I have the following class that wraps a C++ map. I'd like to override just the iterator dereference, to return the map's value only instead of the key. Is this possible at all, without having to re-implement the entire std::map iterator (which I should probably avoid as much as possible)?
Here it is:
#include <map>
using std::map;
class X {
using Type = map<int, double>;
using const_iterator = typename Type::const_iterator;
public:
void insert(int key, double value) {
my_map[key] = value;
}
const_iterator cbegin() const { return my_map.cbegin(); }
const_iterator cend() const { return my_map.cend(); }
const_iterator begin() const { return my_map.cbegin(); }
const_iterator end() const { return my_map.cend(); }
private:
Type my_map;
};
int main() {
X x;
double i;
for (const auto& it : x) {
i = it.second; // works
i = it; // fails
}
}
You pretty much do need to implement an entire iterator type to provide new iterator behavior. Luckily, Boost has a couple of tools that can make this much easier: boost::iterator_facade is a tool for creating an iterator type, which takes care of satisfying all the requirement details for the various types of Iterator as defined by the Standard. And for the common case where you want to create an iterator which wraps another iterator, overriding just pieces of its functionality, there's boost::iterator_adaptor.
So you could define your X::const_iterator like this:
#include <map>
#include <boost/iterator_adaptor.hpp>
using std::map;
class X {
using Type = map<int, double>;
public:
class const_iterator : public boost::iterator_adaptor<
const_iterator, // Derived iterator type, for CRTP
typename Type::const_iterator, // Wrapped iterator type
const double> // Value type
{
public:
const_iterator() {}
private:
// Allow X to create X::const_iterator from Type::const_iterator:
explicit const_iterator(typename Type::const_iterator map_iter)
: iterator_adaptor(map_iter) {}
friend X;
// Define the dereference operation:
const double& dereference() const
{ return base()->second; }
// Allow boost's internals to use dereference():
friend boost::iterator_core_access;
};
const_iterator cbegin() const { return const_iterator(my_map.cbegin()); }
};
...
(I intentionally changed the access of the name X::const_iterator from private to public. Someone may want to explicitly name that iterator type.)
Borrowing from Yakk's answer here you can easily modify it to suite your needs.
template<class T>
T value_of(T t) { return std::move(t); }
template<class K, class V>
V value_of(std::pair<K, V> const& p) { return p.second; }
template<class It>
struct range_t {
It b;
It e;
It begin() const { return b; }
It end() const { return e; }
};
template<class T>
struct value_t {
T t;
void operator++(){ t++; }
auto operator*() { return value_of(*t); }
friend bool operator==(value_t const& left, value_t const& right)
{ return left.t == right.t; }
friend bool operator!=(value_t const& left, value_t const& right)
{ return left.t != right.t; }
};
template<class T>
range_t<value_t<T>> values_over(T b, T e) {
return {{b}, {e}};
}
template<class C>
auto values_of(C& c) {
using std::begin; using std::end;
return values_over(begin(c), end(c));
}
int main() {
X x;
double i;
for (double const& it : values_of(x)) {
i = it;
}
}
Related
I have an abstract base class T and another class holding a vector of unique pointers to T. The class should support two function returning references to the entries. One of them should provide read-access, the other one should be able to modify the values in the unique_ptrs but not the pointers:
class A {
private:
std::vector<std::unique_ptr<T>> data;
public:
auto access() -> RefRange<T>;
auto const_access() -> ConstRefRange<T>;
};
The ranges should satisfy the requirements of a std::random_access_range.
How can I do this without allocating additional memory in C++17 (boost is available)?
If you have boost, much of this is done by the range adaptor indirected
class A {
private:
static auto add_const(T & t) -> const T & { return t; }
std::vector<std::unique_ptr<T>> data;
using indirected = boost::adaptors::indirected;
using transformed = boost::adaptors::transformed;
public:
auto access() { return data | indirected; }
auto const_access() const { return data | indirected | transformed(add_const); }
};
Or with std::views::transform in C++20
class A {
private:
static auto indirect(const std::unique_ptr<T> & ptr) -> T & { return *ptr; }
static auto add_const(T & t) -> const T & { return t; }
std::vector<std::unique_ptr<T>> data;
using transform = std::views::transform;
public:
auto access() { return data | transform(indirect); }
auto const_access() const { return data | transform(indirect) | transform(add_const); }
};
If you have <experimental/propagate_const>, I'd use that instead of whichever transform(add_const).
class A {
private:
std::vector<std::experimental::propagate_const<std::unique_ptr<T>>> data;
using indirected = boost::adaptors::indirected;
public:
auto access() { return data | indirected; }
auto const_access() const { return data | indirected; }
};
You can implement a wrapper type which wraps the std::vector::iterator and provides a reference to the element contained by the std::unique_ptr on dereference.
Then return a simple struct containing begin and end iterators of these types.
Ex:
template<class T>
struct MyIterator
{
typename std::vector<std::unique_ptr<T>>::iterator iter; // or const_iterator for the const version
decltype(auto) operator*() const { return *iter->get(); }
// implement the rest of the iterator functionality
// ...
};
template<class T>
struct RefRange
{
MyIterator<T> first, last;
auto begin() const { return this->first; }
auto end() const { return this->last; }
};
class A {
private:
std::vector<std::unique_ptr<T>> data;
public:
auto access() -> RefRange<T> { return { data.begin(), data.end() }; }
};
Wrapper around iterator is the first thing that comes to my mind.
It's a quick and dirty example, but you should get the idea I suppose.
Demo: https://godbolt.org/z/z365js1T9
#include <memory>
#include <vector>
#include <iostream>
#include <initializer_list>
template<typename T>
struct S
{
using VecType = std::vector<std::unique_ptr<T>>;
VecType v{};
class RefRange
{
public:
RefRange(VecType& v) : r{v} {}
struct iterator
{
typename VecType::iterator underlying_iterator;
//below just return const T& for ConstRefRange
T& operator*() const { return *underlying_iterator->get();}
iterator& operator++(){++underlying_iterator; return *this;}
iterator operator++(int) {iterator ret{*this}; ++(*this); return ret;}
friend bool operator==(const iterator& l, const iterator& r)
{
return l.underlying_iterator==r.underlying_iterator;
}
friend bool operator!=(const iterator& l, const iterator& r)
{
return !(l==r);
}
};
iterator begin() {return iterator{r.begin()};}
iterator end() {return iterator{r.end()};}
private:
VecType& r;
};
RefRange refs() {return RefRange{v};}
};
int main()
{
S<int> s;
s.v.push_back(std::make_unique<int>(5));
s.v.push_back(std::make_unique<int>(6));
s.v.push_back(std::make_unique<int>(7));
auto r = s.refs();
for (auto&& el : r) {std::cout << el;}
}
I want to be able to make a method like
void Vector<T>::foo()
{
std::transform(this->begin(),this->end(),this->begin(), lambda)
}
but if I make my begin/end functions const they return a const_iterator, else I can`t use them with this while inside member function. Is there a way to do it?
template <class T>
class Vector
{
public:
Vector(std::vector<T> coords) : _coords(coords) {}
class std::vector<T>::iterator begin() const { return _coords.begin(); }
class std::vector<T>::iterator end() const { return _coords.end(); }
private:
std::vector<T> _coords;
};
I want to be able to use this->begin() inside a function
As I understand, you need const and non const overload:
template <class T>
class Vector
{
public:
Vector(std::vector<T> coords) : _coords(coords) {}
auto begin() const { return _coords.begin(); }
auto end() const { return _coords.end(); }
auto begin() { return _coords.begin(); }
auto end() { return _coords.end(); }
auto cbegin() const { return _coords.cbegin(); }
auto cend() const { return _coords.cend(); }
template <typename F>
void foo(F f)
{
std::transform(cbegin(), cend(), begin(), f);
}
private:
std::vector<T> _coords;
};
Yes, you provide a const qualified overload
template <class T>
class Vector
{
public:
using iterator = typename std::vector<T>::iterator;
using const_iterator = typename std::vector<T>::const_iterator;
Vector(std::vector<T> coords) : _coords(coords) {}
iterator begin() { return _coords.begin(); }
iterator end() { return _coords.end(); }
const_iterator begin() const { return _coords.begin(); }
const_iterator end() const { return _coords.end(); }
private:
std::vector<T> _coords;
};
I would like to hide a vector field in my class but allow easy iteration through its elements but nothing else. So that class's client would be able to do
for (auto element : foo.getElements()) { }
but not
foo.getElements()[42];
Is there some simple way of achieving this w/o creating new confusing types?
I cannot say what is and is not a "new confusing type". But this is sufficient for the needs of a range-based for:
template<typename Iter>
class iterator_range
{
public:
iterator_range(Iter beg, Iter end) : beg_(beg), end_(end) {}
Iter begin() const {return beg_;}
Iter end() const {return end_;}
private:
Iter beg_, end_;
};
The Range TS adds more complexity to what constitutes a "range", but this is good enough for range-based for. So your foo.getElements function would look like this:
auto getElements()
{
return iterator_range<vector<T>::iterator>(vec.begin(), vec.end());
}
auto getElements() const
{
return iterator_range<vector<T>::const_iterator>(vec.begin(), vec.end());
};
You can use an higher-order function to only expose iteration functionality:
class something
{
private:
std::vector<item> _items;
public:
template <typename F>
void for_items(F&& f)
{
for(auto& i : _items) f(i);
}
};
Usage:
something x;
x.for_items([](auto& item){ /* ... */ });
The advantages of this pattern are:
Simple to implement (no need for any "proxy" class);
Can transparently change std::vector to something else without breaking the user.
To be completely correct and pedantic, you have to expose three different ref-qualified versions of for_items. E.g.:
template <typename F>
void for_items(F&& f) & { for(auto& i : items) f(i); }
template <typename F>
void for_items(F&& f) const& { for(const auto& i : items) f(i); }
template <typename F>
void for_items(F&& f) && { for(auto& i : items) f(std::move(i)); }
The above code ensures const-correctness and allows elements to be moved when the something instance is a temporary.
Here is a proxy-based approach (though I'm not sure whether the new type meets the requirement of not being confusing).
template<class Container> class IterateOnlyProxy {
public:
IterateOnlyProxy(Container& c) : c(c) {}
typename Container::iterator begin() { return c.begin(); }
typename Container::iterator end() { return c.end(); }
private:
Container& c;
};
The proxy is used as a return type for the getElements() method,
class Foo {
public:
using Vec = std::vector<int>;
using Proxy = IterateOnlyProxy<Vec>;
Proxy& getElements() { return elementsProxy; }
private:
Vec elements{4, 5, 6, 7};
Proxy elementsProxy{elements};
};
and client code can iterate over the underlying container, but that's about it.
Foo foo;
for (auto element : foo.getElements())
std::cout << element << std::endl;
foo.getElements()[42]; // error: no match for ‘operator[]’
If you want to hide a vector field in your class but still do range based for-loop, you could add your own iterator based on vector::iterator.
A simple (and incomplete) example could be like:
#include <iostream>
#include <vector>
class Foo
{
public:
class iterator
{
public:
iterator(std::vector<int>::iterator n) : p(n) {}
bool operator==(iterator& rhs) { return p == rhs.p; }
bool operator!=(iterator& rhs) { return p != rhs.p; }
iterator& operator++() { p++; return *this; }
int& operator*() { return *p; }
private:
std::vector<int>::iterator p;
};
iterator begin() { return iterator(v.begin()); }
iterator end() { return iterator(v.end()); }
private:
std::vector<int> v {1, 2, 3, 4, 5};
};
int main() {
Foo foo;
for(auto y : foo) std::cout << y << std::endl;
return 0;
}
I am trying to write a class that should act as a sorted view on some underlying sequence of elements. So far I have come up with a non-const version. Now I have problems adapting it to also provide const_iterator functionality.
The code I have so far looks like this:
// forward declare iterator
template <class InputIt>
class sorted_range_iter;
template <class InputIt>
class sorted_range {
friend class sorted_range_iter<InputIt>;
private:
using T = typename InputIt::value_type;
InputIt _first;
InputIt _last;
std::vector<size_t> _indices;
public:
using iterator = sorted_range_iter<InputIt>;
sorted_range() = default;
sorted_range(InputIt first, InputIt last)
: _first(first), _last(last), _indices(std::distance(_first, _last)) {
std::iota(_indices.begin(), _indices.end(), 0);
};
template <class Compare = std::less<T>>
void sort(Compare comp = Compare()) {
std::sort(_indices.begin(), _indices.end(),
[this, &comp](size_t i1, size_t i2) {
return comp(*(_first + i1), *(_first + i2));
});
}
size_t size() const { return _indices.size(); }
T& operator[](size_t pos) { return *(_first + _indices[pos]); }
const T& operator[](size_t pos) const { return (*this)[pos]; }
iterator begin() { return iterator(0, this); }
iterator end() { return iterator(size(), this); }
};
And the corresponding iterator looks like this:
template <class InputIt>
class sorted_range_iter
: public std::iterator<std::forward_iterator_tag, InputIt> {
friend class sorted_range<InputIt>;
private:
using T = typename InputIt::value_type;
size_t _index;
sorted_range<InputIt>* _range;
sorted_range_iter(size_t index, sorted_range<InputIt>* range)
: _index(index), _range(range) {}
public:
T& operator*() { return *(_range->_first + _range->_indices[_index]); }
// pre-increment
const sorted_range_iter<InputIt>& operator++() {
_index++;
return *this;
}
// post-increment
sorted_range_iter<InputIt> operator++(int) {
sorted_range_iter<InputIt> result = *this;
++(*this);
return result;
}
bool operator!=(const sorted_range_iter<InputIt>& other) const {
return _index != other._index;
}
};
An usage example looks like this:
std::vector<int> t{5, 2, 3, 4};
auto rit = ref.begin();
sorted_range<std::vector<int>::iterator> r(begin(t), end(t));
r.sort();
for(auto& x : r)
{
std::cout << x << std::endl;
}
Output:
2
3
4
5
How do I adapt my iterator for the const case? It would be easier if the iterator would be templated on the underlying type (int for example) instead InputIt. Is there a better way to define this class?
I suppose one could solve this for example by using the range-v3 library, however I am trying to not add any more dependencies and rely on C++11/14 functions.
You just are using the wrong type for T. You have:
using T = typename InputIt::value_type;
But value_type is the same for iterator and const_iterator. What they have are different reference types. You should prefer:
using R = typename std::iterator_traits<InputIt>::reference;
R operator*() { ... }
This has the added benefit of working with pointers.
Alternatively, could avoid iterator_traits by just trying to dereference the iterator itself:
using R = decltype(*std::declval<InputIt>());
Side-note, shouldn't sorted_range sort itself on construction? Otherwise, easy to misuse.
I have a custom container class for which I'd like to write the iterator and const_iterator classes.
I never did this before and I failed to find an appropriate how-to. What are the guidelines regarding iterator creation, and what should I be aware of ?
I'd also like to avoid code duplication (I feel that const_iterator and iterator share many things; should one subclass the other ?).
Foot note: I'm pretty sure Boost has something to ease this but I can't use it here, for many stupid reasons.
Choose type of iterator which fits your container: input, output, forward etc.
Use base iterator classes from standard library. For example, std::iterator with random_access_iterator_tag.These base classes define all type definitions required by STL and do other work.
To avoid code duplication iterator class should be a template class and be parametrized by "value type", "pointer type", "reference type" or all of them (depends on implementation). For example:
// iterator class is parametrized by pointer type
template <typename PointerType> class MyIterator {
// iterator class definition goes here
};
typedef MyIterator<int*> iterator_type;
typedef MyIterator<const int*> const_iterator_type;
Notice iterator_type and const_iterator_type type definitions: they are types for your non-const and const iterators.
See Also: standard library reference
EDIT: std::iterator is deprecated since C++17. See a relating discussion here.
I'm going to show you how you can easily define iterators for your custom containers, but just in case I have created a c++11 library that allows you to easily create custom iterators with custom behavior for any type of container, contiguous or non-contiguous.
You can find it on Github
Here are the simple steps to creating and using custom iterators:
Create your "custom iterator" class.
Define typedefs in your "custom container" class.
e.g. typedef blRawIterator< Type > iterator;
e.g. typedef blRawIterator< const Type > const_iterator;
Define "begin" and "end" functions
e.g. iterator begin(){return iterator(&m_data[0]);};
e.g. const_iterator cbegin()const{return const_iterator(&m_data[0]);};
We're Done!!!
Finally, onto defining our custom iterator classes:
NOTE: When defining custom iterators, we derive from the standard iterator categories to let STL algorithms know the type of iterator we've made.
In this example, I define a random access iterator and a reverse random access iterator:
//-------------------------------------------------------------------
// Raw iterator with random access
//-------------------------------------------------------------------
template<typename blDataType>
class blRawIterator
{
public:
using iterator_category = std::random_access_iterator_tag;
using value_type = blDataType;
using difference_type = std::ptrdiff_t;
using pointer = blDataType*;
using reference = blDataType&;
public:
blRawIterator(blDataType* ptr = nullptr){m_ptr = ptr;}
blRawIterator(const blRawIterator<blDataType>& rawIterator) = default;
~blRawIterator(){}
blRawIterator<blDataType>& operator=(const blRawIterator<blDataType>& rawIterator) = default;
blRawIterator<blDataType>& operator=(blDataType* ptr){m_ptr = ptr;return (*this);}
operator bool()const
{
if(m_ptr)
return true;
else
return false;
}
bool operator==(const blRawIterator<blDataType>& rawIterator)const{return (m_ptr == rawIterator.getConstPtr());}
bool operator!=(const blRawIterator<blDataType>& rawIterator)const{return (m_ptr != rawIterator.getConstPtr());}
blRawIterator<blDataType>& operator+=(const difference_type& movement){m_ptr += movement;return (*this);}
blRawIterator<blDataType>& operator-=(const difference_type& movement){m_ptr -= movement;return (*this);}
blRawIterator<blDataType>& operator++(){++m_ptr;return (*this);}
blRawIterator<blDataType>& operator--(){--m_ptr;return (*this);}
blRawIterator<blDataType> operator++(int){auto temp(*this);++m_ptr;return temp;}
blRawIterator<blDataType> operator--(int){auto temp(*this);--m_ptr;return temp;}
blRawIterator<blDataType> operator+(const difference_type& movement){auto oldPtr = m_ptr;m_ptr+=movement;auto temp(*this);m_ptr = oldPtr;return temp;}
blRawIterator<blDataType> operator-(const difference_type& movement){auto oldPtr = m_ptr;m_ptr-=movement;auto temp(*this);m_ptr = oldPtr;return temp;}
difference_type operator-(const blRawIterator<blDataType>& rawIterator){return std::distance(rawIterator.getPtr(),this->getPtr());}
blDataType& operator*(){return *m_ptr;}
const blDataType& operator*()const{return *m_ptr;}
blDataType* operator->(){return m_ptr;}
blDataType* getPtr()const{return m_ptr;}
const blDataType* getConstPtr()const{return m_ptr;}
protected:
blDataType* m_ptr;
};
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// Raw reverse iterator with random access
//-------------------------------------------------------------------
template<typename blDataType>
class blRawReverseIterator : public blRawIterator<blDataType>
{
public:
blRawReverseIterator(blDataType* ptr = nullptr):blRawIterator<blDataType>(ptr){}
blRawReverseIterator(const blRawIterator<blDataType>& rawIterator){this->m_ptr = rawIterator.getPtr();}
blRawReverseIterator(const blRawReverseIterator<blDataType>& rawReverseIterator) = default;
~blRawReverseIterator(){}
blRawReverseIterator<blDataType>& operator=(const blRawReverseIterator<blDataType>& rawReverseIterator) = default;
blRawReverseIterator<blDataType>& operator=(const blRawIterator<blDataType>& rawIterator){this->m_ptr = rawIterator.getPtr();return (*this);}
blRawReverseIterator<blDataType>& operator=(blDataType* ptr){this->setPtr(ptr);return (*this);}
blRawReverseIterator<blDataType>& operator+=(const difference_type& movement){this->m_ptr -= movement;return (*this);}
blRawReverseIterator<blDataType>& operator-=(const difference_type& movement){this->m_ptr += movement;return (*this);}
blRawReverseIterator<blDataType>& operator++(){--this->m_ptr;return (*this);}
blRawReverseIterator<blDataType>& operator--(){++this->m_ptr;return (*this);}
blRawReverseIterator<blDataType> operator++(int){auto temp(*this);--this->m_ptr;return temp;}
blRawReverseIterator<blDataType> operator--(int){auto temp(*this);++this->m_ptr;return temp;}
blRawReverseIterator<blDataType> operator+(const int& movement){auto oldPtr = this->m_ptr;this->m_ptr-=movement;auto temp(*this);this->m_ptr = oldPtr;return temp;}
blRawReverseIterator<blDataType> operator-(const int& movement){auto oldPtr = this->m_ptr;this->m_ptr+=movement;auto temp(*this);this->m_ptr = oldPtr;return temp;}
difference_type operator-(const blRawReverseIterator<blDataType>& rawReverseIterator){return std::distance(this->getPtr(),rawReverseIterator.getPtr());}
blRawIterator<blDataType> base(){blRawIterator<blDataType> forwardIterator(this->m_ptr); ++forwardIterator; return forwardIterator;}
};
//-------------------------------------------------------------------
Now somewhere in your custom container class:
template<typename blDataType>
class blCustomContainer
{
public: // The typedefs
typedef blRawIterator<blDataType> iterator;
typedef blRawIterator<const blDataType> const_iterator;
typedef blRawReverseIterator<blDataType> reverse_iterator;
typedef blRawReverseIterator<const blDataType> const_reverse_iterator;
.
.
.
public: // The begin/end functions
iterator begin(){return iterator(&m_data[0]);}
iterator end(){return iterator(&m_data[m_size]);}
const_iterator cbegin(){return const_iterator(&m_data[0]);}
const_iterator cend(){return const_iterator(&m_data[m_size]);}
reverse_iterator rbegin(){return reverse_iterator(&m_data[m_size - 1]);}
reverse_iterator rend(){return reverse_iterator(&m_data[-1]);}
const_reverse_iterator crbegin(){return const_reverse_iterator(&m_data[m_size - 1]);}
const_reverse_iterator crend(){return const_reverse_iterator(&m_data[-1]);}
.
.
.
// This is the pointer to the
// beginning of the data
// This allows the container
// to either "view" data owned
// by other containers or to
// own its own data
// You would implement a "create"
// method for owning the data
// and a "wrap" method for viewing
// data owned by other containers
blDataType* m_data;
};
They often forget that iterator must convert to const_iterator but not the other way around. Here is a way to do that:
template<class T, class Tag = void>
class IntrusiveSlistIterator
: public std::iterator<std::forward_iterator_tag, T>
{
typedef SlistNode<Tag> Node;
Node* node_;
public:
IntrusiveSlistIterator(Node* node);
T& operator*() const;
T* operator->() const;
IntrusiveSlistIterator& operator++();
IntrusiveSlistIterator operator++(int);
friend bool operator==(IntrusiveSlistIterator a, IntrusiveSlistIterator b);
friend bool operator!=(IntrusiveSlistIterator a, IntrusiveSlistIterator b);
// one way conversion: iterator -> const_iterator
operator IntrusiveSlistIterator<T const, Tag>() const;
};
In the above notice how IntrusiveSlistIterator<T> converts to IntrusiveSlistIterator<T const>. If T is already const this conversion never gets used.
Boost has something to help: the Boost.Iterator library.
More precisely this page: boost::iterator_adaptor.
What's very interesting is the Tutorial Example which shows a complete implementation, from scratch, for a custom type.
template <class Value>
class node_iter
: public boost::iterator_adaptor<
node_iter<Value> // Derived
, Value* // Base
, boost::use_default // Value
, boost::forward_traversal_tag // CategoryOrTraversal
>
{
private:
struct enabler {}; // a private type avoids misuse
public:
node_iter()
: node_iter::iterator_adaptor_(0) {}
explicit node_iter(Value* p)
: node_iter::iterator_adaptor_(p) {}
// iterator convertible to const_iterator, not vice-versa
template <class OtherValue>
node_iter(
node_iter<OtherValue> const& other
, typename boost::enable_if<
boost::is_convertible<OtherValue*,Value*>
, enabler
>::type = enabler()
)
: node_iter::iterator_adaptor_(other.base()) {}
private:
friend class boost::iterator_core_access;
void increment() { this->base_reference() = this->base()->next(); }
};
The main point, as has been cited already, is to use a single template implementation and typedef it.
I don't know if Boost has anything that would help.
My preferred pattern is simple: take a template argument which is equal to value_type, either const qualified or not. If necessary, also a node type. Then, well, everything kind of falls into place.
Just remember to parameterize (template-ize) everything that needs to be, including the copy constructor and operator==. For the most part, the semantics of const will create correct behavior.
template< class ValueType, class NodeType >
struct my_iterator
: std::iterator< std::bidirectional_iterator_tag, T > {
ValueType &operator*() { return cur->payload; }
template< class VT2, class NT2 >
friend bool operator==
( my_iterator const &lhs, my_iterator< VT2, NT2 > const &rhs );
// etc.
private:
NodeType *cur;
friend class my_container;
my_iterator( NodeType * ); // private constructor for begin, end
};
typedef my_iterator< T, my_node< T > > iterator;
typedef my_iterator< T const, my_node< T > const > const_iterator;
There are plenty of good answers but I created a template header I use that is quite concise and easy to use.
To add an iterator to your class it is only necessary to write a small class to represent the state of the iterator with 7 small functions, of which 2 are optional:
#include <iostream>
#include <vector>
#include "iterator_tpl.h"
struct myClass {
std::vector<float> vec;
// Add some sane typedefs for STL compliance:
STL_TYPEDEFS(float);
struct it_state {
int pos;
inline void begin(const myClass* ref) { pos = 0; }
inline void next(const myClass* ref) { ++pos; }
inline void end(const myClass* ref) { pos = ref->vec.size(); }
inline float& get(myClass* ref) { return ref->vec[pos]; }
inline bool equals(const it_state& s) const { return pos == s.pos; }
// Optional to allow operator--() and reverse iterators:
inline void prev(const myClass* ref) { --pos; }
// Optional to allow `const_iterator`:
inline const float& get(const myClass* ref) const { return ref->vec[pos]; }
};
// Declare typedef ... iterator;, begin() and end() functions:
SETUP_ITERATORS(myClass, float&, it_state);
// Declare typedef ... reverse_iterator;, rbegin() and rend() functions:
SETUP_REVERSE_ITERATORS(myClass, float&, it_state);
};
Then you can use it as you would expect from an STL iterator:
int main() {
myClass c1;
c1.vec.push_back(1.0);
c1.vec.push_back(2.0);
c1.vec.push_back(3.0);
std::cout << "iterator:" << std::endl;
for (float& val : c1) {
std::cout << val << " "; // 1.0 2.0 3.0
}
std::cout << "reverse iterator:" << std::endl;
for (auto it = c1.rbegin(); it != c1.rend(); ++it) {
std::cout << *it << " "; // 3.0 2.0 1.0
}
}
I hope it helps.
I came across this post and was surprised that a simple method is not really mentioned here. Using a pointer to the value like how std::iterator describes is obviously a very generic approach. But you might be able to get away with something much simpler. Of course this is a simplistic approach and might not always be sufficient, but in case it is, I am posting it for the next reader.
Most probably the underlying type in your class is an STL container which already has defined the iterators for you. If that is the case, you can simply use their defined iterators and don't really need to make your own.
Here is an example:
class Foo {
std::vector<int>::iterator begin() { return data.begin(); }
std::vector<int>::iterator end() { return data.end(); }
std::vector<int>::const_iterator begin() const { return data.begin(); }
std::vector<int>::const_iterator end() const { return data.end(); }
private:
std::vector<int> data
};
i'm interested to know how correct this is, but seems to work as a roll-your-own iterator to internal data storage
template<typename T>
struct iterator_type
{
using self_type = iterator_type;
using iterator_category = std::random_access_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = std::remove_cv_t<T>;
using pointer = T*;
using reference = T&;
iterator_type( pointer ptr ) noexcept
: _ptr{ ptr }
{}
reference operator*() noexcept { return *_ptr; }
pointer operator->() noexcept { return _ptr; }
self_type operator++() noexcept { ++_ptr; return *this; }
self_type operator++(int) noexcept { self_type tmp = *this; ++_ptr; return tmp; }
self_type operator--() noexcept { --_ptr; return *this; }
self_type operator--(int) noexcept { self_type tmp = *this; --_ptr; return tmp; }
bool operator==( const self_type &other ) const noexcept { return _ptr == other._ptr; }
bool operator!=( const self_type &other ) const noexcept { return _ptr != other._ptr; }
private:
pointer _ptr;
};
template<typename T>
using const_iterator_type = iterator_type<std::add_const_t<T>>;
Then i just add these to my class, and seems to work as expected.
template<typename T>
class Container
{
public:
using iterator = iterator_type<T>;
using const_iterator = const_iterator_type<T>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
...
iterator begin() { return _begin; }
iterator end() { return _begin + _size; }
const_iterator cbegin() const { return _begin; }
const_iterator cend() const { return _begin + _size; }
reverse_iterator rbegin() { return reverse_iterator(_begin + _size); }
reverse_iterator rend() { return reverse_iterator(_begin); }
const_reverse_iterator crbegin() const { return const_reverse_iterator(_begin + _size); }
const_reverse_iterator crend() const { return const_reverse_iterator(_begin); }
private:
T* _begin;
size_t _size;
size_t _capacity;
};
the only thing is that to make it with the std::cbegin(), std::rcbegin(), std::cend() and std::rcend() functions I have to extend the std namespace:
namespace std
{
template<typename T>
typename Container<T>::const_iterator cbegin( Container<T> &c ) { return c.cbegin(); }
template<typename T>
typename Container<T>::const_iterator cend( Container<T> &c ) { return c.cend(); }
template<typename T>
typename Container<T>::const_reverse_iterator crbegin( Container<T> &c ) { return c.crbegin(); }
template<typename T>
typename Container<T>::const_reverse_iterator crend( Container<T> &c ) { return c.crend(); }
}
Check this below code, it works
#define MAX_BYTE_RANGE 255
template <typename T>
class string
{
public:
typedef char *pointer;
typedef const char *const_pointer;
typedef __gnu_cxx::__normal_iterator<pointer, string> iterator;
typedef __gnu_cxx::__normal_iterator<const_pointer, string> const_iterator;
string() : length(0)
{
}
size_t size() const
{
return length;
}
void operator=(const_pointer value)
{
if (value == nullptr)
throw std::invalid_argument("value cannot be null");
auto count = strlen(value);
if (count > 0)
_M_copy(value, count);
}
void operator=(const string &value)
{
if (value.length != 0)
_M_copy(value.buf, value.length);
}
iterator begin()
{
return iterator(buf);
}
iterator end()
{
return iterator(buf + length);
}
const_iterator begin() const
{
return const_iterator(buf);
}
const_iterator end() const
{
return const_iterator(buf + length);
}
const_pointer c_str() const
{
return buf;
}
~string()
{
}
private:
unsigned char length;
T buf[MAX_BYTE_RANGE];
void _M_copy(const_pointer value, size_t count)
{
memcpy(buf, value, count);
length = count;
}
};