Is it currently possible to constrain a class template that rejects type argument which is the specialization of the class template itself without using static_assert?
Since I cannot use requires expression to check if it is a valid typename, I have to create a class template instantiation validator that checks whether the class template passed is valid with template arguments:
template <template <typename...> typename Temp, typename... Ts>
requires requires { typename Temp<Ts...>; }
constexpr bool is_valid() { return true; }
template <template <typename...> typename, typename...>
constexpr bool is_valid() { return false; }
template <template <typename...> typename Temp, typename... Ts>
concept valid_instantiation = is_valid<Temp, Ts...>();
Since failed static_assert emits a hard error, just like this one:
template <typename>
class Hello;
template <typename>
inline constexpr bool is_hello_v = false;
template <typename T>
inline constexpr bool is_hello_v<Hello<T>> = true;
template <typename T>
class Hello {
static_assert(!is_hello_v<T>);
};
static_assert(valid_instantiation<Hello, int>);
static_assert(!valid_instantiation<Hello, Hello<int>>);
The second static assertion sure didn't compile unless I remove that ! that returns true which is not what I expected.
What I want to have is to silent the error and replace the static_assert, so that:
static_assert(valid_instantiation<Hello, int>);
static_assert(!valid_instantiation<Hello, Hello<int>>);
can be valid.
For the first static assertion, the Hello<int> instantiation is accepted just fine, while the second static assertion, Hello<Hello<int>> instantiation should be rejected because the template argument passed is the instantiation of the class template itself but I have no knowledge what constraints I'll be using to achieve these.
It's ok if it is impossible to do so, or otherwise.
Not sure it is what you want, but
template <typename T> struct is_Hello;
template <typename T> requires (!is_Hello<T>::value) class Hello;
template <typename T> struct is_Hello : std::false_type{};
template <typename T> struct is_Hello<Hello<T>> : std::true_type{};
template <typename T>
requires (!is_Hello<T>::value) // So Hello<Hello<T>> is not possible
class Hello
{
// ...
};
Not sure how you want to SFINAE or test it (the trait seems equivalent), as Hello<Hello<T>> cannot exist.
Demo
consider this example:
#include <iostream>
template <typename T, std::size_t I>
struct Foo
{
};
template <typename T>
struct specializes_foo : std::false_type {};
template <typename T, std::size_t I>
struct specializes_foo<Foo<T, I>> : std::true_type {};
template <typename T>
concept foo = specializes_foo<T>::value;
int main()
{
std::cout << foo<int> << "\n";
std::cout << foo<Foo<int,3>> << "\n";
}
is there a shorter way in C++20? I know that you could do a concept for "specializes template", e.g.:
// checks if a type T specializes a given template class template_class
// note: This only works with typename template parameters.
// e.g.: specializes<std::array<int, 3>, std::array> will yield a compilation error.
// workaround: add a specialization for std::array.
namespace specializes_impl
{
template <typename T, template <typename...> typename>
struct is_specialization_of : std::false_type {};
template <typename... Args, template <typename...> typename template_class>
struct is_specialization_of<template_class<Args...>, template_class> : std::true_type {};
}
template <typename T, template <typename...> typename template_class>
inline constexpr bool is_specialization_of_v = specializes_impl::is_specialization_of<T,template_class>::value;
template <typename T, template <typename...> typename template_class>
using is_specialization_of_t = specializes_impl::is_specialization_of<T,template_class>::type;
template<typename T, template <typename...> typename template_class>
concept specializes = is_specialization_of_v<T, template_class>;
However, this fails with non-type template parameters such as "size_t". Is there a way so I could, for example just write:
void test(Foo auto xy);
I know that since C++20 there came a couple of other ways to constrain template parameters of a function, however, is there a short way to say "I dont care how it specializes the struct as long as it does"?
Nope.
There's no way to write a generic is_specialization_of that works for both templates with all type parameters and stuff like std::array (i.e. your Foo), because there's no way to write a template that takes a parameter of any kind.
There's a proposal for a language feature that would allow that (P1985), but it's still just a proposal and it won't be in C++23. But it directly allows for a solution for this. Likewise, the reflection proposal (P1240) would allow for a way to do this (except that you'd have to spell the concept Specializes<^Foo> instead of Specializes<Foo>).
Until one of these things happens, you're either writing a bespoke concept for your template, or rewriting your template to only take type parameters.
I just came across the mysterious typename.... What is its semantics?
Obviously it's too general to mean something very specific but still
namespace detail
{
template <typename...>
using Void = void;
template <typename, typename = void>
struct EqualityComparableToNullptr
: std::false_type {};
template <typename T>
struct EqualityComparableToNullptr<T, Void<decltype (std::declval<T>() != nullptr)>>
: std::true_type {};
} // namespace detail
It is an unnammed variadic template parameter. It is used to help with SFINAE in partially specialized classes. This technique was even added to the standard as std::void_t.
If you had
template <typename>
using Void = void;
You would only be able to "convert" one type to void, whereas having a variadic template allows you to have N types "convert" to a single void type.
This is more of a conceptual question. I'm trying to find the easiest way of converting a two-arg template (the arguments being types) into a one-arg template. I.e., binding one of the types.
This would be the meta-programming equivalent of bind in boost/std. My example includes a possible use-case, which is, passing std::is_same as template argument to a template that takes a one-arg template template argument (std::is_same being a two-arg template), i.e. to TypeList::FindIf. The TypeList is not fully implemented here, neither is FindIf, but you get the idea. It takes a "unary predicate" and returns the type for which that predicate is true, or void if not such type.
I have 2 working variants but the first is not a one-liner and the 2nd uses a rather verbose BindFirst contraption, that would not work for non-type template arguments. Is there a simple way to write such a one-liner? I believe the procedure I'm looking for is called currying.
#include <iostream>
template<template<typename, typename> class Function, typename FirstArg>
struct BindFirst
{
template<typename SecondArg>
using Result = Function<FirstArg, SecondArg>;
};
//template<typename Type> using IsInt = BindFirst<_EqualTypes, int>::Result<Type>;
template<typename Type> using IsInt = std::is_same<int, Type>;
struct TypeList
{
template<template<typename> class Predicate>
struct FindIf
{
// this needs to be implemented, return void for now
typedef void Result;
};
};
int main()
{
static_assert(IsInt<int>::value, "");
static_assert(!IsInt<float>::value, "");
// variant #1: using the predefined parameterized type alias as predicate
typedef TypeList::FindIf<IsInt>::Result Result1;
// variant #2: one-liner, using BindFirst and std::is_same directly
typedef TypeList::FindIf< BindFirst<std::is_same, int>::Result>::Result Result2;
// variant #3: one-liner, using currying?
//typedef TypeList::FindIf<std::is_same<int, _>>::Result Result2;
return 0;
}
Click here for code in online compiler GodBolt.
I think the typical way of doing this is keep everything in the world of types. Don't take template templates - they're messy. Let's write a metafunction named ApplyAnInt that will take a "metafunction class" and apply int to it:
template <typename Func>
struct ApplyAnInt {
using type = typename Func::template apply<int>;
};
Where a simple metafunction class might be just checking if the given type is an int:
struct IsInt {
template <typename T>
using apply = std::is_same<T, int>;
};
static_assert(ApplyAnInt<IsInt>::type::value, "");
Now the goal is to support:
static_assert(ApplyAnInt<std::is_same<_, int>>::type::value, "");
We can do that. We're going to call types that contain _ "lambda expressions", and write a metafunction called lambda which will either forward a metafunction class that isn't a lambda expression, or produce a new metafunction if it is:
template <typename T, typename = void>
struct lambda {
using type = T;
};
template <typename T>
struct lambda<T, std::enable_if_t<is_lambda_expr<T>::value>>
{
struct type {
template <typename U>
using apply = typename apply_lambda<T, U>::type;
};
};
template <typename T>
using lambda_t = typename lambda<T>::type;
So we update our original metafunction:
template <typename Func>
struct ApplyAnInt
{
using type = typename lambda_t<Func>::template apply<int>;
};
Now that leaves two things: we need is_lambda_expr and apply_lambda. Those actually aren't so bad at all. For the former, we'll see if it's an instantiation of a class template in which one of the types is _:
template <typename T>
struct is_lambda_expr : std::false_type { };
template <template <typename...> class C, typename... Ts>
struct is_lambda_expr<C<Ts...>> : contains_type<_, Ts...> { };
And for apply_lambda, we just will substitute the _ with the given type:
template <typename T, typename U>
struct apply_lambda;
template <template <typename...> class C, typename... Ts, typename U>
struct apply_lambda<C<Ts...>, U> {
using type = typename C<std::conditional_t<std::is_same<Ts, _>::value, U, Ts>...>::type;
};
And that's all you need actually. I'll leave extending this out to support arg_<N> as an exercise to the reader.
Yeah, I had this issue to. It took a few iterations to figure out a decent way to do this. Basically, to do this, we need to specify a reasonable representation of what we want and need. I borrowed some aspects from std::bind() in that I want to specify the template that I wish to bind and the parameters that I want to bind to it. Then, within that type, there should be a template that will allow you to pass a set of types.
So our interface will look like this:
template <template <typename...> class OP, typename...Ts>
struct tbind;
Now our implementation will have those parameters plus a container of types that will be applied at the end:
template <template <typename...> class OP, typename PARAMS, typename...Ts>
struct tbind_impl;
Our base case will give us a template type, which I'll call ttype, that'll return a template of the contained types:
template <template <typename...> class OP, typename...Ss>
struct tbind_impl<OP, std::tuple<Ss...>>
{
template<typename...Us>
using ttype = OP<Ss...>;
};
Then we have the case of moving the next type into the container and having ttype refer to the ttype in the slightly simpler base case:
template <template <typename...> class OP, typename T, typename...Ts, typename...Ss>
struct tbind_impl<OP, std::tuple<Ss...>, T, Ts...>
{
template<typename...Us>
using ttype = typename tbind_impl<
OP
, std::tuple<Ss..., T>
, Ts...
>::template ttype<Us...>;
};
And finally, we need a remap of the templates that will be passed to ttype:
template <template <typename...> class OP, size_t I, typename...Ts, typename...Ss>
struct tbind_impl<OP, std::tuple<Ss...>, std::integral_constant<size_t, I>, Ts...>
{
template<typename...Us>
using ttype = typename tbind_impl<
OP
, typename std::tuple<
Ss...
, typename std::tuple_element<
I
, typename std::tuple<Us...>
>::type
>
, Ts...
>::template ttype<Us...>;
Now, since programmers are lazy, and don't want to type std::integral_constant<size_t, N> for each parameter to remap, we specify some aliases:
using t0 = std::integral_constant<size_t, 0>;
using t1 = std::integral_constant<size_t, 1>;
using t2 = std::integral_constant<size_t, 2>;
...
Oh, almost forgot the implementation of our interface:
template <template <typename...> class OP, typename...Ts>
struct tbind : detail::tbind_impl<OP, std::tuple<>, Ts...>
{};
Note that tbind_impl was placed in a detail namespace.
And voila, tbind!
Unfortunately, there is a defect prior to c++17. If you pass tbind<parms>::ttype to a template that expects a template with a particular number of parameters, you will get an error as the number of parameters don't match (specific number doesn't match any number). This complicates things slightly requiring an additional level of indirection. :(
template <template <typename...> class OP, size_t N>
struct any_to_specific;
template <template <typename...> class OP>
struct any_to_specific<OP, 1>
{
template <typename T0>
using ttype = OP<T0>;
};
template <template <typename...> class OP>
struct any_to_specific<OP, 2>
{
template <typename T0, typename T1>
using ttype = OP<T0, T1>;
};
...
Using that to wrap tbind will force the compiler to recognize the template having the specified number of parameters.
Example usage:
static_assert(!tbind<std::is_same, float, t0>::ttype<int>::value, "failed");
static_assert( tbind<std::is_same, int , t0>::ttype<int>::value, "failed");
static_assert(!any_to_specific<
tbind<std::is_same, float, t0>::ttype
, 1
>::ttype<int>::value, "failed");
static_assert( any_to_specific<
tbind<std::is_same, int , t0>::ttype
, 1
>::ttype<int>::value, "failed");
All of which succeed.
I'm trying to partially specialize a trait for arrays of non-chars:
template<typename T>
struct is_container : std::false_type {};
template<typename T, unsigned N>
struct is_container<T[N]>
: std::enable_if<!std::is_same<T, char>::value, std::true_type>::type {};
Visual Studio 2010 gives me a C2039 (type is no element of enable_if...). However, shouldn't SFINAE just bottom out here instead of giving a compiler error? Or does SFINAE not apply in this case?
Of course I could just separate the specializations for non-char and char:
template<typename T>
struct is_container : std::false_type {};
template<typename T, unsigned N>
struct is_container<T[N]> : std::true_type {};
template<unsigned N>
struct is_container<char[N]> : std::false_type {};
But I would really like to know why SFINAE doesn't work in this particular case.
Check the topic '3.1 Enabling template class specializations' at
http://www.boost.org/doc/libs/1_47_0/libs/utility/enable_if.html
Edit: in case boost.org link dies...
3.1 Enabling template class specializations
Class template specializations can be enabled or disabled with enable_if. One extra template parameter needs to be added for the enabler expressions. This parameter has the default value void. For example:
template <class T, class Enable = void>
class A { ... };
template <class T>
class A<T, typename enable_if<is_integral<T> >::type> { ... };
template <class T>
class A<T, typename enable_if<is_float<T> >::type> { ... };
Instantiating A with any integral type matches the first specialization, whereas any floating point type matches the second one. All other types match the primary template. The condition can be any compile-time boolean expression that depends on the template arguments of the class. Note that again, the second argument to enable_if is not needed; the default (void) is the correct value.