertex indices to the vertex indices 1, 2, 3 and pass it to boost::dijkstra_shortest_paths?
On top of that it would be even more convenient to receive the result of dijkstra in a struct parents and access the predecessor of an element with my index, e.g.
parents[10]
but without a vector of length 11 or just have an easy conversion function f I could use
parents[f(10)]
I did take a look at the documentation of boost graph and thought the IndexMap could make this possible, but I don't understand the concept and can't make it work.
With the boost::vecS vertex container selection, the vertex index is implicit, and the call
DiGraph di_graph(
edges.begin(), edges.end(), weights.begin(), vertices.size());
is a lie: you tell it that there are 3 vertices, but then you index out of bounds (5, 10 are outside [0,1,2]).
Note also that
V v_start = boost::vertex(1, di_graph);
selects the second vertex, not vertex 1.
Internal Names
I'd probably suggest a more recent addition: internal vertex names. If we add a vertex property bundle, like simply int:
using DiGraph = boost::adjacency_list<
boost::vecS,
boost::vecS,
boost::directedS,
int,
boost::property<boost::edge_weight_t, double>>;
And then also teach BGL that we can use it as the vertex internal name:
template<> struct boost::graph::internal_vertex_name<int> {
struct type : std::identity {
using result_type = int;
};
};
Now creating the equivalent graph is simply:
DiGraph g;
add_edge(1, 5, 2., g);
add_edge(5, 10, 2., g);
That's all. You can see that it created vertices with implicit indices as the descriptors:
for (auto e : make_iterator_range(edges(g))) {
std::cout << "edge: " << e << "\n";
}
Prints:
edge: (0,2)
edge: (1,0)
To get the names, use property maps like so:
for (auto v : make_iterator_range(vertices(g))) {
std::cout << "vertex at index " << v << " named " << g[v] << "\n";
}
Printing
vertex at index 0 named 5
vertex at index 1 named 1
vertex at index 2 named 10
Using internal vertex names, you can query vertices by property bundles:
boost::optional<V> v_start = g.vertex_by_property(1);
Now, all I can suggest is using safe iterator maps:
dijkstra_shortest_paths(
g,
v_start.value(),
boost::predecessor_map(boost::make_safe_iterator_property_map(
parents.begin(), parents.size(), get(boost::vertex_index, g))));
for (size_t i = 0; i < parents.size(); ++i) {
std::cout << "Parent for '" << g[i] << "' is '" << g[parents[i]] << "'\n";
}
Live Demo
Live On Coliru
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <iostream>
template<> struct boost::graph::internal_vertex_name<int> {
struct type : std::identity {
using result_type = int;
};
};
using DiGraph = boost::adjacency_list<
boost::vecS,
boost::vecS,
boost::directedS,
int,
boost::property<boost::edge_weight_t, double>>;
using V = DiGraph::vertex_descriptor;
using boost::make_iterator_range;
int main()
{
DiGraph g;
add_edge(1, 5, 2., g);
add_edge(5, 10, 2., g);
for(auto e : make_iterator_range(edges(g)))
std::cout << "edge: " << e << "\n";
for(auto v : make_iterator_range(vertices(g)))
std::cout << "vertex at index " << v << " named " << g[v] << "\n";
boost::optional<V> v_start = g.vertex_by_property(1);
std::vector<V> parents(num_vertices(g));
dijkstra_shortest_paths(
g,
v_start.value(),
boost::predecessor_map(boost::make_safe_iterator_property_map(
parents.begin(), parents.size(), get(boost::vertex_index, g))));
for (size_t i = 0; i < parents.size(); ++i) {
std::cout << "Parent for '" << g[i] << "' is '" << g[parents[i]] << "'\n";
}
}
Prints
edge: (0,2)
edge: (1,0)
vertex at index 0 named 5
vertex at index 1 named 1
vertex at index 2 named 10
Parent for '5' is '1'
Parent for '1' is '1'
Parent for '10' is '5'
First step: take a look at bundled properties https://www.boost.org/doc/libs/1_79_0/libs/graph/doc/bundles.html
Second:
the non-contiguous vertices (1, 5, 10..) " these should be regarded as properties of the vertex. e.g "1" is a property of vertex 0.
Third: create a vertex class with 1, 5, 10.. as public attributes
Four: Create a boost graph using the your vertex class, setting and getting 1, 5, 10.. as described in the bundled properties page.
I try to implement a graph class based on https://stackoverflow.com/a/950173/7558038. When adding an edge I return the edge descriptor of the added edge, but if the edge already exists, it shouldn't be added. What shall I return then? Unfortunately, null_edge() does not exist (unlike null_vertex()). It could be an std::pair<e_it_t,bool> with an appropriate edge iterator type e_it_t, but how can I get an iterator to the new edge?
Don't use that class that is almost 10 years old. It is obsolete.
Bundled properties have come to BGL as long as I know, which is... probably since at least 2010. Nothing there is fundamentally easier than straight boost.
Another weird property is that somehow only complementary edges can be inserted in that graph. This might be what you want, but it doesn't warrant having the complete class, IMO.
In fact, having the custom type removes ADL, which makes things more tedious unless you go and add each other operation (like, you know, out_edges or in_edges, which presumably is what you wanted a bidirectional graph for in the first place; maybe you actually wish to have iterable ranges instead of pair<iterator, iterator> which requires you to write old-fashioned for loops).
Now that I've warmed up a bit, lets demonstrate:
Using The Obsolete Wrapper class
The linked wrapper affords usage like this:
struct VertexProperties { int i; };
struct EdgeProperties { double weight; };
int main() {
using MyGraph = Graph<VertexProperties, EdgeProperties>;
MyGraph g;
VertexProperties vp;
vp.i = 42;
MyGraph::Vertex v1 = g.AddVertex(vp);
g.properties(v1).i = 23;
MyGraph::Vertex v2 = g.AddVertex(vp);
g.properties(v2).i = 67;
g.AddEdge(v1, v2, EdgeProperties{1.0}, EdgeProperties{0.0});
for (auto vr = g.getVertices(); vr.first!=vr.second; ++vr.first) {
auto& vp = g.properties(*vr.first);
std::cout << "Vertex " << vp.i << "\n";
for (auto er = g.getAdjacentVertices(*vr.first); er.first!=er.second; ++er.first) {
auto s = *vr.first;
auto t = *er.first;
// erm how to get edge properties now?
std::cout << "Edge " << g.properties(s).i << " -> " << g.properties(t).i << " (weight?!?)\n";
}
}
}
Which prints:
Vertex 23
Edge 23 -> 67 (weight?!?)
Vertex 67
Edge 67 -> 23 (weight?!?)
Note I didn't exactly bother to solve the problem of getting the edge-weight (we don't readily get edge descriptors from the interface at all).
The for loops throw us back in time at least 6 years. And that's not nearly the worst problem. Presumably, you need your graph for something. Let's assume you want minimum cut, or a shortest path. This means you want to invoke an algorithm that requires the edge weight. This would look like so:
// let's find a shortest path:
// build the vertex index map
boost::property_map<MyGraph::GraphContainer, vertex_properties_t>::const_type vpmap =
boost::get(vertex_properties, g.getGraph());
// oops we need the id from it. No problem, it takes only rocket science:
struct GetId {
int operator()(VertexProperties const& vp) const {
return vp.i;
}
};
GetId get_id;
boost::transform_value_property_map<GetId,
boost::property_map<MyGraph::GraphContainer, vertex_properties_t>::const_type,
int> id_map
= boost::make_transform_value_property_map<int>(get_id, vpmap);
// build the weight map
boost::property_map<MyGraph::GraphContainer, edge_properties_t>::const_type epmap =
boost::get(edge_properties, g.getGraph());
// oops we need the weight from it. No problem, it takes only rocket science:
struct GetWeight {
double operator()(EdgeProperties const& ep) const {
return ep.weight;
}
};
GetWeight get_weight;
boost::transform_value_property_map<GetWeight,
boost::property_map<MyGraph::GraphContainer, edge_properties_t>::const_type,
double> weight_map
= boost::make_transform_value_property_map<double>(get_weight, epmap);
// and now we "simply" use Dijkstra:
MyGraph::vertex_range_t vertices = g.getVertices();
//size_t n_vertices = g.getVertexCount();
MyGraph::Vertex source = *vertices.first;
std::map<MyGraph::Vertex, MyGraph::Vertex> predecessors;
std::map<MyGraph::Vertex, double> distance;
boost::dijkstra_shortest_paths(g.getGraph(), source,
boost::predecessor_map(boost::make_assoc_property_map(predecessors))
.distance_map(boost::make_assoc_property_map(distance))
.weight_map(weight_map)
.vertex_index_map(id_map));
This is not my idea of usability. Just to show it all compiles and runs:
Live On Coliru
Replace The Wrapper In 2 Lines Of C++11
Let's replace the whole Graph class template in modern BGL style:
template <typename VertexProperties, typename EdgeProperties>
using Graph = adjacency_list<setS, listS, bidirectionalS, VertexProperties, EdgeProperties>;
Really. That is a solid replacement, I'll demonstrate it right away.
In fact, let's not do using namespace boost; because it pollutes our namespace with all manner of names we might find really useful (like, you know source or num_vertices) and invites ambiguous symbols:
template <typename VertexProperties, typename EdgeProperties>
using Graph = boost::adjacency_list<boost::setS, boost::listS, boost::bidirectionalS, VertexProperties, EdgeProperties>;
The Same Use-Cases - creation and dijkstra
They are still as simple, or in fact simpler. The full code goes down from 249 lines of code to just 57:
Live On Coliru
#include <boost/graph/adjacency_list.hpp>
namespace MyLib {
template <typename VertexProperties, typename EdgeProperties>
using Graph = boost::adjacency_list<boost::setS, boost::listS, boost::bidirectionalS, VertexProperties, EdgeProperties>;
}
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <iostream>
struct VertexProperties { int i; };
struct EdgeProperties { double weight; };
int main() {
using boost::make_iterator_range;
using MyGraph = MyLib::Graph<VertexProperties, EdgeProperties>;
MyGraph g;
auto v1 = add_vertex({42}, g);
auto v2 = add_vertex({42}, g);
g[v1].i = 23;
g[v2].i = 67;
add_edge(v1, v2, EdgeProperties{ 1.0 }, g);
add_edge(v2, v1, EdgeProperties{ 0.0 }, g);
for (auto v : make_iterator_range(vertices(g))) {
std::cout << "Vertex " << g[v].i << "\n";
}
for (auto e : make_iterator_range(boost::edges(g))) {
auto s = source(e, g);
auto t = target(e, g);
std::cout << "Edge " << g[s].i << " -> " << g[t].i << " (weight = " << g[e].weight << ")\n";
}
// let's find a shortest path:
auto id_map = get(&VertexProperties::i, g);
auto weight_map = get(&EdgeProperties::weight, g);
auto source = *vertices(g).first;
using Vertex = MyGraph::vertex_descriptor;
std::map<Vertex, Vertex> predecessors;
std::map<Vertex, double> distance;
std::map<Vertex, boost::default_color_type> colors;
boost::dijkstra_shortest_paths(
g, source,
boost::vertex_color_map(boost::make_assoc_property_map(colors))
.predecessor_map(boost::make_assoc_property_map(predecessors))
.distance_map(boost::make_assoc_property_map(distance))
.weight_map(weight_map)
.vertex_index_map(id_map));
}
I'd say
that is superior.
it's just as elegant despite not relying on using namespace boost (ADL is the key here)
and we actually printed the edge weight!
And It Can Be Cleaner Still
If you switch to a vertex container selector that has implicit vertex index (like vecS):
Live On Coliru
#include <boost/graph/adjacency_list.hpp>
namespace MyLib {
template <typename VertexProperties, typename EdgeProperties>
using Graph = boost::adjacency_list<boost::setS, boost::vecS, boost::bidirectionalS, VertexProperties, EdgeProperties>;
}
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <iostream>
struct VertexProperties { int i; };
struct EdgeProperties { double weight; };
int main() {
using boost::make_iterator_range;
using MyGraph = MyLib::Graph<VertexProperties, EdgeProperties>;
MyGraph g;
add_vertex({23}, g);
add_vertex({67}, g);
add_edge(0, 1, EdgeProperties{ 1.0 }, g);
add_edge(1, 0, EdgeProperties{ 0.0 }, g);
for (auto v : make_iterator_range(vertices(g))) {
std::cout << "Vertex " << g[v].i << "\n";
}
for (auto e : make_iterator_range(boost::edges(g))) {
auto s = source(e, g);
auto t = target(e, g);
std::cout << "Edge " << g[s].i << " -> " << g[t].i << " (weight = " << g[e].weight << ")\n";
}
// let's find a shortest path:
std::vector<size_t> predecessors(num_vertices(g));
std::vector<double> distance(num_vertices(g));
boost::dijkstra_shortest_paths(g, *vertices(g).first,
boost::predecessor_map(predecessors.data()).distance_map(distance.data())
.weight_map(get(&EdgeProperties::weight, g)));
}
Output:
Vertex 23
Vertex 67
Edge 23 -> 67 (weight = 1)
Edge 67 -> 23 (weight = 0)
WAIT - Don't Forget About The Question!
I won't! I think the above shows the problem was an X/Y problem.
If you hadn't had the handicap of custom class wrapping, detecting duplicate edges was a given (see if add_vertex in BGL checks for the existence of the vertex for background):
struct { size_t from, to; double weight; } edge_data[] = {
{0, 1, 1.0},
{1, 0, 0.0},
{0, 1, 99.999} // oops, a duplicate
};
for(auto request : edge_data) {
auto addition = add_edge(request.from, request.to, { request.weight }, g);
if (!addition.second) {
auto& weight = g[addition.first].weight;
std::cout << "Edge already existed, changing weight from " << weight << " to " << request.weight << "\n";
weight = request.weight;
}
}
This will print Live On Coliru:
Edge already existed, changing weight from 1 to 99.999
If you prefer you can of course write things more expressively:
Graph::edge_descriptor e;
bool inserted;
boost::tie(e, inserted) = add_edge(request.from, request.to, { request.weight }, g);
Or, with some c++17 flair:
auto [e, inserted] = add_edge(request.from, request.to, { request.weight }, g);
More From Here
Also, in all likelihood you need to do uniqueness checks on the vertices too, so you end up with graph creation code like you can see in this answer: Boost BGL BFS Find all unique paths from Source to Target
Graph read_graph() {
std::istringstream iss(R"(
0 1 0.001
0 2 0.1
0 3 0.001
1 5 0.001
2 3 0.001
3 4 0.1
1 482 0.1
482 635 0.001
4 705 0.1
705 5 0.1
1 1491 0.01
1 1727 0.01
1 1765 0.01)");
Graph g;
std::map<int,Vertex> idx; // temporary lookup of existing vertices
auto vertex = [&](int id) mutable {
auto it = idx.find(id);
if (it != idx.end())
return it->second;
return idx.emplace(id, add_vertex(id, g)).first->second;
};
for (std::string line; getline(iss, line);) {
std::istringstream ls(line);
int s,t; double w;
if (ls >> s >> t >> w) {
add_edge(vertex(s), vertex(t), w, g);
} else {
std::cerr << "Skipped invalid line '" << line << "'\n";
}
}
return g;
}
Other examples show how you can insert both a -> b and b -> a while maintaining a mapping between the forward and back edges: Accessing specific edges in boost::graph with integer index
Summary
Coming full circle, I recommend getting acquainted with the newer, more elegant Boost Graph features. In the end, it's perfectly normal to encapsulate your graph, and you might end up with an even more polished interface.
I am trying to write an algorithm to (greedily) find the chromatic number of a graph. For this I need to be able to query the adjacent vertices of a given vertex.
My function is the following:
int Network::greedy_colouring() {
// create an undirected graph with the vertices and edges of the first one
UndirectedGraph g;
copy_graph(network, g);
int vertices_amount = num_vertices(g);
// Assign the first color to first vertex
std::map<std::string, int> vertex_colouring;
vertex_pair_iterators vp = vertices(g);
vertex_colouring[g[*vp.first].name] = 0;
++vp.first; // start from second vertex
for (; vp.first != vp.second; ++vp.first)
vertex_colouring[g[*vp.first].name] = -1;
// A temporary array to store the available colors. True
// value of available[cr] would mean that the color cr is
// assigned to one of its adjacent vertices
bool available[vertices_amount];
for (int cr = 0; cr < vertices_amount; cr++)
available[cr] = false;
// Assign colors to remaining V-1 vertices
vp = vertices(g); // reset to beginning
++vp.first; // start from second vertex
for (; vp.first != vp.second; ++vp.first) {
// Process all adjacent vertices and flag their colors
// as unavailable
for (std::pair<adjacency_it, adjacency_it> neighbours = boost::adjacent_vertices(g[*vp.first], g);
neighbours.first != neighbours.second; ++neighbours.first)
if (vertex_colouring[g[*neighbours.first].name] != -1)
available[vertex_colouring[g[*neighbours.first].name]] = true;
// Find the first available color
int cr;
for (cr = 0; cr < vertices_amount; cr++)
if (available[cr] == false)
break;
vertex_colouring[g[*vp.first].name] = cr; // Assign the found color
// Reset the values back to false for the next iteration
neighbours = boost::adjacent_vertices(g[*vp.first], g); // reset to beginning
for (; neighbours.first != neighbours.second; ++neighbours.first)
if (vertex_colouring[g[*neighbours.first].name] != -1)
available[vertex_colouring[g[*neighbours.first].name]] = false;
}
// print the result and find colour number
unsigned colour_number = 0;
for (std::map<std::string, int>::iterator it = vertex_colouring.begin(); it != vertex_colouring.end(); ++it) {
std::cout << "Vertex " << it->first << " ---> Color " << it->second << std::endl;
if (it->second > colour_number)
colour_number = it->second;
}
return colour_number;
}
The error I get is related to the call to:
std::pair<adjacency_it, adjacency_it> neighbours = boost::adjacent_vertices(g[*vp.first],g)
Which gives the following compile error: "error: no matching function for call to ‘boost::adjacency_iterator ... " (partial copy).
Commenting out the code related to the function adjacency lets it compile, so I am sure that this is the problem code.
Some typedefs that are being used in the function:
typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::bidirectionalS, Vertex, Edge > Graph;
typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS, Vertex, Edge > UndirectedGraph;
typedef std::pair<Vertex ,Vertex > vert_p;
typedef boost::graph_traits<Graph>::vertex_descriptor vertex_t;
typedef std::pair<boost::graph_traits<Graph>::edge_descriptor, bool> edge_t;
typedef boost::graph_traits<Graph>::in_edge_iterator in_edge_it;
typedef boost::graph_traits<Graph>::vertex_iterator vertex_iter;
typedef boost::graph_traits<Graph>::edge_iterator edge_iter;
typedef boost::property_map<Graph, boost::vertex_index_t>::type IndexMap;
typedef std::pair<vertex_iter, vertex_iter> vertex_pair_iterators;
typedef std::pair<in_edge_it, in_edge_it> edge_pair_iterators;
typedef boost::graph_traits<Graph>::adjacency_iterator adjacency_it;
Can anyone give me a clue what I am doing wrong?
Two issues:
the first argument needs to be a vertex descriptor, not the property bundle. Change
boost::adjacent_vertices(g[*vp.first], g)
into
boost::adjacent_vertices(*vp.first, g)
the return type is std::pair<adjacency_iterator, adjacency_iterator>. However, you defined adjacency_iterator as
typedef boost::graph_traits<Graph>::adjacency_iterator adjacency_it;
when it needs to be
typedef boost::graph_traits<UndirectedGraph>::adjacency_iterator adjacency_it;
Further notes:
It's easier to work with separate iterators instead of vp.first and vp.second (use boost::tie to assign both at once)
You have a "poisonous" unsigned value in your comparison, write it explicitly as
if(it->second > static_cast<int>(colour_number))
Or review the logic with possible -1 values in the map.
it's likely very inefficient to keep the colour map indexed by Vertex::name (which is a string). You should consider indexing by vertex_descriptor.
Now, since your vertex model uses vecS for the VertexContainer, you could actually use the fact that this descriptor is an integral index in the range [0, num_vertices(g)).
Therefore you can replace the map<> (which has bad memory locality) with a vector<int> (where the vertex descriptor is the vector index).
If you want to support other graph models, you can let the caller pass in an IndexMap that maps vertex-descriptor to similar consecutive indices. Lots of algorithms in the BGL use this approach.
Obviously, bool[] could (should) be std::bitset or even std::vector<bool>. Boost has the dynamic_bitset which is probably best here.
(I'd need to understand your algorithm a lot better. Perhaps a set of "taken" colour would be even better. And implemented as an unsorted contiguous collection for speed, unless you anticipate the number of colour to get big enough that an ordered/hash lookup would be faster (?!).
Always make your code selfcontained:
Live On Coliru
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/copy.hpp>
#include <iostream>
struct Vertex {
std::string name;
};
struct Edge {
};
typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::bidirectionalS, Vertex, Edge > Graph;
typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS, Vertex, Edge > UndirectedGraph;
Graph network;
int greedy_colouring() {
using namespace boost;
typedef boost::graph_traits<UndirectedGraph>::vertex_descriptor vertex_descriptor;
static_assert(is_integral<vertex_descriptor>::value, "IndexMap not provided yet TODO");
typedef boost::graph_traits<UndirectedGraph>::vertex_iterator vertex_iter;
typedef boost::graph_traits<UndirectedGraph>::adjacency_iterator adjacency_it;
// create an undirected graph with the vertices and edges of the first one
UndirectedGraph g;
copy_graph(network, g);
vertex_iter vit, vend;
tie(vit, vend) = vertices(g);
size_t const vertices_amount = num_vertices(g);
std::vector<int> vertex_colouring(vertices_amount, -1);
vertex_colouring[*vit] = 0; // Assign the first color to first vertex
// A temporary array to store the available colors.
// - available[cr]: assigned to one of its adjacent vertices
std::vector<bool> available(vertices_amount, false);
for (++vit; vit!=vend; ++vit)
{
// Process all adjacent vertices and flag their colors as unavailable
adjacency_it neighbour, neighbour_end;
for (tie(neighbour, neighbour_end) = adjacent_vertices(*vit, g); neighbour != neighbour_end; ++neighbour)
if (vertex_colouring[*neighbour] != -1)
available[vertex_colouring[*neighbour]] = true;
// Find the first available color
vertex_colouring[*vit] = distance(available.begin(), std::find(available.begin(), available.end(), false));
// Reset the values back to false for the next iteration
for (tie(neighbour, neighbour_end) = adjacent_vertices(*vit, g); neighbour != neighbour_end; ++neighbour)
if (vertex_colouring[*neighbour] != -1)
available[vertex_colouring[*neighbour]] = false;
}
// print the result and find colour number
for (vertex_descriptor v = 0; v < vertices_amount; ++v)
std::cout << "Vertex " << v << " ---> Color " << vertex_colouring[v] << std::endl;
return *std::max_element(vertex_colouring.begin(), vertex_colouring.end());
}
int main() { }
I have a graph stored as an adjacency list. The vertex property holds an int ID, and the edge property holds a 4x4 matrix and a weight;
In a test case, the graph is a 3-vertex graph with an edge connecting each pair of vertices (a complete graph).
I have a vector of edges descriptors PathType, representing a path, and I am iterating through it and accessing each edge and its property, RelationshipEdge, as follows.
for(PathType::iterator pathIterator = path.begin(); pathIterator != path.end(); ++pathIterator){
edge_t edge = *pathIterator;
RelationshipEdge rEdge = m_graph[edge];
int sourceID = m_graph[boost::source(edge, m_graph)].id;
int destID = m_graph[boost::target(edge, m_graph)].id;
However sometimes when this is performed, the RelationshipEdge returned contains the data for the wrong edge.
As an example, inspecting edge shows an m_source of 1 and m_target of 2. If I inspect the graph and find the edge with source 1 and target 2, the weight is 3 and the matrix is as entered. However rEdge has a weight of 1, and a different matrix. Those values actually correspond with the edge with source 0 and target 1.
Am I accessing the edge properties correctly?
The definition of my graph type is:
typedef boost::adjacency_list<
boost::vecS, boost::vecS, boost::undirectedS, MarkerVertex, RelationshipEdge>
CorrelationAdjacencyList;
I believe your error is coming from somewhere else in the code base.
I put together this simple code to test out edge access and order on a similar graph and everything works as expected.
Culprits could be manually maintained edge_descriptors or vertex_descriptors as sehe mentioned. Or perhaps your path vector initialization or construction.
#include <iostream>
#include <algorithm>
#include <vector>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/graph_traits.hpp>
using namespace std;
enum edge_t {A,B};
struct MarkerVertex{
std::string id;
};
struct RelationshipEdge{
std::string id;
};
typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS,
MarkerVertex, RelationshipEdge> CorrelationAdjacencyList;
typedef boost::graph_traits<CorrelationAdjacencyList>::edge_descriptor Edge;
typedef boost::graph_traits<CorrelationAdjacencyList>::vertex_descriptor Vertex;
typedef vector<Edge> PathType;
void printPath(PathType &p, CorrelationAdjacencyList &g){
cout << "print path" << endl;
for(PathType::iterator pi = p.begin(); pi != p.end(); ++pi){
Edge e = *pi;
Vertex s = boost::source(e,g);
Vertex t = boost::target(e,g);
cout << g[s].id << "\t"
<< g[e].id << "\t"
<< g[t].id << endl;
bool isFound;
Edge eForward;
boost::tie(eForward,isFound) = boost::edge(s,t,g);
cout << "forward " << g[eForward].id << "\t" << isFound << endl;
Edge eBackward;
boost::tie(eBackward,isFound) = boost::edge(t,s,g);
cout << "backward " << g[eBackward].id << "\t" << isFound << endl;
}
}
int main(int argc, char* argv[]){
CorrelationAdjacencyList graph;
Vertex a = boost::add_vertex(graph); graph[a].id = "a";
Vertex b = boost::add_vertex(graph); graph[b].id = "b";
Vertex c = boost::add_vertex(graph); graph[c].id = "c";
Edge e1 = boost::add_edge(a,b,graph).first; graph[e1].id = "e1";
Edge e2 = boost::add_edge(b,c,graph).first; graph[e2].id = "e2";
Edge e3 = boost::add_edge(c,a,graph).first; graph[e3].id = "e3";
PathType path1,path2,path3;
path1.push_back(e1);
path1.push_back(e2);
path1.push_back(e3);
path2.push_back(e2);
path2.push_back(e3);
path2.push_back(e1);
path3.push_back(e3);
path3.push_back(e2);
path3.push_back(e1);
printPath(path1,graph);
cout << endl;
printPath(path2,graph);
cout << endl;
printPath(path3,graph);
cin.get();
}
Without further information, I can make the educated guess that you use vecS containers and the iterators/references have become invalidated.
This would happen on insertion/deletion of edges/vertices.
Here's the solution I found, though I'm not convinced I fully understand why the original method does not.
I have replaced the above code with
for(PathType::iterator pathIterator = path.begin(); pathIterator != path.end(); ++pathIterator){
edge_t edge = *pathIterator;
int sourceID = m_graph[boost::source(edge, m_graph)].id;
int destID = m_graph[boost::target(edge, m_graph)].id;
int lowerID, higherID;
if (sourceID < destID){
lowerID = sourceID;
higherID = destID;
} else {
lowerID = destID;
higherID = sourceID;
}
edge_t edge2 = m_edgeDescriptorsByEndpoints.at(make_pair(lowerID, higherID));
RelationshipEdge rEdge = m_graph[edge2];
m_edgeDescriptorsByEndpoints is a map of pairs of vertex IDs to edge descriptors.
So I'm taking the edge descriptor, getting the IDs of the source and target vertices, finding the corresponding edge descriptor from the map and then getting the properties of that edge.
Not exactly a satisfying solution but it works, as far as I've been able to test so far.
EDIT
I substituted the call to my map with a call to boost::edge(u,v,g) as suggested by #sehe, so the code is now as follows:
for(PathType::iterator pathIterator = path.begin(); pathIterator != path.end(); ++pathIterator){
edge_t edge = *pathIterator;
vert_t sourceV = boost::source(edge, m_graph);
vert_t targetV = boost::target(edge, m_graph);
pair<edge_t, bool> edgePair = boost::edge(sourceV, targetV, m_graph);
if (!edgePair.second){
cerr << "Edge does not exist" << endl;
}
RelationshipEdge rEdge = m_graph[edgePair.first];
This code still results in rEdge containing the correct properties, which seems odd, since I'd think that querying the graph for the vertices of an edge, and then querying the graph for the edge that connects those vertices would always give you that exact same edge back.
I am learning the Fruchterman-Reingold algorithm in Boost Graph Library. By reading the document, I know that the algorithm is to compute the positions for all nodes in terms of graph layout, but my problem is I cannot understand the calculation steps of attractive forces in Boost Graph Library.
For example, if the topology is rectangle with height 100 and width 100, each vertex is labelled as string, and the relation between each pair vertex as:
"0" "5"
"Kevin" "Martin"
"Ryan" "Leo"
"Y" "S"
"Kevin" "S"
"American" "USA"
Each row denotes the two labelled vertices are connected. The formula of attractive force for each vertex is supposed to be:
f = (d^2) / k
where d is the distance between two vertices and k is the optimal distances. But I don't understand how to get the distance d in the code of Fruchterman-Reingold in Boost Graph Library. In this example, does it compute the ASCII value difference between each pair vertices as the distance d? (ASCII value of '0' is 48, and ASCII value of '5' is 53. Is it true that Fruchterman-Reingold computes 53 - 48 = 5 as d in BGL?) I really appreciate if anyone can help me.
Furchterman-Reingold implementation takes an IN/OUT topology.
It expects the topology to be initialized to some state before execution. The distance passed to the attraction function will be the one from the topology at that iteration.
Note Note that (unless progressive is set to true) Furterman-Reingold will initialize the topology randomly by default (using random_graph_layout).
All the above taken from in the documentation.
Here's a tiny demo using your input graph that shows how to implement such an attractive_force function:
struct AttractionF {
template <typename EdgeDescriptor, typename Graph>
double operator()(EdgeDescriptor /*ed*/, double k, double d, Graph const& /*g*/) const {
//std::cout << "DEBUG af('" << g[source(ed, g)].name << " -> " << g[target(ed, g)].name << "; k:" << k << "; d:" << d << ")\n";
return (d*d/k);
}
};
See Live On Coliru
#include <memory>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/fruchterman_reingold.hpp>
#include <boost/graph/random_layout.hpp>
#include <libs/graph/src/read_graphviz_new.cpp>
#include <boost/graph/topology.hpp>
#include <boost/random.hpp>
using namespace boost;
struct Vertex {
std::string name;
};
struct AttractionF {
template <typename EdgeDescriptor, typename Graph>
double operator()(EdgeDescriptor /*ed*/, double k, double d, Graph const& /*g*/) const {
//std::cout << "DEBUG af('" << g[source(ed, g)].name << " -> " << g[target(ed, g)].name << "; k:" << k << "; d:" << d << ")\n";
return (d*d/k);
}
};
using Graph = adjacency_list<vecS, vecS, undirectedS, Vertex>;
Graph make_sample();
int main() {
auto g = make_sample();
using Topology = square_topology<boost::mt19937>;
using Position = Topology::point_type;
std::vector<Position> positions(num_vertices(g));
square_topology<boost::mt19937> topology;
random_graph_layout(g,
make_iterator_property_map(positions.begin(), boost::identity_property_map{}),
topology);
fruchterman_reingold_force_directed_layout(
g,
make_iterator_property_map(positions.begin(), boost::identity_property_map{}),
topology,
attractive_force(AttractionF())
);
dynamic_properties dp;
dp.property("node_id", get(&Vertex::name, g));
write_graphviz_dp(std::cout, g, dp);
}
Graph make_sample() {
std::string const sample_dot = R"(
graph {
"0" -- "5";
"Kevin" -- "Martin";
"Ryan" -- "Leo";
"Y" -- "S";
"Kevin" -- "S";
"American" -- "USA";
}
)";
Graph g;
dynamic_properties dp;
dp.property("node_id", get(&Vertex::name, g));
read_graphviz(sample_dot, g, dp);
return g;
}
Note that in c++11 you can equally well use a lambda:
fruchterman_reingold_force_directed_layout(
g,
make_iterator_property_map(positions.begin(), boost::identity_property_map{}),
topology,
attractive_force([](Graph::edge_descriptor, double k, double d, Graph const&) { return (d*d)/k; })
);