I am trying to make a guess the number game in clojure but I keep getting an error saying I can only recur from tail position
(def n (rand-int 100))
(prn n)
(println "You have 10 guesses :D")
(println "HINT: My number is between 1 and 100")
(dotimes [i 10]
(def guess (read-line))
(if (= guess str(n))
(recur (println "Correct!") (println "Incorrect"))))
(I am new to clojure)
dotimes is used to execute the body for sideeffects that exact amount given; there is no means to break - except throwing
loop (or functions) are recur targets. Next you would have to count down the attempts so you can stop, if the user did not guess it:
(loop [attempts 10]
; ...
(recur (dec attempts)))
There are also other problematic things:
Don't def inside other forms. Use let instead.
str(n) will throw, as it will try to call n (ClassCastException java.lang.Long cannot be cast to clojure.lang.IFn)
recuring with println looks fishy, since println returns always nil
How do you end dotimes? You don't. Try using loop instead. There are a lot of issues with your code but that's a start.
though this is discouraged and counterclojurish to even think of short circuiting the execution this way, it is still totally possible with macros (purely for education and fun)
(defmacro return [& x]
`(list '~'return (do ~#x)))
(defmacro dotimes+ [[i n] & body]
`(loop [~i 0 res# nil]
(cond (and (list? res#) (= '~'return (first res#))) (second res#)
(< ~i ~n) (recur (inc ~i) (do ~#body))
:else res#)))
can be used like this:
user> (dotimes+ [i 10]
(println i)
(if (== i 5) (return :short-circuited)))
;; 0
;; 1
;; 2
;; 3
;; 4
;; 5
:short-circuited
user> (dotimes+ [i 10]
(println i)
(if (== i 5) (return)))
;; 0
;; 1
;; 2
;; 3
;; 4
;; 5
nil
user> (dotimes+ [i 10]
(println i))
;; 0
;; 1
;; 2
;; 3
;; 4
;; 5
;; 6
;; 7
;; 8
;; 9
nil
notice, that it still expects the return macro to be called in tail position (similar to recur in loop macro)
(dotimes+ [x 4]
(println "attempt" (inc x))
(let [answer (read-line)]
(println "answer is:" answer)
(if (= answer "yes")
(return "YEAH!!!")
(println "WRONG!"))))
Related
I need help with an assignment that uses Clojure. It is very small but the language is a bit confusing to understand. I need to create a function that behaves like count without actually using the count funtion. I know a loop can be involved with it somehow but I am at a lost because nothing I have tried even gets my code to work. I expect it to output the number of elements in list. For example:
(defn functionname []
...
...)
(println(functionname '(1 4 8)))
Output:3
Here is what I have so far:
(defn functionname [n]
(def n 0)
(def x 0)
(while (< x n)
do
()
)
)
(println(functionname '(1 4 8)))
It's not much but I think it goes something like this.
This implementation takes the first element of the list and runs a sum until it can't anymore and then returns the sum.
(defn recount [list-to-count]
(loop [xs list-to-count sum 0]
(if (first xs)
(recur (rest xs) (inc sum))
sum
)))
user=> (recount '(3 4 5 9))
4
A couple more example implementations:
(defn not-count [coll]
(reduce + (map (constantly 1) coll)))
or:
(defn not-count [coll]
(reduce (fn [a _] (inc a)) 0 coll))
or:
(defn not-count [coll]
(apply + (map (fn [_] 1) coll)))
result:
(not-count '(5 7 8 1))
=> 4
I personally like the first one with reduce and constantly.
We've been given a task to print the first ten multiples of any number for which we have written the below code. It is throwing an error. In simple words, if n is 2 then we need to create a table of 2's till 10.
(defn multiples [n]
(while ( n < 11)
(println( n * n))
(swap! n inc)))
(def n (Integer/parseInt (clojure.string/trim (read-line))))
(multiples n)
With this, we're getting the error:
Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be cast to clojure.lang.
(defn multiples [n]
(map #(* n %) (range 1 (+ 10 1))))
user=> (multiples 1)
;; => (1 2 3 4 5 6 7 8 9 10)
user=> (multiples 2)
;; => (2 4 6 8 10 12 14 16 18 20)
The resulting list you can loop over and println each of the elements.
(for [i (multiples 2)]
(println i))
;; or:
(map println (multiples 2)) ;; though one usually doesn't apply
;; `map` on side effect functions ...
To improve your own construct:
You, coming from an imperative language, try to work with mutations.
That is very un-idiomatic clojure.
However, by declaring a value atom, you can access using the # operator to its place. And mutate the variable's value.
(defn multiples [n]
(let [i (atom 1)] ;; i is an atom
(while (< #i 11) ;; #i is the value saved into i
(println (* #i n))
(swap! i inc)))) ;; and correctly you can increase the value
With this multiples, you can also print the values.
You can't apply swap! to normal variables, only to atoms.
while loops one should apply only if number of elements not known.
In this case, one knows very well, when to stop. So use rather
a for loop.
(defn multiples [n]
(for [i (range 1 11)]
(println (* i n))))
Look at what iterate function does here
(defn multiples-of [n]
(iterate (partial * n) n))
(def ten-multiples-of-ten
(take 10 (multiples-of 10)))
EDIT: I misread the author of the question, I believe he wants to just generate a sequence of squares. Here is one way using transducers, cause why not ;)
(def xf
(comp
(map inc)
(map #(* % %))))
(defn first-n-squares [n]
(into [] xf (take n (range))))
You can use recur in a loop:
(defn multiples [n]
(if (< n 11)
(do ; then
(println (* n n))
(recur (inc n)))
nil)) ; else return nil
Running this by invoking
(multiples 1)
in a REPL will produce
1
4
9
16
25
36
49
64
81
100
nil
Why the program runs endlessly?
(defn lazycombine
([s] (lazycombine s []))
([s v] (let [a (take 1 s)
b (drop 1 s)]
(if (= a :start)
(lazy-seq (lazycombine b v))
(if (= a :end)
(lazy-seq (cons v (lazycombine b [])))
(lazy-seq (lazycombine b (conj v a))))))))
(def w '(:start 1 2 3 :end :start 7 7 :end))
(lazycombine w)
I need a function that returns a lazy sequence of elements by taking elements from another sequence of the form [: start 1 2: end: start: 5: end] and combining all the elements between: start and: end into a vector
You need to handle the termination condition - i.e. what should return when input s is empty?
And also the detection of :start and :end should use first instead of (take 1 s). And you can simplify that with destructuring.
(defn lazycombine
([s] (lazycombine s []))
([[a & b :as s] v]
(if (empty? s)
v
(if (= a :start)
(lazy-seq (lazycombine b v))
(if (= a :end)
(lazy-seq (cons v (lazycombine b [])))
(lazy-seq (lazycombine b (conj v a))))))))
(def w '(:start 1 2 3 :end :start 7 7 :end))
(lazycombine w)
;; => ([1 2 3] [7 7])
To reduce cyclomatic complexity a bit, you can use condp to replace couple if:
(defn lazycombine
([s] (lazycombine s []))
([[a & b :as s] v]
(if (empty? s)
v
(lazy-seq
(condp = a
:start (lazycombine b v)
:end (cons v (lazycombine b []))
(lazycombine b (conj v a)))))))
I would do it like so, using take-while:
(ns tst.demo.core
(:use tupelo.core tupelo.test))
(def data
[:start 1 2 3 :end :start 7 7 :end])
(defn end-tag? [it] (= it :end))
(defn start-tag? [it] (= it :start))
(defn lazy-segments
[data]
(when-not (empty? data)
(let [next-segment (take-while #(not (end-tag? %)) data)
data-next (drop (inc (count next-segment)) data)
segment-result (vec (remove #(start-tag? %) next-segment))]
(cons segment-result
(lazy-seq (lazy-segments data-next))))))
(dotest
(println "result: " (lazy-segments data)))
Running we get:
result: ([1 2 3] [7 7])
Note the contract when constructing a sequence recursively using cons (lazy or not). You must return either the next value in the sequence, or nil. Supplying nil to cons is the same as supplying an empty sequence:
(cons 5 nil) => (5)
(cons 5 []) => (5)
So it is convenient to use a when form to test the termination condition (instead of using if and returning an empty vector when the sequence must end).
Suppose we wrote the cons as a simple recursion:
(cons segment-result
(lazy-segments data-next))
This works great and produces the same result. The only thing the lazy-seq part does is to delay when the recursive call takes place. Because lazy-seq is a Clojure built-in (special form), it it is similar to loop/recur and does not consume the stack like ordinary recursion does . Thus, we can generate millions (or more) values in the lazy sequence without creating a StackOverflowError (on my computer, the default maximum stack size is ~4000). Consider the infinite lazy-sequence of integers beginning at 0:
(defn intrange
[n]
(cons n (lazy-seq (intrange (inc n)))))
(dotest
(time
(spyx (first (drop 1e6 (intrange 0))))))
Dropping the first million integers and taking the next one succeeds and requires only a few milliseconds:
(first (drop 1000000.0 (intrange 0))) => 1000000
"Elapsed time: 49.5 msecs"
I am new to Clojure, and doing my best to forget all my previous experience with more procedural languages (java, ruby, swift) and embrace Clojure for what it is. I am actually really enjoying the way it makes me think differently -- however, I have come up against a pattern that I just can't seem to figure out. The easiest way to illustrate, is with some code:
(defn char-to-int [c] (Integer/valueOf (str c)))
(defn digits-dont-decrease? [str]
(let [digits (map char-to-int (seq str)) i 0]
(when (< i 5)
(if (> (nth digits i) (nth digits (+ i 1)))
false
(recur (inc i))))))
(def result (digits-dont-decrease? "112233"))
(if (= true result)
(println "fit rules")
(println "doesn't fit rules"))
The input is a 6 digit number as a string, and I am simply attempting to make sure that each digit from left to right is >= the previous digit. I want to return false if it doesn't, and true if it does. The false situation works great -- however, given that recur needs to be the last thing in the function (as far as I can tell), how do I return true. As it is, when the condition is satisfied, I get an illegal argument exception:
Execution error (IllegalArgumentException) at clojure.exercise.two/digits-dont-decrease? (four:20).
Don't know how to create ISeq from: java.lang.Long
How should I be thinking about this? I assume my past training is getting in my mental way.
This is not answering your question, but also shows an alternative. While the (apply < ...) approach over the whole string is very elegant for small strings (it is eager), you can use every? for an short-circuiting approach. E.g.:
user=> (defn nr-seq [s] (map #(Integer/parseInt (str %)) s))
#'user/nr-seq
user=> (every? (partial apply <=) (partition 2 1 (nr-seq "123")))
true
You need nothing but
(apply <= "112233")
Reason: string is a sequence of character and comparison operator works on character.
(->> "0123456789" (mapcat #(repeat 1000 %)) (apply str) (def loooong))
(count loooong)
10000
(time (apply <= loooong))
"Elapsed time: 21.006625 msecs"
true
(->> "9123456789" (mapcat #(repeat 1000 %)) (apply str) (def bad-loooong))
(count bad-loooong)
10000
(time (apply <= bad-loooong))
"Elapsed time: 2.581750 msecs"
false
(above runs on my iPhone)
In this case, you don't really need loop/recur. Just use the built-in nature of <= like so:
(ns tst.demo.core
(:use demo.core tupelo.core tupelo.test))
(def true-samples
["123"
"112233"
"13"])
(def false-samples
["10"
"12324"])
(defn char->int
[char-or-str]
(let [str-val (str char-or-str)] ; coerce any chars to len-1 strings
(assert (= 1 (count str-val)))
(Integer/parseInt str-val)))
(dotest
(is= 5 (char->int "5"))
(is= 5 (char->int \5))
(is= [1 2 3] (mapv char->int "123"))
; this shows what we are going for
(is (<= 1 1 2 2 3 3))
(isnt (<= 1 1 2 1 3 3))
and now test the char sequences:
;-----------------------------------------------------------------------------
; using built-in `<=` function
(doseq [true-samp true-samples]
(let [digit-vals (mapv char->int true-samp)]
(is (apply <= digit-vals))))
(doseq [false-samp false-samples]
(let [digit-vals (mapv char->int false-samp)]
(isnt (apply <= digit-vals))))
if you want to write your own, you can like so:
(defn increasing-equal-seq?
"Returns true iff sequence is non-decreasing"
[coll]
(when (< (count coll) 2)
(throw (ex-info "coll must have at least 2 vals" {:coll coll})))
(loop [prev (first coll)
remaining (rest coll)]
(if (empty? remaining)
true
(let [curr (first remaining)
prev-next curr
remaining-next (rest remaining)]
(if (<= prev curr)
(recur prev-next remaining-next)
false)))))
;-----------------------------------------------------------------------------
; using home-grown loop/recur
(doseq [true-samp true-samples]
(let [digit-vals (mapv char->int true-samp)]
(is (increasing-equal-seq? digit-vals))))
(doseq [false-samp false-samples]
(let [digit-vals (mapv char->int false-samp)]
(isnt (increasing-equal-seq? digit-vals))))
)
with result
-------------------------------
Clojure 1.10.1 Java 13
-------------------------------
Testing tst.demo.core
Ran 2 tests containing 15 assertions.
0 failures, 0 errors.
Passed all tests
Finished at 23:36:17.096 (run time: 0.028s)
You an use loop with recur.
Assuming you require following input v/s output -
"543221" => false
"54321" => false
"12345" => true
"123345" => true
Following function can help
;; Assuming char-to-int is defined by you before as per the question
(defn digits-dont-decrease?
[strng]
(let [digits (map char-to-int (seq strng))]
(loop [;;the bindings in loop act as initial state
decreases true
i (- (count digits) 2)]
(let [decreases (and decreases (>= (nth digits (+ i 1)) (nth digits i)))]
(if (or (< i 1) (not decreases))
decreases
(recur decreases (dec i)))))))
This should work for numeric string of any length.
Hope this helps. Please let me know if you were looking for something else :).
(defn non-decreasing? [str]
(every?
identity
(map
(fn [a b]
(<= (int a) (int b)))
(seq str)
(rest str))))
(defn non-decreasing-loop? [str]
(loop [a (seq str) b (rest str)]
(if-not (seq b)
true
(if (<= (int (first a)) (int (first b)))
(recur (rest a) (rest b))
false))))
(non-decreasing? "112334589")
(non-decreasing? "112324589")
(non-decreasing-loop? "112334589")
(non-decreasing-loop? "112324589")
Why doesn't this produce the output I expect?
(defn test-fn []
(do
(println "start")
(map #(println (+ % 1)) '(1 2 3))
(println "done")))
It outputs
start
done
Whereas I would expect
start
2 3 4
done
map is lazy, and do does not force it. If you want to force the evaluation of a lazy sequence, use doall or dorun.
(defn test-fn []
(do
(println "start")
(dorun (map #(println (+ % 1)) '(1 2 3)))
(println "done")))