Using partialy initialized object in tests - c++

I have a concern regarding usage of "improperly" initialized objects in unit tests.
Let's say I want to tests a function:
void foo(SomeClass)
{
//do some stuff based on SomeClass.value
}
where:
class SomeClass
{
OtherClass* ptr;
int uninterestingValue;
int value;
};
What I want to do is create function (available only in unit test, namely in anonymous namespace) which:
SomeClass createDummy()
{
SomeClass dummy(nullptr, 0, //initialize uninteresting fields with nullptr/0
42) //42 will be used for testing purpose
}
Reason: creating object of SomeClass type is complex, as it is used to represent final state of data processing in system. I'd like to simplify it a bit.
Would it be considered a bad approach?
Are there better ways to achieve this (talking specificly about C++/googletest?

You have three parts to your question. I won't address whether or not there are better ways, but the approach your talking about is not bad.
The idea of using dummy objects with only the important parts implemented is standard. There are several variations on the idea of using test doubles. Test doubles include mocks, fakes, stubs, and spies. Using those terms to search google should give you plenty of information about that idea. Here's an article that explains the difference. Since you are using Google Test, you should look into how you can use the Google Mock extension to make your test doubles.
The second idea is about having a builder to create the dummy objects. Two relevant patterns are Object Mother and Test Data Builder. You can search those terms or get started with this article.

Related

How to test behavior based on private class using members c++ using gtest

I want to use Google test to test my class.
Lets assume I have a state machine implementation and the current state is private
so I have a method SetNextState that looks like that:
void setNextState
{
switch(m_currentState) //m_currentState is a private member
{
case INIT_STATE:
{
if some conditions occurred m_currentState=GO_STATE
}
......
}
}
so I have several cases and each define the behavior to move from certain state to another.
My question:
How do I perform tests on that method assuming the state is relevant only to this class so there is no output
How do I set its value to be, for example "GO_STATE" to test the GO_STATE case
and how do i check the m_currentState at the end of the test
Im trying to avoid putting friends etc. in my UUT code since I want it to be as original as possible
You don't. You do the same thing that your actual program will do, which is provide an input, then examine the result; you say there's no output, but there must be some effect, otherwise the class is pointless!
Failing that, you could make the test a "friend" of the class so that it can inspect its internals, or add an immutable getter for the current state (and who really cares if your class's users get to see that?) but neither option is really in the spirit of the thing.
In my experience, you'll occasionally realise that you're not really unit testing any more but instead functional testing, and Google Test may not be the right tool for that job. If your class is as big as it sounds, that could be the case here. Conversely, you could help yourself by splitting the class into smaller chunks, then unit testing those. Depends what you're going for, really.
Lightness Races in Orbit is correct. However, if sometimes you feel like it's useful to test the private member functions of your class, it often means that your class could be split in multiple smaller pieces.
If you don't think those smaller components are useful to the clients of your library, you can simply hide them in a detail:: namespace and then create unit tests as usual. This will allow you to test the internal behavior of your classes without polluting your public API.
After much considerations I decided to wrap my UUT with a helper which provides set and get to the relevant private members.and use it in the test procedure before calling the tested API
Original code
===============
class UUT //That's the actual class I want to test
{
protected:
int m_protectedMember;
public:
void methodToTest()
{
//Do something with m_protectedMember use its value as input
//and set it as output
}
};
In the tester
==============
class UUTHelper: public UUT
{
public:
int getProtectedMember() { return m_protectedMember; }
void setProtectedMember(int value) { m_protectedMember = value; }
};
The pros:
My test code is very simple and I easily create complicated scenarios .
I test the real code without any "friends" or any other manipulations.
The cons:
As written in the discussion, not the best "good practice", touching private members
Thank you all :)

DRY while writing tests

When writing tests i usually have some methods creating test data:
#Test
public void someMethod_somePrecondition_someResult() {
ClassUnderTest cut = new ClassUnderTest();
NeededData data = createNeededData();
cut.performSomeActionWithTheData(data);
assertTrue(cut.someMethod());
}
private NeededData createNeededData() {
NeededData data = new NeededData();
// Initialize data with needed values for the tests
return data;
}
I think this is a good approach to minimize duplication in the test class (most unit testing frameworks also provide functionality to set up test data). But what if i test classes that need similar test data? Is it a good choice to provide every test class with its own createNeededData() method, even if they are all the same, or should i use other classes to generate test data to minimize code duplication?
Disclaimer: I haven't used what I'm suggesting here yet, so this is just what I believe.
I recently read about a pattern called object mother which basically is a factory that creates objects with the different data that you might need. M. Fowler also talks about these objects as akin to personas, that is, you might generate different objects that represents different use cases.
Now the object mother pattern is not without it's problems, it can easily grow a lot and become quite cumbersome to maintain as your project grows. In this article 'TEST DATA BUILDERS AND OBJECT MOTHER: ANOTHER LOOK' the author talkes about using the builder pattern to create testobjects, which he concludes is also not perfect and then goes on to hypothesize about a combination between a builder combined with an object mother.
So basically you'd use the object mother pattern to bootstrap some repetetive data, and then use the returned builder to configure the object to your tests specific
I believe that wether you should do it like explained above or just repeat yourself in your tests (which isn't necessarily a bad thing when it comes to testing) is a matter of trying to evaluate the cost of implementing this contra continuing with how you're doing things now.

integration assertions into tested class

Why it is bad idea to integrate test assertions into tested class?
For example something like:
class SomeClass {
function add($a) {
return $a + 1;
}
function test_add($TestCase) {
$TestCase->assertEquals($this->add(1), 2);
$TestCase->assertEquals($this->add(2), 3);
}
}
And then some framework run over all test_* functions passing them TestCase object
what is wrong in this approach? Why all frameworks tends to separate class implementation code and test assertions?
My first thought would be size of the class in doing this. I have found as a rule of thumb that I write 3 lines of test code for each line of actual code. So you class size would increase by 300%.
The other issue is organization. Your tests are going to be interspersed amongst the classes methods. It is going to be even more difficult to put things some place that is easy to find.
Along with, our class is now doing a lot more things than it used to be. It is now performing whatever functionality that we require of it and it is also testing that the functionality is correct. Those being two different things suggests that they should really be two different classes.

Is it bad practice to unit test a method that is calling another method I am already testing?

Consider you have the following method:
public Foo ParseMe(string filepath)
{
// break up filename
// validate filename & extension
// retrieve info from file if it's a certain type
// some other general things you could do, etc
var myInfo = GetFooInfo(filename);
// create new object based on this data returned AND data in this method
}
Currently I have unit tests for GetFooInfo, but I think I also need to build unit tests for ParseMe. In a situation like this where you have a two methods that return two different properties - and a change in either of them could break something - should unit tests be created for both to determine the output is as expected?
I like to err on the side of caution and be more wary about things breaking and ensuring that maintenance later on down the road is easier, but I feel very skeptical about adding very similar tests in the test project. Would this be bad practice or is there any way to do this more efficiently?
I'm marking this as language agnostic, but just in case it matters I am using C# and NUnit - Also, I saw a post similar to this in title only, but the question is different. Sorry if this has already been asked.
ParseMe looks sufficiently non-trivial to require a unit test. To answer your precise question, if "you have a two methods that return two different properties - and a change in either of them could break something" you should absolutely unit test them.
Even if the bulk of the work is in GetFooInfo, at minimum you should test that it's actually called. I know nothing about NUnit, but I know in other frameworks (like RSpec) you can write tests like GetFooInfo.should be_called(:once).
It is not a bad practice to test a method that is calling another method. In fact, it is a good practice. If you have a method calling another method, it is probably performing additional functionality, which should be tested.
If you find yourself unit testing a method that calls a method that is also being unit tested, then you are probably experiencing code reuse, which is a good thing.
I agree with #tsm - absolutely test both methods (assuming both are public).
This may be a smell that the method or class is doing too much - violating the Single Responsibility Principle. Consider doing an Extract Class refactoring and decoupling the two classes (possibly with Dependency Injection). That way you could test both pieces of functionality independently. (That said, I'd only do that if the functionality was sufficiently complex to warrant it. It's a judgment call.)
Here's an example in C#:
public interface IFooFileInfoProvider
{
FooInfo GetFooInfo(string filename);
}
public class Parser
{
private readonly IFooFileInfoProvider _fooFileInfoProvider;
public Parser(IFooFileInfoProvider fooFileInfoProvider)
{
// Add a null check
_fooFileInfoProvider = fooFileInfoProvider;
}
public Foo ParseMe(string filepath)
{
string filename = Path.GetFileName(filepath);
var myInfo = _fooFileInfoProvider.GetFooInfo(filename);
return new Foo(myInfo);
}
}
public class FooFileInfoProvider : IFooFileInfoProvider
{
public FooInfo GetFooInfo(string filename)
{
// Do I/O
return new FooInfo(); // parameters...
}
}
Many developers, me included, take a programming by contract approach. That requires you to consider each method as a black box. If the method delegates to another method to accomplish its task does not matter, when you are testing the method. But you should also test all large or complicated parts of your program as units. So whether you need to unit test the GetFooInfo depends on how complicated that method is.

Should I change the naming convention for my unit tests?

I currently use a simple convention for my unit tests. If I have a class named "EmployeeReader", I create a test class named "EmployeeReader.Tests. I then create all the tests for the class in the test class with names such as:
Reading_Valid_Employee_Data_Correctly_Generates_Employee_Object
Reading_Missing_Employee_Data_Throws_Invalid_Employee_ID_Exception
and so on.
I have recently been reading about a different type of naming convention used in BDD. I like the readability of this naming, to end up with a list of tests something like:
When_Reading_Valid_Employee (fixture)
Employee_Object_Is_Generated (method)
Employee_Has_Correct_ID (method)
When_Reading_Missing_Employee (fixture)
An_Invalid_Employee_ID_Exception_Is_Thrown (method)
and so on.
Has anybody used both styles of naming? Can you provide any advice, benefits, drawbacks, gotchas, etc. to help me decide whether to switch or not for my next project?
The naming convention I've been using is:
functionName_shouldDoThis_whenThisIsTheSituation
For example, these would be some test names for a stack's 'pop' function
pop_shouldThrowEmptyStackException_whenTheStackIsEmpty
pop_shouldReturnTheObjectOnTheTopOfTheStack_whenThereIsAnObjectOnTheStack
Your second example (having a fixture for each logical "task", rather than one for each class) has the advantage that you can have different SetUp and TearDown logic for each task, thus simplifying your individual test methods and making them more readable.
You don't need to settle on one or the other as a standard. We use a mixture of both, depending on how many different "tasks" we have to test for each class.
I feel the second is better because it makes your unit tests more readable to others as long lines make the code look more difficult to read or make it more difficult to skim through. If you still feel there's any ambiguity as for what the test does, you can add comments to clarify this.
Part of the reasoning behind the 2nd naming convention that you reference is that you are creating tests and behavioural specifications at the same time. You establish the context in which things are happening and what should actually then happen within that context. (In my experience, the observations/test-methods often start with "should_," so you get a standard "When_the_invoicing_system_is_told_to_email_the_client," "should_initiate_connection_to_mail_server" format.)
There are tools that will reflect over your test fixtures and output a nicely formatted html spec sheet, stripping out the underscores. You end up with human-readable documentation that is in sync with the actual code (as long as you keep your test coverage high and accurate).
Depending on the story/feature/subsystem on which you're working, these specifications can be shown to and understood by non-programmer stakeholders for verification and feedback, which is at the heart of agile and BDD in particular.
I use second method, and it really helps with describing what your software should do. I also use nested classes to describe more detailed context.
In essence, test classes are contexts, which can be nested, and methods are all one line assertions. For example,
public class MyClassSpecification
{
protected MyClass instance = new MyClass();
public class When_foobar_is_42 : MyClassSpecification
{
public When_foobar_is_42() {
this.instance.SetFoobar( 42 );
}
public class GetAnswer : When_foobar_is_42
{
private Int32 result;
public GetAnswer() {
this.result = this.GetAnswer();
}
public void should_return_42() {
Assert.AreEqual( 42, result );
}
}
}
}
which will give me following output in my test runner:
MyClassSpecification+When_foobar_is_42+GetAnswer
should_return_42
I've been down the two roads you describe in your question as well as a few other... Your first alternative is pretty straight forward and easy to understand for most people. I personally like the BDD style (your second example) more because it isolates different contexts and groups observations on those contexts. Th only real downside is that it generates more code so starting to do it feels slightly more cumbersome until you see the neat tests. Also if you use inheritance to reuse fixture setup you want a testrunner that outputs the inheritance chain. Consider a class "An_empty_stack" and you want to reuse it so you then do another class: "When_five_is_pushed_on : An_empty_stack" you want that as output and not just "When_five_is_pushed_on". If your testrunner does not support this your tests will contain redundant information like: "When_five_is_pushed_on_empty_stack : An_empty_stack" just to make the output nice.
i vote for calling the test case class: EmployeeReaderTestCase and calling the methods() like http://xunitpatterns.com/Organization.html and http://xunitpatterns.com/Organization.html#Test%20Naming%20Conventions