I'm trying to create a variable without instantiating the object.
In Python it would look like this:
graph = mymap[c] if c in mymap else Graph()
So I basically check if I already have that graph otherwise I create it. My understanding is that if I declare the following in C++ it will call the constructor and be wasteful.
Graph g;
So I'm trying to use pointers to avoid this "waste":
Graph* g;
if (graphs.find(c) == graphs.end()){
g = new Graph();
graphs[c] = *g;
} else {
g = &(graphs[c]);
}
std::cout << g << std::endl;
std::cout << &(graphs[c]) << std::endl;
The problem is that the addresses printed in the end do not match. In fact, my tests show that something weird is happening like a new instance of Graph is being created every time.
What am I doing wrong?
You actually don't have to do anything fancy here. You can simply do
Graph* g = &graphs[c];
The reason is that map::operator[] has the following behavior:
Returns a reference to the value that is mapped to a key equivalent to key, performing an insertion if such key does not already exist.
So if the key has an associated value already, you'll get a reference to that object. If that key does not yet exist, a value will be default constructed and inserted for you, and a reference to that new object will be returned.
Another answer already says the right way to do what you're asking, but I'll address (ha!) why the addresses don't match:
On this line:
graphs[c] = *g;
You're creating a COPY of the graph you just made with new that g points to, and that copy has a different address. You're then printing the address of the original and the address of the copy, so obviously they're at different addresses.
graphs[c] = ...
This code already does the allocation and construction of a (default) Graph object to be stored inside the map when there isn't one mapped to c already (which you already checked for).. the assignment after that just makes the Graph object it just created look like the one that you had previously created with the call to new.
Related
Once again I got cought on expecting a function to return a proper value and then be disapointed .. getting odd behavior and misleading debug-information instead.
It's fairly well known, that you cannot return a local variable from a function and expect it to arrive as you would expect. Testing
int i=2;
int k=4;
return make_pair<int,int>(i*i,k*k);
Does indeed return something respectable. But using more elaborate objects than simple types seems to catch me every time.
So, is there any formality that I can use for discriminating on what can and what cannot be returned safely from a function?
----------- added on edit: ------------
Here is the example that does not work, taken brutally out of context.
Problem-context is a (to be GUI) tree of rectangles for the screen.
Class node inherits from a base (rectangle) containing 3 pointers to plain types (again, used to make values stick) .. the base uses new in constructor
pair<node,node> node_handler::split( vector<node>::iterator& this_node, double ratio, bool as_horizontal ){
//this_node becomes parents to the split-twins
this_node->my_ratio=ratio;
double firstW, firstH;
double secW, secH;
glm::dvec2 afirst, asecond;
if(as_horizontal ){
firstW = *this_node->plWidth*LETTER_PIXEL_WIDTH;
firstH = *this_node->plHeight*LINE_PIXEL_HEIGHT*ratio;
afirst = *this_node->pPoint;
secW = firstW;
secH = LINE_PIXEL_HEIGHT*(*this_node->plHeight)*(1.0d-ratio);
asecond= afirst+glm::dvec2(0.0d, firstH);
}
else{
firstW = ratio*(*this_node->plWidth)*LETTER_PIXEL_WIDTH;
firstH = *this_node->plHeight*LINE_PIXEL_HEIGHT;
afirst = *this_node->pPoint;
secW = (1.0d*ratio)*(*this_node->plWidth)*LETTER_PIXEL_WIDTH;
secH = firstH;
asecond= afirst+glm::dvec2(firstW,0.0d);
}
return make_pair<node,node>( node(afirst ,firstW, firstH) , node(asecond ,secW, secH) ) ;
}
Technically, you can return anything from a function.
Now when you return a pointer or a reference to something that is only local, then you have a problem.
Solutions:
Return copies (OK with copy elision anyway)
Return shared_ptr<>/unique-ptr<> for something that must not be copied.
Return only basic types and pass to the function a reference to an object that might be modified.
Do not create something in the function that needs to be manually destroyed layer (say, a pointer created with new).
It's dawning on me, that classes containing pointer-members reasonably has to have custom copy/assignment operators. I never got to grips with the "rho" variable referred to in the books I read at the time ... "right_hand_object" it must be! That's my epiphany. It was following the business of the constructors and your talk of copyable objects that squeezed this old rho-problem of mine.
I'm sorry for having spread my frustration on you.
I have a QList and I'm trying to replace the objects in the list with new objects. The context is that I have a list of custom objects (the class name is "Conversation") to represent a list of group chats in a messaging platform. I use std::find_if to iterate through the list of pointers to find one with the right ID, and I want to take the pointer to that found object, deallocate it (delete?), and reassign that pointer to point at an object I generate with the "new" keyword. I think I'm doing this right but I'm not sure how to verify.
I tried a couple different iterations, ran into some issues where I realized I was using a const_iterator rather than just an iterator, so I couldn't modify any data. But I've fixed that and it seems like it's working, but I'm not positive.
Here's what I've got:
GroupChat *gc = new GroupChat(); // extends Conversation
// ...I update the member data here...
auto foundChat = std::find_if(conversations_.Conversations.begin2(),
conversations_.Conversations.end2(),
[this, gc](Conversation* o) { // my code to find the correct one...
}
if (foundChat != conversations_.Conversations.end()) {
auto c = (*foundChat);
delete c; // Is this right? Not positive...
//*foundChat = nullptr; // do I need this?
c = gc;
}
It seems like it's working but I'm worried about dangling pointers and incorrect memory deallocation/allocation. Could someone spot check me on this? Thanks for any help!
I am writing a game in which one Object has an ability to turn into an object of another class (e.g. Clark Kent -> Superman). I would like to know what is the most efficient way to implement this.
The logic of my current code:
I have created a turnInto() function inside the ClarkKent class. The turnInto function calls the constructor of Superman class, passing all needed infos to it. The next step is to assign the address of Superman object to the current ClarkKent object.
void ClarkKent::turnInto() {
Superman sMan(getName(), getMaxHP(), getDamage());
&(*this) = &w; // <- error here
this->ClarkKent::~ClarkKent();
}
As you might have guessed, the compiler gives an error that the expression is not assignable. Not sure how to find a correct solution to this.
Keep it simple and don't play tricks you don't understand with your objects.
Superman ClartkKent::turnInto() {
return {getName(), getMaxHP(), getDamage()};
}
At the callee:
ClartkKent some_guy{...};
auto some_other_guy = some_guy.tunInto();
Or if you need something fancy:
using NotBatman = std::variant<ClartkKent, Superman>;
NotBatman some_guy = ClartkKent{...};
using std::swap;
swap(some_guy, some_guy.tunInto());
IDK
I'm making an application that is querying a MySQL database.
I want the results of this to be stored in a map (which has a corresponding pair):
std::map<int, Car*> m_car;
typedef std::pair<int, Car*> m_car_pair;
The car object is made up of 8 parameters, one of which is car_id so firstly I pull the car ID and use it as the key then I want to store the entire car object as the value of the map. (I know this is casing me to be storing the car_id twice but for the moment I don't mind that).
Anyway here's my query code:
void DatabaseController::getAll(QString query_string)
{
// Console log message
std::cout << "Querying Database" << std::endl;
/// Declare SQL query and pass function parameter 'query'
QSqlQuery query(query_string);
// execute the query
query.exec();
int count = 0;
// While results are coming in
while(query.next())
{
// Call car constructor passing all parameters
Car car(query.value(count).toInt(), query.value(count+1).toString(), query.value(count+2).toString(), query.value(count+3).toString(),
query.value(count+4).toInt(), query.value(count+5).toInt(), query.value(count+6).toInt(), query.value(count+7).toString());
if (car.getcarID() != 0)
{
m_car_records.insert(m_car_pair(car.getcarID(), &car));
}
}
std::cout << "Database query finished" << std::endl;
After this I made a quick test function to iterate over the map and pull all of the ID's (map key) and check they were different (i.e. the function worked) and they were.
But that was just a check what I needed was to be able to call the accessory functions from car on the car objects that should be in the map. So I used the same quick test function to iterate over the map and cout << car.toString(); (a simple to string function in the car class):
void DatabaseController::test()
{
m_car_records_iterator = m_car_records.begin();
for(unsigned int i = 0; i < m_car_records.size(); i++)
{
car *test = m_car_records_iterator->second;
std::cout << test->toString() << std::endl;
m_car_records_iterator++;
}
}
This showed the correct number of results however they all were the same i.e. the car object that has been added to every entry in the map is the same (the values of the last record that was found by the query)
My Question is...
Is there any way that using this structure I currently have for my query I can create and add these class objects to my map within the while loop using the same name for each, because of course I can't know how many results are being returned and declare a class object for each one, but as it stands using the same name is just adding the same one every time not actually replacing the values... at least that's what I think is happening??
Any advice or idea would be welcomed (sorry for the long post)
You are experiencing undefined behavior. The reason is that you insert a pointer to a local variable in the map.
In the loop in getAll, when the loop starts over on the next item the car variable is not valid any more.
I suggest you look into std::shared_ptr for the pointers.
This is your problem--
Car car( ... ); // ***Stack allocated
if (car.getcarID() != 0)
{
m_car_records.insert(m_car_pair(car.getcarID(), &car));
}
//But the pointer is what's stored
When the loop iterates, the Car instance is destroyed and the pointer dangles, resulting in undefined behavior. You need
Car* car = new Car( ... );
and then when m_car is no longer needed, you need to iterate through and delete its Car values.
I'm using luabind 0.9.1 from Ryan Pavlik's master distribution with Lua 5.1, cygwin on Win XP SP3 + latest patches x86, boost 1.48, gcc 4.3.4. Lua and boost are cygwin pre-compiled versions.
I've successfully built luabind in both static and shared versions.
Both versions pass all the tests EXCEPT for the test_object_identity.cpp test which fails in both versions.
I've tracked down the problem to the following issue:
If an entry in a table is created for NON built-in class (i.e., not int, string, etc), the value CANNOT be retrieved.
Here's a code piece that demonstrates this:
#include "test.hpp"
#include <luabind/luabind.hpp>
#include <luabind/detail/debug.hpp>
using namespace luabind;
struct test_param
{
int obj;
};
void test_main(lua_State* L)
{
using namespace luabind;
module(L)
[
class_<test_param>("test_param")
.def_readwrite("obj", &test_param::obj)
];
test_param temp_object;
object tabc = newtable(L);
tabc[1] = 10;
tabc[temp_object] = 30;
TEST_CHECK( tabc[1] == 10 ); // passes
TEST_CHECK( tabc[temp_object] == 30 ); // FAILS!!!
}
tabc[1] is indeed 10 while tabc[temp_object] is NOT 30! (actually, it seems to be nil)
However, if I use iterate to go over tabc entries, there're the two entries with the CORRECT key/value pairs.
Any ideas?
BTW, overloading the == operator like this:
#include <luabind/operator.hpp>
struct test_param
{
int obj;
bool operator==(test_param const& rhs) const
{
return obj == rhs.obj;
}
};
and
module(L)
[
class_<test_param>("test_param")
.def_readwrite("obj", &test_param::obj)
.def(const_self == const_self)
];
Doesn't change the result.
I also tried switching to settable() and gettable() from the [] operator. The result is the same. I can see with the debugger that default conversion of the key is invoked, so I guess the error arises from somewhere therein, but it's beyond me to figure out what exactly the problem is.
As the following simple test case show, there're definitely a bug in Luabind's conversion for complex types:
struct test_param : wrap_base
{
int obj;
bool operator==(test_param const& rhs) const
{ return obj == rhs.obj ; }
};
void test_main(lua_State* L)
{
using namespace luabind;
module(L)
[
class_<test_param>("test_param")
.def(constructor<>())
.def_readwrite("obj", &test_param::obj)
.def(const_self == const_self)
];
object tabc, zzk, zzv;
test_param tp, tp1;
tp.obj = 123456;
// create new table
tabc = newtable(L);
// set tabc[tp] = 5;
// o k v
settable( tabc, tp, 5);
// get access to entry through iterator() API
iterator zzi(tabc);
// get the key object
zzk = zzi.key();
// read back the value through gettable() API
// o k
zzv = gettable(tabc, zzk);
// check the entry has the same value
// irrespective of access method
TEST_CHECK ( *zzi == 5 &&
object_cast<int>(zzv) == 5 );
// convert key to its REAL type (test_param)
tp1 = object_cast<test_param>(zzk);
// check two keys are the same
TEST_CHECK( tp == tp1 );
// read the value back from table using REAL key type
zzv = gettable(tabc, tp1);
// check the value
TEST_CHECK( object_cast<int>(zzv) == 5 );
// the previous call FAILS with
// Terminated with exception: "unable to make cast"
// this is because gettable() doesn't return
// a TRUE value, but nil instead
}
Hopefully, someone smarter than me can figure this out,
Thx
I've traced the problem to the fact that Luabind creates a NEW DISTINCT object EVERY time you use a complex value as key (but it does NOT if you use a primitive one or an object).
Here's a small test case that demonstrates this:
struct test_param : wrap_base
{
int obj;
bool operator==(test_param const& rhs) const
{ return obj == rhs.obj ; }
};
void test_main(lua_State* L)
{
using namespace luabind;
module(L)
[
class_<test_param>("test_param")
.def(constructor<>())
.def_readwrite("obj", &test_param::obj)
.def(const_self == const_self)
];
object tabc, zzk, zzv;
test_param tp;
tp.obj = 123456;
tabc = newtable(L);
// o k v
settable( tabc, tp, 5);
iterator zzi(tabc), end;
std::cerr << "value = " << *zzi << "\n";
zzk = zzi.key();
// o k v
settable( tabc, tp, 6);
settable( tabc, zzk, 7);
for (zzi = iterator(tabc); zzi != end; ++zzi)
{
std::cerr << "value = " << *zzi << "\n";
}
}
Notice how tabc[tp] first has the value 5 and then is overwritten with 7 when accessed through the key object. However, when accessed AGAIN through tp, a new entry gets created. This is why gettable() fails subsequently.
Thx,
David
Disclaimer: I'm not an expert on luabind. It's entirely possible I've missed something about luabind's capabilities.
First of all, what is luabind doing when converting test_param to a Lua key? The default policy is copy. To quote the luabind documentation:
This will make a copy of the parameter. This is the default behavior when passing parameters by-value. Note that this can only be used when passing from C++ to Lua. This policy requires that the parameter type has an accessible copy constructor.
In pratice, what this means is that luabind will create a new object (called "full userdata") which is owned by the Lua garbage collector and will copy your struct into it. This is a very safe thing to do because it no longer matters what you do with the c++ object; the Lua object will stick around without really any overhead. This is a good way to do bindings for by-value sorts of objects.
Why does luabind create a new object each time you pass it to Lua? Well, what else could it do? It doesn't matter if the address of the passed object is the same, because the original c++ object could have changed or been destroyed since it was first passed to Lua. (Remember, it was copied to Lua by value, not by reference.) So, with only ==, luabind would have to maintain a list of every object of that type which had ever been passed to Lua (possibly weakly) and compare your object against each one to see if it matches. luabind doesn't do this (nor do I think should it).
Now, let's look at the Lua side. Even though luabind creates two different objects, they're still equal, right? Well, the first problem is that, besides certain built-in types, Lua can only hold objects by reference. Each of those "full userdata" that I mentioned before is actually a pointer. That means that they are not identical.
But they are equal, if we define an __eq meta operation. Unfortunately, Lua itself simply does not support this case. Userdata when used as table keys are always compared by identity, no matter what. This actually isn't special for userdata; it is also true for tables. (Note that to properly support this case, Lua would need to override the hashcode operation on the object in addition to __eq. Lua also does not support overriding the hashcode operation.) I can't speak for the authors of Lua why they did not allow this (and it has been suggested before), but there it is.
So, what are the options?
The simplest thing would be to convert test_param to an object once (explicitly), and then use that object to index the table both times. However, I suspect that while this fixes your toy example, it isn't very helpful in practice.
Another option is simply not to use such types as keys. Actually, I think this is a very good suggestion, since this kind of light-weight binding is quite useful, and the only other option is to discard it.
It looks like you can define a custom conversion on your type. In your example, it might be reasonable to convert your type to a Lua number which will behave well as a table index.
Use a different kind of binding. There will be some overhead, but if you want identity, you'll have to live with it. It sounds like luabind has some support for wrappers, which you may need to use to preserve identity:
When a pointer or reference to a registered class with a wrapper is passed to Lua, luabind will query for it's dynamic type. If the dynamic type inherits from wrap_base, object identity is preserved.