Access data passed from vertex shader to fragment shader - opengl

I have this vertex shader in GLSL which I'm using with a Qt3D custom effect/material:
attribute vec3 vertexPosition;
attribute vec3 vertexNormal;
varying vec3 worldPosition;
varying vec3 worldNormal;
uniform mat4 modelMatrix;
uniform mat3 modelNormalMatrix;
uniform mat4 modelViewProjection;
void main()
{
worldNormal = normalize( modelNormalMatrix * vertexNormal );
worldPosition = vec3( modelMatrix * vec4( vertexPosition, 1.0 ) );
gl_Position = modelViewProjection * vec4( vertexPosition, 1.0 );
}
I understand that the varying data (out data in newer versions if GLSL) is passed from my vertex shader to fragment shader.
Is it possible for me to go in-between vertex-fragment shaders and access the varying/out data in my C++ code? Is there any practical example which I can refer to?
My objective is to detect and get global/world positions with a specific condition, like having z which is larger than 10 like below. I need to be able to access these z > 10 positions on my C++ code.
// ...
varying vec3 higherThanTen;
// ...
void main()
{
// ...
if ( worldPosition.z > 10 ) {
higherThanTen = worldPosition;
}
// ...
}

Related

How do you incorporate per pixel lighting in shaders with LIBGDX?

So I've currently managed to write a shader using Xoppa tutorials and use an AssetManager, and I managed to bind a texture to the model, and it looks fine.
[[1
Now the next step I guess would be to create diffuse(not sure if thats the word? phong shading?) lighting(?) to give the bunny some form of shading. While I have a little bit of experience with GLSL shaders in LWJGL, I'm unsure how to process that same information so I can use it in libGDX and in the glsl shaders.
I understand that this all could be accomplished using the Environment class etc. But I want to achieve this through the shaders alone or by traditional means simply for the challenge.
In LWJGL, shaders would have uniforms:
in vec3 position;
in vec2 textureCoordinates;
in vec3 normal;
out vec2 pass_textureCoordinates;
out vec3 surfaceNormal;
out vec3 toLightVector;
uniform mat4 transformationMatrix;
uniform mat4 projectionMatrix;
uniform mat4 viewMatrix;
uniform vec3 lightPosition;
This would be reasonably easy for me to calculate in LWJGL
Vertex file:
attribute vec3 a_position;
attribute vec3 a_normal;
attribute vec2 a_texCoord0;
uniform mat4 u_worldTrans;
uniform mat4 u_projViewTrans;
varying vec2 v_texCoords;
void main() {
v_texCoords = a_texCoord0;
gl_Position = u_projViewTrans * u_worldTrans * vec4(a_position, 1.0);
}
I imagine that I could implement the uniforms similarly to the LWGL glsl example, but I dont know how I can apply these uniforms into libgdx and have it work. I am unsure what u_projViewTrans is, I'm assuming it is a combination of the projection, transformation and view matrix, and setting the uniform with the camera.combined?
If someone could help me understand the process or point to an example of how (per pixel lighting?), can be implemented with just the u_projViewTrans and u_worldTrans, I'd greatly appreciate your time and effort in helping me understand these concepts a bit better.
Heres my github upload of my work in progress.here
You can do the light calculations in world space. A simple lambertian diffuse light can be calculated like this:
vec3 toLightVector = normalize( lightPosition - vertexPosition );
float ligtIntensity = max( 0.0, dot( normal, toLightVector ));
A detailed explanation can be found in the answer to the Stackoverflow question How does this faking the light work on aerotwist?.
While Gouraud shading calculates the light in the the vertex shader, Phong shading calculates the light in the fragment shader.
(see further GLSL fixed function fragment program replacement)
A Gouraud shader may look like this:
Vertex Shader:
attribute vec3 a_position;
attribute vec3 a_normal;
attribute vec2 a_texCoord0;
uniform mat4 u_worldTrans;
uniform mat4 u_projViewTrans;
uniform vec3 lightPosition;
varying vec2 v_texCoords;
varying float v_lightIntensity;
void main()
{
vec4 vertPos = u_worldTrans * vec4(a_position, 1.0);
vec3 normal = normalize(mat3(u_worldTrans) * a_normal);
vec3 toLightVector = normalize(lightPosition - vertPos.xyz);
v_lightIntensity = max( 0.0, dot(normal, toLightVector));
v_texCoords = a_texCoord0;
gl_Position = u_projViewTrans * vertPos;
}
Fragment Shader:
varying vec2 v_texCoords;
varying float v_lightIntensity;
uniform sampler2D u_texture;
void main()
{
vec4 texCol = texture( u_texture, v_texCoords.st );
gl_FragColor = vec4( texCol.rgb * v_lightIntensity, 1.0 );
}
A Phong shading may look like this:
Vertex Shader:
attribute vec3 a_position;
attribute vec3 a_normal;
attribute vec2 a_texCoord0;
uniform mat4 u_worldTrans;
uniform mat4 u_projViewTrans;
varying vec2 v_texCoords;
varying vec3 v_vertPosWorld;
varying vec3 v_vertNVWorld;
void main()
{
vec4 vertPos = u_worldTrans * vec4(a_position, 1.0);
v_vertPosWorld = vertPos.xyz;
v_vertNVWorld = normalize(mat3(u_worldTrans) * a_normal);
v_texCoords = a_texCoord0;
gl_Position = u_projViewTrans * vertPos;
}
Fragment Shader:
varying vec2 v_texCoords;
varying vec3 v_vertPosWorld;
varying vec3 v_vertNVWorld;
uniform sampler2D u_texture;
struct PointLight
{
vec3 color;
vec3 position;
float intensity;
};
uniform PointLight u_pointLights[1];
void main()
{
vec3 toLightVector = normalize(u_pointLights[0].position - v_vertPosWorld.xyz);
float lightIntensity = max( 0.0, dot(v_vertNVWorld, toLightVector));
vec4 texCol = texture( u_texture, v_texCoords.st );
vec3 finalCol = texCol.rgb * lightIntensity * u_pointLights[0].color;
gl_FragColor = vec4( finalCol.rgb * lightIntensity, 1.0 );
}

Normal maps and specular with reflections

I'm using ogre3d meshy to view a model. I have written a shader that works with normal maps, reflection, specular maps. But normal maps doesn't work as shown in the picture.
The reflection is working as you see, and sepcular maps is working, but I don't need see the normal maps and bump mapping is working though.
I have tried to disable everything and output the result of the normal maps and its textured and sampled correctly, the same for specular, and for the diffuse map.
Here is the GLSL VS
/*
Environmental Cubic Reflection
NormalMapping
TetxureMapping Scaling
*/
#version 120
#define lowp
#define mediump
#define highp
attribute vec4 vertex;
attribute vec3 normal;
attribute vec4 uv0;
attribute vec4 uv1;
attribute vec4 tangent;
//attribute vec3 binormal;
uniform mat4 normalMatrix;
uniform mat4 modelViewProjectionMatrix;
uniform mat4 modelView;
uniform vec3 camera_world_position;
uniform mat4 textureMatrix0;
varying vec2 texCoord[2];
varying vec3 viewWorld;
varying mat3 world2Tangent;
void main()
{
gl_Position = modelViewProjectionMatrix * vertex;
// transform the uv coordinates
texCoord[0] = (textureMatrix0 * uv0).xy;
texCoord[1] = uv1.xy;
//world.
vec3 vertexWorld = vec3(modelView * vertex);
//transform world to tangent.
//world2Tangent = mat3(normalMatrix) * mat3(tangent, binormal, normal);
// no binormal in ogre?. must reconstruct. Ogre inverts?
vec3 binormal = cross ( normal, tangent.xyz ) * tangent.www;
world2Tangent = mat3(normalMatrix) * mat3(tangent.xyz, binormal, normal);
//Camera Position
//Use Light0 instead of camera position to match phong specular with environment reflection
viewWorld = normalize( - vertexWorld );
}
#version 120
#define lowp
#define mediump
#define highp
uniform sampler2D diffuseColorMap;
uniform sampler2D ambientOcclusionMap;
uniform sampler2D normalMap;
uniform sampler2D specularMap;
uniform samplerCube envMap;
uniform float diffuseFactor;
uniform float reflectionFactor;
uniform float opacity;
varying vec2 texCoord[2];
varying mat3 world2Tangent;
varying vec3 viewWorld;
void main()
{
//unpack current normal in tangent space
vec3 normal = 2.0 * texture2D (normalMap, texCoord[0].st).rgb - 1.0;
// environment reflection in world space
vec3 normalWorld = normalize(world2Tangent * normal);
vec3 refDir = viewWorld - 2.0 * dot(viewWorld,normalWorld) * normalWorld;
vec4 diffuseColor = texture2D( diffuseColorMap, texCoord[0] );
//mix ambient material with reflection
vec4 final = diffuseFactor * ( diffuseColor * texture2D(ambientOcclusionMap, texCoord[0]) ) +
reflectionFactor * ( textureCube(envMap,refDir) * texture2D(specularMap, texCoord[0]) );
final.a = diffuseColor.a * opacity;
gl_FragColor= final;
}

How to make a retro/neon/glow effect using shaders?

Let's say the concept is to create a map consisting of cubes with a neon aesthetic, such as:
Currently I have this vertex shader:
// Uniforms
uniform mat4 u_projection;
uniform mat4 u_view;
uniform mat4 u_model;
// Vertex atributes
in vec3 a_position;
in vec3 a_normal;
in vec2 a_texture;
vec3 u_light_direction = vec3(1.0, 2.0, 3.0);
// Vertex shader outputs
out vec2 v_texture;
out float v_intensity;
void main()
{
vec3 normal = normalize((u_model * vec4(a_normal, 0.0)).xyz);
vec3 light_dir = normalize(u_light_direction);
v_intensity = max(0.0, dot(normal, light_dir));
v_texture = a_texture;
gl_Position = u_projection * u_view * u_model * vec4(a_position, 1.0);
}
And this pixel shader:
in float v_intensity;
in vec2 v_texture;
uniform sampler2D u_texture;
out vec4 fragColor;
void main()
{
fragColor = texture(u_texture, v_texture) * vec4(v_intensity, v_intensity, v_intensity, 1.0);
}
How would I use this to create a neon effect such as in the example for 3D cubes? The cubes are simply models with a mesh/material. The only change would be to set the material color to black and the outlines to a bright pink or blue (maybe with a glow).
Any help is appreciated. :)
You'd normally implement this as a post-processing effect. First render with bright, saturated colours into a texture, then apply a bloom effect, when drawing that texture to screen.

Calculating Per face normals in Geometry Shader

I'm trying to calculate per-face normals in geometry shader, using the following pipeline
//VERTEX_SHADER
#version 330
layout(location = 0) in vec4 vertex;
out vec3 vert;
uniform mat4 projMatrix;
uniform mat4 mvMatrix;
void main()
{
vert = vertex.xyz;
gl_Position = projMatrix * mvMatrix * vertex;
}
//GEOMETRY_SHADER
#version 330
layout ( triangles ) in;
layout ( triangle_strip, max_vertices = 3 ) out;
out vec3 normal_out;
uniform mat3 normalMatrix;
void main()
{
vec3 A = gl_in[2].gl_Position.xyz - gl_in[0].gl_Position.xyz;
vec3 B = gl_in[1].gl_Position.xyz - gl_in[0].gl_Position.xyz;
normal_out = normalMatrix * normalize(cross(A,B));
gl_Position = gl_in[0].gl_Position;
EmitVertex();
gl_Position = gl_in[1].gl_Position;
EmitVertex();
gl_Position = gl_in[2].gl_Position;
EmitVertex();
EndPrimitive();
}
//FRAG_SHADER
#version 330
in vec3 normal_out;
in vec3 vert;
out vec4 fColor;
uniform vec3 lightPos;
void main()
{
highp vec3 L = normalize(lightPos - vert);
highp float NL = max(dot(normal_out, L), 0.0);
highp vec3 color = vec3(1, 1, 0.0);
fColor = vec4(color*NL, 1.0);
}
However, I end up with very weird looking faces that keeps flickering(I included a snapshot below). It occurred to me that it might be because I'm using 8 vertices to represent 1 cell(cube) instead of 24 vertices, But I'm not quite sure if that is what is causing the problem.
Left: Using Light Weighting 'NL', Right:Without
After every call to EmitVertex, the contents of all output variables are made undefined. Therefore, if you want to output the same value to multiple vertices, you must copy it to the output every time.
Also, note that each shader stage's outputs provide inputs only to the next stage. So if you have a GS, and you want to pass a value from the VS to the FS, you must have the GS explicitly pass that value through.

Problems with flat and phong shading

(Edit): The original code I posted was for both gouraud and phong shading options. I've changed it so it is just phong shading and posted below. The mesh is too big to describe here, as it is generated from a Bezier Patch.
I'm having some problems with flat and phong shading in Open GL 3 Mesa 9. It seems no matter what I do I get flat shaded figures, with tiny facets (planes) and I cannot get Blinn-Phong shading to work.
Here are my shaders:
(Vertex Shader)
//material parameters
uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform float Shininess;
attribute vec4 vPosition;
//attribute vec4 vColor;
attribute vec4 vNormal;
attribute vec4 vControlColor;
attribute vec2 texcoord;
uniform mat4 model_view;
uniform mat4 projection;
uniform int flag;
uniform int phong_flag;
uniform vec4 eye_position;
//lighting parameters
uniform vec4 light_1; //light 1 position
uniform vec4 light_2; //light 2 position
varying vec4 control_color;
varying vec4 color;
varying vec4 position;
varying vec4 normal;
varying vec2 st;
void
main()
{
control_color = vControlColor;
position = vPosition;
normal = vNormal;
tex_coords = texcoord;
st = texcoord;
gl_Position = projection*model_view*vPosition;
}
And my fragment shader:
//material parameters
uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform float Shininess;
uniform vec4 eye_position;
uniform int phong_flag;
//lighting parameters
uniform vec4 light_1; //light 1 position
uniform vec4 light_2; //light 2 position
varying vec4 light_2_transformed; //light 2 transformed position
uniform int Control_Point_Flag;
uniform sampler2D texMap;
varying vec4 color;
varying vec4 position;
varying vec4 normal;
varying vec4 control_color;
varying vec2 st;
void
main()
{
vec4 N = normalize(normal);
vec4 E = normalize(eye_position - position);
vec4 L1 = normalize(light_1 - position);
vec4 L2 = normalize(light_2 - position);
vec4 H1 = normalize( L1 + E);
vec4 H2 = normalize( L2 + E);
//calculate ambient component
vec4 ambient = AmbientProduct;
//calculate diffuse componenent
float k_d_1 = max(dot(L1,N), 0.0);
float k_d_2 = max(dot(L2,N), 0.0);
vec4 diffuse1 = k_d_1*DiffuseProduct;
vec4 diffuse2 = k_d_2*DiffuseProduct;
//calculate specular componenent
float k_s_1 = pow(max(dot(N, H1), 0.0), Shininess);
float k_s_2 = pow(max(dot(N, H2), 0.0), Shininess);
vec4 specular1 = k_s_1*SpecularProduct;
vec4 specular2 = k_s_2*SpecularProduct;
//if specular color is behind the camera, discard it
if (dot(L1, N) < 0.0) {
specular1 = vec4(0.0, 0.0, 0.0, 1.0);
}
if (dot(L2, N) < 0.0) {
specular2 = vec4(0.0, 0.0, 0.0, 1.0);
}
vec4 final_color = ambient + diffuse1 + diffuse2 + specular1 + specular2;
final_color.a = 1.0;
/* gl_FragColor = final_color; */
gl_FragColor = final_color*texture2D(texMap, st);
}
Does everything look ok for my shaders?
Things worth noting:
You have variables for a ModelView in your vertex shader, but you never use it in calculating position. Your vertex "position"s are thus whatever is passed from your OpenGL application and are not affected by any transformations you may be trying to do, though they are physically placed correctly because you use the matrices for gl_Position.
You aren't passing a Normal matrix to your shader. The Normal matrix is calculated by taking the transpose inverse of the ModelView matrix. Calculate this outside of the shader and pass it in. If you don't multiply your normals by the Normal matrix, you'll still be able to transform your model, but the normals will all still be facing the same way, so your lighting will be incorrect.
However, your normal vectors on the OpenGL side are may likely be the culprit. See this question for a good explanation of a possible source of unwanted flat shading.
As a side note, both of your shaders seem more complicated than they should be. That is to say, they have too many variables that aren't used and too much stuff that you could condense into fewer lines. It's just housekeeping, but it will make keeping track of your code easier.